JPS58151898A - Driving method for pulse motor - Google Patents

Driving method for pulse motor

Info

Publication number
JPS58151898A
JPS58151898A JP3397782A JP3397782A JPS58151898A JP S58151898 A JPS58151898 A JP S58151898A JP 3397782 A JP3397782 A JP 3397782A JP 3397782 A JP3397782 A JP 3397782A JP S58151898 A JPS58151898 A JP S58151898A
Authority
JP
Japan
Prior art keywords
pulse motor
phase
phase excitation
pulse
carriage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3397782A
Other languages
Japanese (ja)
Inventor
Takamasa Hanakata
花方 孝允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3397782A priority Critical patent/JPS58151898A/en
Publication of JPS58151898A publication Critical patent/JPS58151898A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/14Arrangements for controlling speed or speed and torque
    • H02P8/16Reducing energy dissipated or supplied

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

PURPOSE:To reduce power sonsumption, and to cheapen the manufacturing cost by selecting and controlling exciting methods in response to the frequency of input pulse signals applied to each phase of a pulse motor. CONSTITUTION:A CPU 14 outputs driving-system informations to the pulse motor 8 through a driver 16 while bringing frequency to 1500PPS by two-phase excitation in a carriage return instruction 19 and frequency to 500PPS by one- phase excitation in a printing instruction 18. According to said driving method for the pulse motor, since one-phase excitation is executed during printing revolving torque is weak though time per one step is long, thus resulting in no vibration. Since two-phase excitation is executed during the return of a carriage, revolving torque is strong though time per one step is short, thus resulting in the state of smooth drive through which vibration is not generated. Power consumed in the pulse motor and a printing head is reduced.

Description

【発明の詳細な説明】 本発明はパルスモータ−の駆動方法に係り、更に詳しく
は例えば印字装置のキャリッジ駆動用等に用いられるパ
ルスモータ−の駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a pulse motor, and more particularly to a method for driving a pulse motor used, for example, to drive a carriage of a printing device.

一般にパルスモータ−は、各相巻線に指令される電流パ
ターン(通電方式)や、駆動回路によって七の特性が大
きく影響される。このパルスモータ−の通電方式として
は1相励磁法、2相励磁法及び1,2相励磁法が広く知
られており、その用途に応じて通電方式が決定する。例
えば、1相励磁法と2相励磁法とを比較した場合、2相
励磁法は周知の如く駆動電流を1相励磁法の約2倍必要
とするが、応答周波数2回転トルク、静止角度誤差が優
れているという特性があり、また1、2相励磁法は他の
方式に比べてステップ数(分解能)を倍増(1パルス当
りのステップ角が半分になるρするという特性がある。
Generally, the characteristics of a pulse motor are greatly influenced by the current pattern (energization method) commanded to each phase winding and the drive circuit. The 1-phase excitation method, the 2-phase excitation method, and the 1.2-phase excitation method are widely known as energization methods for this pulse motor, and the energization method is determined depending on the application. For example, when comparing the 1-phase excitation method and the 2-phase excitation method, the 2-phase excitation method requires approximately twice the drive current as the 1-phase excitation method, but the response frequency is 2 rotational torque, the static angle error is In addition, the one- and two-phase excitation method has the characteristic that the number of steps (resolution) is doubled (the step angle per pulse is halved) compared to other methods.

従って、印字装置のキャリッジ駆動のように高速で正確
にキャリッジを移動させる必要があるために一般に高い
周波数域で比較的強い回転トルクが得られる2相励磁法
が採用されていた。
Therefore, since it is necessary to move the carriage accurately at high speed, such as when driving a carriage in a printing device, a two-phase excitation method that can obtain a relatively strong rotational torque in a high frequency range has generally been adopted.

ところが2相励磁法を採用した場合、パルスモータ−の
特性として最高応答周波数付近で駆動する場合には、第
1図(A)に示す曲線から明らかのように充分滑らかに
回転していることがわかるが、低い周波数域で駆動する
場合には第1図(B)に示す曲線aから明らかのように
振動しながら回転するという特性があり、このような状
態でメカ部品等を駆動させると騒音の発生原因となるば
かりでなく各部の摩耗や破損の原因となることは明らか
である。
However, when the two-phase excitation method is adopted, the characteristic of a pulse motor is that when driven near the maximum response frequency, it rotates sufficiently smoothly, as is clear from the curve shown in Figure 1 (A). As can be seen, when driving in a low frequency range, there is a characteristic that it rotates while vibrating as is clear from curve a shown in Figure 1 (B), and when mechanical parts etc. are driven in such a state, noise is generated. It is clear that this not only causes the occurrence of damage, but also causes wear and tear on various parts.

