JPS58152225A - Binary coding device for light level - Google Patents

Binary coding device for light level

Info

Publication number
JPS58152225A
JPS58152225A JP57034794A JP3479482A JPS58152225A JP S58152225 A JPS58152225 A JP S58152225A JP 57034794 A JP57034794 A JP 57034794A JP 3479482 A JP3479482 A JP 3479482A JP S58152225 A JPS58152225 A JP S58152225A
Authority
JP
Japan
Prior art keywords
light
emitting element
output
photodetector
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57034794A
Other languages
Japanese (ja)
Inventor
Haruo Misumi
三隅 春雄
Yuji Ogawa
小川 裕士
Naotake Nagao
長尾 尚武
Katsuhiko Oimura
老邑 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP57034794A priority Critical patent/JPS58152225A/en
Priority to US06/472,244 priority patent/US4565924A/en
Publication of JPS58152225A publication Critical patent/JPS58152225A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/42Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To improve the response speed between input light and output light and to reduce the delay in phase in the case of performing waveform shaping, etc. by providing a photodetector and a light emitting element on the end faces of optical fibers for inputting and outputting so as to face each other respectively, and driving the light emitting element with the photocurrent outputted from the photodetector. CONSTITUTION:As incident light L1 is made incident to a photodetector 4 from an optical fiber 1, collector current I increases, hence the quantity of the light emitted by a light emitting element 9 increases. Part L3 of the output light is reflected by the reflection films 3 coated on fibers 1, 2, and is again made incident to the photodetector 4. As a result, a positive feedback loop is constituted in the above-mentioned way, and the output light of the element 9 is increased, whereby the threshold value characteristics of the output light with respect to the input light are provided, the response speed in improved and the waveform shaping is accomplished satisfactorily.

Description

【発明の詳細な説明】 この発明は、光フアイバ伝送における光中継機等に好適
な光レベル2値化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical level binarization device suitable for optical repeaters and the like in optical fiber transmission.

従来、伝送途中で波形の鈍った入力デジタル光を、正確
な波形の出力光に変換する場合、入力光を受光素子で検
知して光/電気変換した後、これを電気的に波形整形し
て、再び発光素子で電気/光変換を行ない、出力光を得
るという方法が採用されている。
Conventionally, when converting input digital light whose waveform became dull during transmission into output light with a precise waveform, the input light was detected by a light receiving element, converted into light/electricity, and then electrically waveform-shaped. , a method has been adopted in which the light emitting element performs electrical/optical conversion again to obtain output light.

しかしながら、この方法では発光素子と受光素子の中間
に複雑な電気回路が必要な上、入力光と出力光の時間遅
れの中に、発光素子と受光素子の遅延時間に加えて、上
記電気回路の遅延時間が含まれるために、入力光と出力
光の位相遅れが大きくなり、このことが全体の光システ
ムに悪影響を及ぼしている欠点がある。
However, this method requires a complicated electric circuit between the light emitting element and the light receiving element, and the time delay between the input light and the output light includes the delay time between the light emitting element and the light receiving element, as well as the delay time of the electric circuit described above. Since the delay time is included, there is a large phase lag between the input light and the output light, which has a disadvantage in that it has an adverse effect on the entire optical system.

この発明は上記の問題に鑑みなされたもので、その目的
とするところは、例えばこのような光波形整形等を行な
う場合に、入出力光間の応答速度を改善し、これにより
位相遅れを可及的に低減させることにある。
This invention was made in view of the above problem, and its purpose is to improve the response speed between input and output light, and thereby eliminate phase delay, when performing such optical waveform shaping, etc. The goal is to reduce this as much as possible.

この発明は上記の目的を達成するために、入力用光ファ
イバの端面に対向して受光素子を設けるとともに、出力
用光ファイバの端面に対向して同様に発光素子を設け、
かつ前記発光素子は、受光素子から出力される光電流で
駆動され、更に前記受光素子と発光素子とは、前記発光
素子からの出力光の一部が前記光ファイバの端面で反射
して前配受光本子に到達するように両者を配置し、これ
により画素子間に一定の正帰還をかけて入力光に苅する
出力光のしきい値特性を持たせるとともに、応答速度を
改善したものである。
In order to achieve the above object, the present invention provides a light receiving element opposite to the end face of an input optical fiber, and similarly provides a light emitting element opposite to the end face of an output optical fiber.
The light-emitting element is driven by a photocurrent output from the light-receiving element, and the light-receiving element and the light-emitting element are arranged so that a part of the output light from the light-emitting element is reflected by the end face of the optical fiber and the light emitting element is driven by a photocurrent output from the light-receiving element. Both are arranged so that the light reaches the main light-receiving element, thereby creating a constant positive feedback between the pixel elements, giving the input light a threshold characteristic for the output light, and improving the response speed. .

