JPS5815207A - Method of producing ceramic electronic part - Google Patents

Method of producing ceramic electronic part

Info

Publication number
JPS5815207A
JPS5815207A JP11481281A JP11481281A JPS5815207A JP S5815207 A JPS5815207 A JP S5815207A JP 11481281 A JP11481281 A JP 11481281A JP 11481281 A JP11481281 A JP 11481281A JP S5815207 A JPS5815207 A JP S5815207A
Authority
JP
Japan
Prior art keywords
ceramic
metal wire
wire
coating layer
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11481281A
Other languages
Japanese (ja)
Other versions
JPS6347123B2 (en
Inventor
純一 加藤
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11481281A priority Critical patent/JPS5815207A/en
Publication of JPS5815207A publication Critical patent/JPS5815207A/en
Publication of JPS6347123B2 publication Critical patent/JPS6347123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は金11J−ド線を埋込んだセラミック電子部品
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a ceramic electronic component in which gold 11J-doped wires are embedded.

サーミスタや種々のセンサに用いられているセラミック
スは全て電極を行与されており、この電極は、多くの場
合、導電性ペイントの塗布や焼付け、あるいは金属の蒸
着などの方法により形成されている。これらの電極はい
ずれも数百度以上の温度においては酸化や剥離が生じて
使用することができない、高温サーミスタやガスセンサ
のように、電極の使用範囲以上°で用いるセラミック市
子部品は、セラミックを構成する物質の圧粉体に白金線
や金線を埋込み一体成型した後焼成し、金属リード線と
セラミック基体を固着して得らilでいる。この方法で
は焼成に際して圧粉体は10〜30チ収縮するのに対し
て金属線は収縮しないので、金属線に圧縮力が加わり、
セラミック基体と金属線を固く結合させることができる
。ところが、セラミック基体が前述の収縮により発生す
る応力に耐えることができない場合、セラミック基体は
破壊してしまう。焼成による収縮の度合や基体の機械的
強度は、セラミックスを構成する物質の化学組成や、合
成力法に依存する。一方、セラミ・り電子部品として要
求されるのは王に電気的8+!f性であるが、いくら電
気的特性が優れていても、リード線と固着させた場合、
セラミック基体が破壊すると電子部品として使用し得な
いので、」二連のような製造法を用いる限り、使用可能
な化学組1ノkか限定されていた。また、埋込む金属線
が細い場合には、セラミック基体にかかる応力も小さく
破壊も起こりにくいが、金属線の強度を増すため太い線
を使用すると、セラミック基体が破壊されてしまう。
All ceramics used in thermistors and various sensors are provided with electrodes, and these electrodes are often formed by coating or baking conductive paint, or by vapor deposition of metal. All of these electrodes cannot be used at temperatures above several hundred degrees due to oxidation and peeling.Ceramic components used at temperatures above the electrode's operating range, such as high-temperature thermistors and gas sensors, are made of ceramic. A platinum wire or a gold wire is embedded in a compacted powder of a material, integrally molded, and fired, and the metal lead wire and ceramic base are fixed to form an il. In this method, the compact shrinks by 10 to 30 inches during firing, but the metal wire does not, so compressive force is applied to the metal wire,
It is possible to firmly bond the ceramic substrate and the metal wire. However, if the ceramic substrate cannot withstand the stress generated by the above-mentioned shrinkage, the ceramic substrate will break. The degree of shrinkage due to firing and the mechanical strength of the substrate depend on the chemical composition of the materials that make up the ceramic and the composite force method. On the other hand, what is required for ceramic electronic components is electrical 8+! However, no matter how good the electrical characteristics are, if it is fixed to the lead wire,
If the ceramic substrate is destroyed, it cannot be used as an electronic component, so as long as manufacturing methods such as "Double Series" were used, the usable chemical group was limited to 1 k. Furthermore, if the metal wire to be embedded is thin, the stress applied to the ceramic base is small and destruction is less likely to occur, but if a thick wire is used to increase the strength of the metal wire, the ceramic base will be destroyed.