従って、従来の印字装置等においては2相励磁法でキャ
リッジ駆動用のパルスモータ−を駆動する場合、第2図
に示すような駆動回路が採用されていた。このような構
成の回路によれば高い周波数域でパルスモータ−を駆動
する場合にはトランジスター1がオンとなってコレクタ
ーエミッターに電流が流れ、パルスモータ−には駆動電
圧Vccが掛り、また低い周波数で駆動する場合にはト
ランジスター1がオフとなってコレクターエミッタ側に
は電流が流れずパルスモータ−には抵抗2を介した電圧
が掛るために回転トルクが弱まり振動が減少するという
効果があった。即ち、抵抗2の抵抗値を適当に設定する
ことにより、第1図(Blに示す曲線すのように振動を
抑えていた。
Therefore, in conventional printing devices and the like, when driving a pulse motor for driving a carriage using the two-phase excitation method, a drive circuit as shown in FIG. 2 has been adopted. According to a circuit with such a configuration, when driving a pulse motor in a high frequency range, transistor 1 is turned on and current flows to the collector emitter, driving voltage Vcc is applied to the pulse motor, and when driving a pulse motor in a low frequency range. When driving the motor, transistor 1 is turned off and no current flows to the collector-emitter side, and voltage is applied to the pulse motor through resistor 2, which has the effect of weakening the rotational torque and reducing vibration. . That is, by appropriately setting the resistance value of the resistor 2, vibrations were suppressed as shown by the curve shown in FIG. 1 (Bl).

ところが、従来のこのような回路構成においては抵抗2
での発熱作用が大きく、例えばパルスモータ−1相の抵
抗値を30Ωとし、例えば駆動電圧を15Vとしてパル
スモータ−を2相励磁法で駆動すると高い周波数域の場
合はパルスモータ−の消費電力は15Wとなり、低い周
波数域での場合は約半分の7.5Wとなるが抵抗2の抵
抗値は約6.4Ω必要となり、したがって抵抗値の大き
い抵抗器が必要、となり放熱についても充分考慮しなけ
ればならないという欠点があった。
However, in this conventional circuit configuration, the resistor 2
For example, if the resistance value of one phase of a pulse motor is set to 30Ω and the drive voltage is set to 15V, and the pulse motor is driven using the two-phase excitation method, the power consumption of the pulse motor will decrease in the high frequency range. In the case of low frequency range, it becomes 7.5W, which is about half, but the resistance value of resistor 2 needs to be about 6.4Ω, so a resistor with a large resistance value is required, and heat dissipation must also be taken into consideration. There was a drawback that it had to be done.

又、上述した如く高い周波数域での消費電力は15Wで
あるのに対して低い周波数域での消費電力は抵抗器側で
4.5W、パルスモータ−側で75Wであり合計12W
となり高い周波数域の場合とほとんど大差がないという
欠点があった。
Also, as mentioned above, the power consumption in the high frequency range is 15W, while the power consumption in the low frequency range is 4.5W on the resistor side and 75W on the pulse motor side, for a total of 12W.
This has the disadvantage that there is almost no significant difference from the case in the high frequency range.

更には、キャリッジ駆動用のパルスモータ−のリターン ように、例えば印字1駆動からキャリラフii、又は逆
にキャリッジリターンから印字駆動のような方向転換或
いは作動状態から停止状態に移行する際には慣性力の働
きによりミスステップを起しゃすく、従来ではミスステ
ップを防止するために第1パルスを通常のパールス巾の
2倍程度に長くする方法がとられていた。しかしながら
、異なるパルス巾のパルスを発生させるということは当
然の事なから別のパルス発生回路を必要とし、上述した
駆動回路と同様に製造コストの面から見ればコスト高の
一因にもなっていた。
Furthermore, when changing direction, such as the return of a pulse motor for driving a carriage, for example from print 1 drive to print drive, or vice versa, or when transitioning from an operating state to a stopped state, inertial force is generated. Conventionally, in order to prevent missteps, a method has been used in which the first pulse is made about twice as long as the normal pulse width. However, since it is natural to generate pulses with different pulse widths, a separate pulse generation circuit is required, which, like the drive circuit described above, also contributes to high manufacturing costs. Ta.