以下に、この発明に好適な一実施例を添付図面に従って
詳細に説明する。
A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明に係わる装置の一例を示す断面図である
。同図において、入力用光ファイバ1よりの入力光L1
は、その端面1aに対向して設けられた受光素子4(こ
こでは、^速フォトトランジスタ)に入射するようにな
っており、また発光索子9(ここではLED)より出射
した光の大部分L2は、出力用光ファイバ2に導入され
て外部に出力される。
FIG. 1 is a sectional view showing an example of a device according to the present invention. In the same figure, input light L1 from input optical fiber 1
The light is incident on the light receiving element 4 (in this case, a fast phototransistor) provided opposite to the end surface 1a, and most of the light emitted from the light emitting element 9 (in this case, an LED) is L2 is introduced into the output optical fiber 2 and output to the outside.

他方、発光素子9の出力光の一部分L3は、上記2本の
光ファイバ1.2の端面1a、2aにコーティングされ
た半透明の反1i)1躾3によって反射されて受光素子
4に導入される構造になっている。
On the other hand, a portion L3 of the output light from the light emitting element 9 is reflected by the semi-transparent fiber coated on the end surfaces 1a and 2a of the two optical fibers 1.2 and introduced into the light receiving element 4. It has a structure that allows

また、受光素子4の出力端子(ここでは、■ミッタ)と
発光素子90入力端子(ここでは、アノード)は、ステ
ム13によって電気的に接続されており、このため発光
素子9は受光素子4からの光電流によって直接駆動され
る。
Furthermore, the output terminal of the light-receiving element 4 (here, ■mitter) and the input terminal of the light-emitting element 90 (here, the anode) are electrically connected by the stem 13, so that the light-emitting element 9 is directly driven by the photocurrent of

なお、同図において5は電極、6はフォトトランジスタ
を構成するn型半導体、7はフォトトランジスタを構成
するp型半導体、8はフォトトランジスタを構成する0
型半導体、10はLEDを構成するn型半導体、11は
LEDを構成するn型半導体、12はLEDを構成する
p型半導体、14はボンディングワイヤである。
In the same figure, 5 is an electrode, 6 is an n-type semiconductor that makes up the phototransistor, 7 is a p-type semiconductor that makes up the phototransistor, and 8 is 0 that makes up the phototransistor.
10 is an n-type semiconductor forming the LED, 11 is an n-type semiconductor forming the LED, 12 is a p-type semiconductor forming the LED, and 14 is a bonding wire.

次に、第2図に本発明装置の電気的等価回路を示す。こ
の回路に基づいて本発明の詳細な説明する。
Next, FIG. 2 shows an electrical equivalent circuit of the device of the present invention. The present invention will be explained in detail based on this circuit.

端子A−C間に、直流電圧を印加し、また端子A−B問
およびB−Clllに所定の外部抵抗器RA。
A DC voltage is applied between terminals A and C, and a predetermined external resistor RA is applied between terminals A and B and B and Cll.

R8を接続する。Connect R8.

なお、ここで外部抵抗器RA、RBは、この回路の動作
点を決定するためのもので、これらの抵抗値の値を適当
に選ぶことにより、受光素子4と発光素子911の動作
関係を決定することができる。
Note that the external resistors RA and RB are used to determine the operating point of this circuit, and by appropriately selecting the values of these resistances, the operational relationship between the light receiving element 4 and the light emitting element 911 is determined. can do.

ここで、この実施例による受光素子4の入力光対出り電
流特性を第3図(a)に、発光索子9の入り電流対出力
光特性を第3図(b)にそれぞれ示す。
Here, the input light versus output current characteristics of the light receiving element 4 of this embodiment are shown in FIG. 3(a), and the input current versus output light characteristics of the light emitting cable 9 are shown in FIG. 3(b).

以上の回路構成において、受光素子4に光ファイバ1よ
りの入射光L1が入射すると、これにともない、コレク
タ電流■が増加する。
In the above circuit configuration, when the incident light L1 from the optical fiber 1 enters the light-receiving element 4, the collector current ■ increases accordingly.