このような破壊は前述した圧粉体と金属線との収縮の差
により生じる応力のため発生するのであるから、この応
力がセラミック基体の鉋壊強度を越えないようにすれば
よい。このため、圧粉体にあらかじめ金属線の径より1
0〜30%大きい径の孔を開けておいて、その孔に金属
線を挿入し、焼成する方法もある。この場合、もろい圧
粉体に孔開は加工をしなければならず、加工中に圧粉体
が崩れたり欠けたりする。
Since such destruction occurs due to the stress caused by the difference in shrinkage between the powder compact and the metal wire as described above, it is sufficient to prevent this stress from exceeding the crushing strength of the ceramic substrate. For this reason, the diameter of the metal wire should be 1
There is also a method in which a hole with a diameter 0 to 30% larger is made, a metal wire is inserted into the hole, and then fired. In this case, holes must be formed in the brittle green compact, and the green compact may collapse or chip during processing.

本発明の方法は前述のような問題点を解決したものであ
り、白金線や金線の表面に有機物の被膜層を設けた後、
必要々化学組成を持つ粉体と一体成型し、焼成してセラ
ミック電子部品を得るものである。焼成前には、有機物
被膜層は金属線と圧粉体の間に存在しているが、焼成の
過程で200〜500℃でこの有機物被膜層は分解燃焼
し、圧粉体と金属線の間に隙間が生じ、さらに温度力≦
上かってから圧粉体の収縮が起こる。したがって、あら
かじめ圧粉体の収縮率に合わせて有機物被膜層の厚みを
設定しておけばセラミック基体の破壊を防止することが
できる。
The method of the present invention solves the above-mentioned problems, and after providing an organic coating layer on the surface of the platinum wire or gold wire,
Ceramic electronic components are obtained by integrally molding powder with the required chemical composition and firing. Before firing, an organic coating layer exists between the metal wire and the powder compact, but during the firing process, this organic coating layer decomposes and burns at 200 to 500°C, causing the gap between the powder compact and the metal wire to decompose and burn. A gap is created between the two, and the temperature force ≦
Contraction of the green compact occurs after it rises. Therefore, if the thickness of the organic coating layer is set in advance in accordance with the shrinkage rate of the green compact, destruction of the ceramic substrate can be prevented.

次に、本発明の実施例について図面を用いてnil明す
る。まず、高温サーミスタ用材料であるMq(A1.5
Cr as Fe、、、 )、、 o4  の粉末を準
備し、41機バインダーとして濃度6%のポリビニルア
ルコ−/L水溶液を6重量%添加して混合した。次に、
“白金線1をポリビニルアルコールの水溶液に浸し、引
上げて乾燥させた。乾燥した白金線1の表面には第1図
に示すようにポリビニルアルコールの被膜層2が形成さ
れていた。このような処理を行なった白金線1を通常行
なわれている方法で第2図に示すような形状に前記粉末
と一体成型した。なお図において、(3は圧粉体である
。1000℃で2時間焼成した。比較のため、ポリビニ
ルアノし:1−ルで被覆していない白金線を用いた場合
(・6ついても調べた。こわらの焼成した七ラミック基
体か汲壊した率を下表に示す。
Next, embodiments of the present invention will be explained using drawings. First, Mq (A1.5
A powder of Cras Fe, ), o4 was prepared and mixed with 6% by weight of polyvinyl alcohol/L aqueous solution having a concentration of 6% as a binder. next,
“The platinum wire 1 was immersed in an aqueous solution of polyvinyl alcohol, pulled up and dried. On the surface of the dried platinum wire 1, a coating layer 2 of polyvinyl alcohol was formed as shown in FIG. 1. The platinum wire 1 subjected to this process was integrally molded with the powder into the shape shown in Fig. 2 using a conventional method.In the figure, (3 is a green compact). For comparison, a test was also carried out using a platinum wire not coated with polyvinyl anhydride (1-6).The table below shows the failure rate of the stiff fired 7-ramic substrate.

表からも明らかなように、有機物被膜層はセラミック基
体の破壊防止に効果があり、特にその厚みが金属線径の
10%以上であればその効果はりちぢるしい。
As is clear from the table, the organic coating layer is effective in preventing destruction of the ceramic substrate, and the effect is particularly significant when the thickness is 10% or more of the metal wire diameter.