従って、本発明は従来のこのような欠点を解消すべく成
されたもので、上記のような回路を必要とせず消費電力
の少ない極めて安定したパルスモータ−の駆動方法を提
供することにある。
Therefore, the present invention has been made to overcome these conventional drawbacks, and it is an object of the present invention to provide an extremely stable method of driving a pulse motor that does not require the above-mentioned circuit and consumes less power.

本発明は、この目的を達成するために高い周波数域で駆
動される時は低い周波数域で駆動される時よりも同時に
駆動される相の数を増加させる方法を採用した。
In order to achieve this objective, the present invention employs a method of increasing the number of phases simultaneously driven when driven in a high frequency range compared to when driven in a low frequency range.

以下本発明を図面に基づき詳細に説明する。The present invention will be explained in detail below based on the drawings.

第3図には本発明の駆動方法を採用したサーマルプリン
タのキャリッジ駆動用パルスモータ−の駆動機構部分が
示されており、同図において符号3で示すものは印字ヘ
ッド1巷を備えたキャリッジである。このキャリッジ3
はガードレール4に嵌合されており、感熱記録紙5(以
下これを記録紙と呼ぶ。)の幅方向に摺動自在に嵌合さ
れている。又、キャリッジ3の一端3′はプーリー10
゜12に張架されたタイミングベルト9の一部分と個室
されており、これによりパルスモータ−8が反時計方向
に駆動するとプーリー12が軸を介して回動し、キャリ
ッジ3が記録紙5の幅方向左側端にタイミングベルト9
を介して移動する。
Fig. 3 shows the drive mechanism of the pulse motor for driving the carriage of a thermal printer that employs the drive method of the present invention. be. This carriage 3
is fitted to the guardrail 4, and is fitted to be slidable in the width direction of the thermal recording paper 5 (hereinafter referred to as the recording paper). Also, one end 3' of the carriage 3 is connected to a pulley 10.
12. When the pulse motor 8 is driven counterclockwise, the pulley 12 rotates through the shaft, and the carriage 3 moves to the width of the recording paper 5. Timing belt 9 on the left side
Move through.

一方、ガードレール4の一端にはアーム6が取り付けら
れており、このアーム6は一端が機器本体の一部(不図
示)に固定されたスプリング7によって印字ヘッド14
1を記録紙5に圧接している。
On the other hand, an arm 6 is attached to one end of the guardrail 4, and one end of this arm 6 is connected to a print head 1 by a spring 7 fixed to a part (not shown) of the main body of the device.
1 is pressed against the recording paper 5.

又、アーム6の一端には前述したスプリング7の他に他
端にソレノイド11が連結されており、このソレノイド
11は印字ヘッド14を記録紙5から遊離させるための
手段である。
Further, in addition to the spring 7 described above, a solenoid 11 is connected to one end of the arm 6, and the solenoid 11 is a means for separating the print head 14 from the recording paper 5.

以上のような駆動機構を有するサーマルプリンりのパル
スモータ−8、印字ヘッド14#、ソレノイド11は、
それぞれ第4図に示す制御部によって駆動制御されてい
る。即ち、同図において印字命令18がCPU (中央
演算処理装置)14に入力されると、CPU14はそれ
を演算処理して印字情報をドライバー11を介1−て印
字ヘッド13に出力し、同時に後述する駆動方式情報を
ドライバー16を介してパルスモータ−8に出力する。
The thermal printing pulse motor 8, print head 14#, and solenoid 11 having the above-mentioned drive mechanism are as follows:
Each of them is driven and controlled by a control section shown in FIG. That is, in the figure, when a print command 18 is input to a CPU (Central Processing Unit) 14, the CPU 14 processes it and outputs print information to the print head 13 via the driver 11, and at the same time, the CPU 14 performs arithmetic processing and outputs print information to the print head 13 via the driver 11. The drive method information is output to the pulse motor 8 via the driver 16.

又、キャリッジリターン命令19がCPU14に入力さ
れるとCPU14はキャリッジリターン情報をドライバ
ー17を介してソレノイド11に出力し、同時に前記駆
動方式情報をドライバー16を介してパルスモータ−8
に出力スル。
Further, when the carriage return command 19 is input to the CPU 14, the CPU 14 outputs the carriage return information to the solenoid 11 via the driver 17, and at the same time outputs the drive method information to the pulse motor 8 via the driver 16.
Output to.