電流lが増加すると、発光素子9の発光量が増加し、こ
の出力光の一部がL3が、光ファイバ1゜2のコーティ
ングされた反1111113によって反射され、再び受
光素子4に入射する。
As the current 1 increases, the amount of light emitted from the light emitting element 9 increases, and part of this output light L3 is reflected by the coated fiber 1111113 of the optical fiber 1.degree. 2 and enters the light receiving element 4 again.

このようにして、正帰還ループが構成されることになり
、発光素子9の出力光が患部に増加し、これによりしき
い値特性を持つことになる。
In this way, a positive feedback loop is formed, and the output light of the light emitting element 9 increases to the affected area, thereby providing a threshold characteristic.

逆に、光ファイバ1からの入射光線が減少していく場合
を考えると、増加の場合と全(逆な過程を経るのである
が、このとき既に発光素子9からの光の一部は受光素子
4に入射しているため、光ファイバ1の入射光が減少し
ていくときに発光素子4の出力光が急激に減少するしき
い値は、増加の場合よりやや少い入射光量において表わ
れることになり、このため、第3図(C)に示1如くシ
ステリシス特性が得られることになる。
Conversely, if we consider the case where the incident light ray from the optical fiber 1 decreases, all of the light rays from the optical fiber 1 go through the opposite process to the case where it increases. 4, the threshold value at which the output light of the light emitting element 4 suddenly decreases when the incident light of the optical fiber 1 decreases appears at a slightly smaller amount of incident light than when it increases. Therefore, a systeresis characteristic as shown in FIG. 3(C) is obtained.

かくしてこの実施例に係わる光レベル2値化装胃よれば
、僅かな回路部品によって光増幅を行なうことができる
とともに、遅延特性についても発光、受光各素子の応答
速度のみに依存するため、比較的高い周波数で使用する
ことができ、またし □きい値特性とヒステリシス特性
によって良好な波形整形が行なえるという優れた特徴を
有する。
Thus, according to the optical level binarization device according to this embodiment, optical amplification can be performed with a small number of circuit components, and the delay characteristics are also relatively high because they depend only on the response speeds of the light emitting and light receiving elements. It has the excellent feature of being able to perform good waveform shaping due to its threshold characteristics and hysteresis characteristics.

なお、前記実施例においては、受光素子としてフォトト
ランジスタを使用したが、この他フォトダイオード等の
他の受光素子でも良いことは勿論であり、また発光素子
としても発光ダイオードの他に、レーザダイオード等で
も良いことは勿論である。
In the above embodiments, a phototransistor was used as the light receiving element, but it is of course possible to use other light receiving elements such as a photodiode, and as a light emitting element, in addition to a light emitting diode, a laser diode, etc. But of course it's a good thing.

更に前記実施例においては、この発明に係わる光レベル
2値化装置を光中継機として用いた場合を説明したが、
本発明装置の用途はこれに限定されるものではなく、例
えば入力アナログ光線が一定のレベルに達した場合、こ
れを検知して何らかの出力を発するようなセンサあるい
はコンパレータ等として使用することもでき、その他種
々の用途をhするものである。
Furthermore, in the embodiments described above, the case where the optical level binarization device according to the present invention is used as an optical repeater is explained.
The use of the device of the present invention is not limited to this, for example, it can also be used as a sensor or comparator that detects when the input analog light beam reaches a certain level and outputs some kind of output. It is used for various other purposes.