このように、本発明の方法によれば、金属線の少なくと
もセラミック基体内に埋込まれるべき部赤分に有機物被
膜層を設けておき、セラミックIGt亨1と一体成型し
て焼成しているので、焼成時にζ、の有機物被膜層が焼
失し、圧粉体の収縮により金属線とQ熱膨張率の違いか
らセラミック基体に生じる応力を効果的に軽減すること
ができる。そして、有機物被膜層の厚さを圧粉体の収縮
の度合に応じて決めておけば、公知の方法で金属線の埋
込まれた圧粉体を作製することができるので、その実施
が非常に容易である。
As described above, according to the method of the present invention, an organic coating layer is provided on at least the red part of the metal wire to be embedded in the ceramic base, and is integrally molded with the ceramic IGt 1 and fired. During firing, the organic coating layer of ζ is burned away, and the stress generated in the ceramic substrate due to the difference in coefficient of thermal expansion from the metal wire to that of the metal wire can be effectively reduced due to contraction of the green compact. If the thickness of the organic coating layer is determined according to the degree of shrinkage of the green compact, it is possible to fabricate a green compact with metal wires embedded in it using a known method. Easy to use.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の詳細な説明するためのもので、第1図は
有機物被膜層で被覆された金属線の断面図、第2図はこ
の金属線が埋込まれた圧粉体の斜視図である。 1・・・・・・白金線、2・・・・・・ポリビニルアル
コール被膜層、3・・・・・圧粉体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 71 1 1  、/
The drawings are for explaining the present invention in detail. Figure 1 is a cross-sectional view of a metal wire coated with an organic coating layer, and Figure 2 is a perspective view of a green compact in which the metal wire is embedded. be. 1... Platinum wire, 2... Polyvinyl alcohol coating layer, 3... Green compact. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 71 1 1, /

Claims (1)

【特許請求の範囲】[Claims] セラミック基体に金属線を埋め込んだセラミック電子部
品の製造方法において、前記金属線の少なくとも前記セ
ラミック基体内に埋設されるべき部分の表面に有機物被
膜層を設け、セラミック原料粉末とともに一体成型した
後、焼成することを特徴とするセラミック電子部品の製
造方法。
In a method for manufacturing a ceramic electronic component in which a metal wire is embedded in a ceramic base, an organic coating layer is provided on the surface of at least a portion of the metal wire to be embedded in the ceramic base, and after integrally molding with ceramic raw material powder, firing is performed. A method for manufacturing a ceramic electronic component, characterized by:
JP11481281A 1981-07-21 1981-07-21 Method of producing ceramic electronic part Granted JPS5815207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11481281A JPS5815207A (en) 1981-07-21 1981-07-21 Method of producing ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11481281A JPS5815207A (en) 1981-07-21 1981-07-21 Method of producing ceramic electronic part

Publications (2)

Publication Number Publication Date
JPS5815207A true JPS5815207A (en) 1983-01-28
JPS6347123B2 JPS6347123B2 (en) 1988-09-20

Family

ID=14647295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11481281A Granted JPS5815207A (en) 1981-07-21 1981-07-21 Method of producing ceramic electronic part

Country Status (1)

Country Link
JP (1) JPS5815207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162027A (en) * 2012-02-07 2013-08-19 Toyota Motor Corp Metalization film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162027A (en) * 2012-02-07 2013-08-19 Toyota Motor Corp Metalization film capacitor

Also Published As

Publication number Publication date
JPS6347123B2 (en) 1988-09-20

Similar Documents

Publication Publication Date Title
JPS61138486A (en) Planar ceramics heater
JPS5815207A (en) Method of producing ceramic electronic part
JPH0556031B2 (en)
US20060157474A1 (en) Reliable ceramic heater and manufacturing method thereof
US4055614A (en) Method of firing formed ceramic body
JPS6241768A (en) Manufacture of aluminum nitride sintered body
JP3396973B2 (en) Manufacturing method of multilayer varistor
JP2938931B2 (en) Manufacturing method of aluminum nitride substrate
JPH02301113A (en) Laminated ceramic electronic component and manufacture thereof
JPS5826680B2 (en) Ceramic warm air conditioner
JP3009166B2 (en) Surface treatment method for ceramics
CA1047131A (en) Monolithic ceramic capacitor
JPS5846590A (en) Ceramic heater
JPS62274591A (en) Ceramic heater
JPS58210341A (en) Ceramic cylinder head
JPS60145977A (en) Manufacture of titanium semiconductor ceramics
JPH06151237A (en) Manufacture of ceramic electronic part
JPS61218088A (en) Manufacture of ceramics-nichrome composite body
JPS5926972A (en) Manufacture of nitride carbide ceramic
JPS5899175A (en) Method of baking ceramic formed body
SU968898A1 (en) Cermet electric heater and method of manufacturing the same
JPS59143207A (en) Method of producing positive temperature coefficient porcelain semiconductor
JPH01186601A (en) V2o3 ceramics resistor element
JPS63271878A (en) Face heater
JPS62206780A (en) Manufacture of ceramic heater