ここで、この駆動方式情報とはパルスモータ−8に与え
られるパルスの周波数及び通電方式である。例えば、印
字中のパルスモータ−に与えられるパルスの周波数は一
般に印字〜ラドの特性とキャリッジ3を移動させるに必
要な起動トルクとの関係によって決定する。つまり、印
字ヘッドが印字中は極力低速で移動しなければならず、
その為にはなるべく低い周波数が必要である。
Here, this drive method information is the frequency of pulses given to the pulse motor 8 and the energization method. For example, the frequency of pulses applied to the pulse motor during printing is generally determined by the relationship between the printing to rad characteristics and the starting torque required to move the carriage 3. In other words, the print head must move as slowly as possible while printing.
For this purpose, a frequency as low as possible is required.

次にキャリッジリターン時ではキャリッジを極力高速で
移動させたいのでパルスモータ−8に与えられるパルス
の周波数はパルスモータ−の性能によって決定される。
Next, when the carriage returns, it is desired to move the carriage as fast as possible, so the frequency of the pulses applied to the pulse motor 8 is determined by the performance of the pulse motor.

例えば、本実施例で用いられるパルスモータ−8の性能
を入力電圧]5V1最高応答周波数1500PPSとし
た場合、キャリッジリターン時では2相励磁法で周波数
1500PPSで正常に駆動するが、印字中では、例え
ば前述した如く印字ヘッドの特性と前記起動トルクとの
関係からパルスモータ−8に与えられるパルスの周波数
を例えば500 PPSとした場合2相励磁で駆動させ
ると第1図fB]に示す如く振動を起こすので、本発明
は印字中の通電方式を1相励磁法とした。
For example, if the performance of the pulse motor 8 used in this embodiment is set to an input voltage of 5 V and a maximum response frequency of 1500 PPS, it will normally drive at a frequency of 1500 PPS using the two-phase excitation method during carriage return, but during printing, for example, As mentioned above, based on the relationship between the print head characteristics and the starting torque, if the frequency of the pulses given to the pulse motor 8 is set to, for example, 500 PPS, if the motor is driven with two-phase excitation, vibrations will occur as shown in Figure 1 fB]. Therefore, in the present invention, the energization method during printing is a one-phase excitation method.

即ち、CPU 14は前記駆動方式情報をキャリッジリ
ターン命令19では2相励磁で周波数1500PPS、
印字命令18では1相励磁で周波数500PPSとして
ドライバー16を介してパルスモータ−8に出力する。
That is, the CPU 14 inputs the drive method information with two-phase excitation at a frequency of 1500 PPS in the carriage return command 19.
In the print command 18, the signal is output to the pulse motor 8 via the driver 16 at a frequency of 500 PPS with one-phase excitation.

この時のパルスモータ−8の駆動状態を第5図に示す。The driving state of the pulse motor 8 at this time is shown in FIG.

同図において印字中は1相励磁なので1ステツプ(本実
施例においては1ステップ当り10度何回転る。)当り
の時間が長いにもかかわらず回転トルクが弱いので振動
が起こらないことが理解出来る。又、キャリッジリター
ン中は2相励磁なので1ステップ当りの時間が短いにも
かかわらず回転トルクが強いので振動のない滑らかな駆
動状態であることが理解できる。
In the same figure, it can be seen that during printing, vibration does not occur because the rotational torque is weak, even though the time per step (in this example, the number of rotations of 10 degrees per step) is long because of one-phase excitation. . Furthermore, since two-phase excitation is used during carriage return, the rotational torque is strong even though the time per step is short, so it can be seen that the driving state is smooth without vibration.

ここで、キャリッジリターン中のパルスモータ−は1ス
テップ当り10度何回転るが、キャリッジリターン開始
時での第1ステツプSSとキャリッジリターン終了時で
の最終ステップSHの回転角度はそれぞれ5度となって
いる。これは後述する如くパルスモータ−8がミスステ
ップが起こりにくくするためである。
Here, the pulse motor rotates 10 degrees per step during carriage return, but the rotation angle of the first step SS at the start of the carriage return and the final step SH at the end of the carriage return is 5 degrees each. ing. This is to make it difficult for the pulse motor 8 to make a misstep, as will be described later.