以上の実施例の説明でも明らかなように、この発明に係
わる光レベル2値化装置によれば、入力光線を所定のレ
ベルを基準として2値化し、その出力を2値化光線で出
力するような種々の用途において、これを極めて簡単な
構成によりしかも高速に行なうことができるとともに、
2値化に際して充分なヒステリシス特性を有することか
ら、安定した2値化動作を行なわせることができる。
As is clear from the description of the embodiments above, the light level binarization device according to the present invention binarizes an input light beam based on a predetermined level, and outputs the output as a binarized light beam. In various applications, this can be done with an extremely simple configuration and at high speed.
Since it has sufficient hysteresis characteristics during binarization, stable binarization operation can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係わる光レベル2値化装置の一例を
示す断面図、第2図は同装置の電気的等価回路を示寸回
路図、第3図(a )は受光素子の特性を示す曲線、第
3図(b)は発光素子の特性を示す曲線、第3図(C)
は本装置の入出力特性を示1曲線、第4図は本装置を波
形整形器として使用した場合における、光入力波形と光
出力波形との関係を示すグラフである。 1・・・・・・・・・・・・・・・入力用光ファイバi
a、2a・・・端面 2・・・・・・・・・・・・・・・出力用光ファイバ3
・・・・・・・・・・・・・・・反射膜4・・・・・・
・・・・・・・・・受光素子9・・・・・・・・・・・
・・・・発光素子13・・・・・・・・・・・・ステム 特許出願人 立石電機株式会社 第1図 1−: \\\ 第2図 一つB− 214 \ 1−15 )− + R8
Fig. 1 is a sectional view showing an example of a light level binarization device according to the present invention, Fig. 2 is a circuit diagram showing the electrical equivalent circuit of the same device, and Fig. 3 (a) shows the characteristics of the light receiving element. The curve shown in FIG. 3(b) is the curve showing the characteristics of the light emitting element, FIG. 3(C)
1 is a curve showing the input/output characteristics of the present device, and FIG. 4 is a graph showing the relationship between the optical input waveform and the optical output waveform when the present device is used as a waveform shaper. 1・・・・・・・・・・・・Input optical fiber i
a, 2a... End face 2... Output optical fiber 3
・・・・・・・・・・・・Reflection film 4・・・・・・
...... Light receiving element 9 ......
・・・・Light-emitting element 13・・・・・・・・・Stem patent applicant Tateishi Electric Co., Ltd. Figure 1 1-: \\\\ Figure 2 One B- 214 \ 1-15 )- +R8

Claims (1)

【特許請求の範囲】[Claims] (1)入力用光ファイバの端面に対向して設けられた受
光素子と; 出力用光ファイバの端面に対向して設けられた発光素子
とを備え; 前記発光素子は、前記受光素子から出力される光電流で
駆動され、かつ、前記受光素子と発光素子とは、前記発
光素子からの出力光の一部が、前記ファイバの端面で反
射して前記受光素子に到達するように配置されているこ
とを特徴とする光レベル2値化装置。
(1) A light-receiving element provided facing the end face of the input optical fiber; and a light-emitting element provided facing the end face of the output optical fiber; The light-receiving element and the light-emitting element are arranged such that a part of the output light from the light-emitting element is reflected by an end face of the fiber and reaches the light-receiving element. A light level binarization device characterized by:
JP57034794A 1982-03-05 1982-03-05 Binary coding device for light level Pending JPS58152225A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57034794A JPS58152225A (en) 1982-03-05 1982-03-05 Binary coding device for light level
US06/472,244 US4565924A (en) 1982-03-05 1983-03-04 Light signal binary device with optical feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57034794A JPS58152225A (en) 1982-03-05 1982-03-05 Binary coding device for light level

Publications (1)

Publication Number Publication Date
JPS58152225A true JPS58152225A (en) 1983-09-09

Family

ID=12424164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57034794A Pending JPS58152225A (en) 1982-03-05 1982-03-05 Binary coding device for light level

Country Status (1)

Country Link
JP (1) JPS58152225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053473U (en) * 1991-06-25 1993-01-19 大和ハウス工業株式会社 Floor closeout

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053473U (en) * 1991-06-25 1993-01-19 大和ハウス工業株式会社 Floor closeout

Similar Documents

Publication Publication Date Title
JP2974469B2 (en) Signal transmission circuit
US4565924A (en) Light signal binary device with optical feedback
JPS58152225A (en) Binary coding device for light level
EP0083986A2 (en) Polychromatic image sensor
US5164581A (en) Concentric photoelectric light-receiving element
JPS62172767A (en) Optical semiconductor device
SU1223259A2 (en) Selector of minimum signal
JPS6420418A (en) Photodetecting device
JPS6316682A (en) Resin-sealed light emitting module
US5075794A (en) Reflective opitical feedback element
JPH01293027A (en) Optical reception circuit
JPS60117930A (en) Photo-electric conversion circuit
JPH0528827Y2 (en)
JPS61161040A (en) Optical amplifier device
JPS63302579A (en) Optical transmitter circuit
JPH06244461A (en) Electric/optical conversion device
JPH0631532Y2 (en) Constant voltage power supply circuit
SU1127094A1 (en) Gate optron
JPH054525U (en) Optical coupling structure
SU1681386A1 (en) Bipolar code converter
JPS62189768A (en) Photodetecting amplifier
CN203722643U (en) Active optical device used for CPON system terminal box
JPS6461966A (en) Photocoupler
JPS6076721A (en) Optical modulator
JPH05206501A (en) Photodetector