第6図(A)、[F])により更に詳しく説明を加える
と、同図は、パルスモータ−8の各a−d相に印加され
る入力パルス信号のタイミングを示したものである。同
図囚において印字ヘッド13が印字中はパルスモータ−
8の各相はa相→b相→C相→d相→a相という順に励
磁され1相励磁で駆動される。次に1点鎖線で示す如く
印字が終了した段階でパルスモータ−8の各相は、印字
中とは逆の順(二dac相→c11b−+b11a相→
a11d相−+ d @ (相と励磁され2相励磁で駆
動する。この時、d相及びC相に印加される第1パルス
d 1 + c 1は同時に印加され、しかもd相に印
加される第1パルスd1のパルス幅は通常の半分である
。これにより、前述した如くキャリッジリターン開始時
の第1ステツプの回転角度は通常の半分つまり5度にな
る。又、同図(I3)において、1点鎖線で示す如くキ
ャリッジリターンが終了する段階で、パルスモータ−8
のb    −相及びa相に印加された最終パルスbe
nd、 a endは同時に励磁が終了するようにa相
の最終パルスa endのパルス幅1は通常の半分であ
り、これによりキャリッジリターン終了時の最終ステッ
プの回転角度は5度になる。
To explain in more detail with reference to FIGS. 6(A) and [F]), this figure shows the timing of input pulse signals applied to each phase AD of the pulse motor 8. In the figure, when the print head 13 is printing, the pulse motor
The eight phases are excited in the order of a phase → b phase → C phase → d phase → a phase and are driven by one-phase excitation. Next, as shown by the one-dot chain line, when printing is completed, each phase of the pulse motor 8 is activated in the opposite order to that during printing (2 DAC phase → c11b-+b11a phase →
a11d phase - + d @ (excited with the phase and driven by two-phase excitation. At this time, the first pulse d 1 + c 1 applied to the d phase and C phase is applied at the same time, and moreover, it is applied to the d phase. The pulse width of the first pulse d1 is half of the normal pulse width.As a result, as mentioned above, the rotation angle of the first step at the start of carriage return is half the normal one, or 5 degrees.Also, in the same figure (I3), At the stage where the carriage return is completed as shown by the one-dot chain line, the pulse motor 8
The final pulse be applied to the b-phase and a-phase of
The pulse width 1 of the final pulse a-end of the a phase is half the normal pulse width so that excitation of nd and a end ends at the same time, and as a result, the rotation angle of the final step at the end of carriage return is 5 degrees.

このようにしてパルスモータ−の回転が方向変換する時
或いは停止状態から作動状態に移行する時に第1パルス
のパルス幅を通常の半分にすることによりパルスモータ
−のミスステップが回避できる。
In this manner, when the rotation of the pulse motor changes direction or when it transitions from a stopped state to an operating state, the pulse width of the first pulse is reduced to half of the normal pulse width, thereby making it possible to avoid missteps of the pulse motor.

本発明は一実施例として本発明の駆動方法を適用した印
字装置のキャリッジ駆動用のパルスモータ−について述
べたが特にキャリッジ駆動用に限定されるものではなく
、広範囲にわたって適用が可能である。
Although the present invention has been described as an embodiment of a pulse motor for driving a carriage of a printing device to which the driving method of the present invention is applied, the present invention is not particularly limited to carriage driving, and can be applied to a wide range of applications.

また、本実施例においては、パルスモータ−の回転が方
向変換する時についてのみ人力パルスの周波数を変化さ
せ、それに対応した励磁方式を選択制御しているが順方
向に速度変換する時にも採用できる。
In addition, in this embodiment, the frequency of the manual pulse is changed only when the rotation direction of the pulse motor changes, and the corresponding excitation method is selected and controlled, but it can also be adopted when changing the speed in the forward direction. .

以上の説明で明らかなように本発明によれば従来印字装
置に必要であった駆動回路やミスステップ防止のための
パルス発生回路を必要とせず、また本実施例で印字中に
パルスモータ−及び印字ヘッドで消費される消費電力は
合計して約125Wであり、キャリッジリターン中にパ
ルスモータ−及びソレノイドで消費される消費電力は合
計して約165Wとなり、従来と比べてかなりの消費電
力が節約される。
As is clear from the above description, according to the present invention, there is no need for a drive circuit or a pulse generation circuit for preventing missteps, which were required in conventional printing devices. The total power consumed by the print head is approximately 125W, and the total power consumed by the pulse motor and solenoid during carriage return is approximately 165W, which is a significant power consumption saving compared to conventional models. be done.

従って、本発明を適用することにより極めて消費電力の
少なく、製造コストの安価な安定したパルスモータ−の
駆動方法が得られる。
Therefore, by applying the present invention, a stable method for driving a pulse motor with extremely low power consumption and low manufacturing cost can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(Al、 Q3)はいずれも一般のパルスモータ
−の特性を説明するもので、第1図囚は最高応答周波数
域で2相励磁でパルスモータ−を駆動した時の時間と回
転角度の関係を示す線図、第1図(Blは低周波数域で
2相励磁でパルスモータ−を駆動した時の時間と回転角
度の関係を示す線図、第2図は従来の印字装置のキャリ
ッジ駆動用パルスモータ−に用いられた駆動回路図、第
3図〜第6図はいずれも本発明の一実施例であるサーマ
ルプリンタのキャリッジ駆動方式を説明するもので、第
3図は、サーマルプリンタのキャリッジ駆動機構部分を
示す斜視図、第4図はサーマルプリンタの制御部を示す
制御回路図、第5図はキャリッジ駆動用パルスモータ−
の駆動状態を示す時間と回転角度の関係の線図、第6図
(Al、 (Blはいずれもキャリッジ駆動用パルスモ
ータ−の各相に励磁される入力パルス信号のタイミング
チャート図である。 3・・・キャリッジ    8・・・パルスモータ−1
3・・・印字ヘッド    14・・・CPU16・・
・ドライバー 第1図(A) 第1図(B) 暗闇□ 第3図 第4図
Figure 1 (Al, Q3) both explain the characteristics of general pulse motors, and Figure 1 shows the time and rotation angle when driving a pulse motor with two-phase excitation in the highest response frequency range. Figure 1 is a diagram showing the relationship between time and rotation angle when a pulse motor is driven with two-phase excitation in a low frequency range. Figure 2 is a diagram showing the relationship between the carriage of a conventional printing device. The drive circuit diagrams used in the drive pulse motor, FIGS. 3 to 6, all explain the carriage drive system of a thermal printer, which is an embodiment of the present invention. 4 is a control circuit diagram showing the control section of the thermal printer, and FIG. 5 is a pulse motor for driving the carriage.
Figure 6 (Al and (Bl) are timing charts of the input pulse signals excited in each phase of the carriage drive pulse motor. 3 ... Carriage 8 ... Pulse motor -1
3...Print head 14...CPU16...
・Driver Figure 1 (A) Figure 1 (B) Darkness □ Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも2種類以上の励磁方法により駆動する
パルスモータ−の駆動方式においてパルスモータ−の各
相に印加される入力パルス信号の周波数に応じて前記励
磁方法を選択制御することを特徴とするパルスモータ−
の駆動方法。
(1) In a drive method for a pulse motor driven by at least two or more types of excitation methods, the excitation method is selected and controlled according to the frequency of an input pulse signal applied to each phase of the pulse motor. pulse motor
driving method.
(2)前記周波数が高いときは低いときよりも励磁相の
数を増加させることを特徴とする特許請求の範囲第一項
に記載のパルスモータ−の駆動方法。
(2) The method for driving a pulse motor according to claim 1, wherein the number of excitation phases is increased when the frequency is high compared to when the frequency is low.
JP3397782A 1982-03-05 1982-03-05 Driving method for pulse motor Pending JPS58151898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3397782A JPS58151898A (en) 1982-03-05 1982-03-05 Driving method for pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3397782A JPS58151898A (en) 1982-03-05 1982-03-05 Driving method for pulse motor

Publications (1)

Publication Number Publication Date
JPS58151898A true JPS58151898A (en) 1983-09-09

Family

ID=12401542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3397782A Pending JPS58151898A (en) 1982-03-05 1982-03-05 Driving method for pulse motor

Country Status (1)

Country Link
JP (1) JPS58151898A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123797A (en) * 1980-02-29 1981-09-29 Mitsubishi Electric Corp Driving system for step-motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123797A (en) * 1980-02-29 1981-09-29 Mitsubishi Electric Corp Driving system for step-motor

Similar Documents

Publication Publication Date Title
EP0022457B1 (en) Method of, and circuit for, controlling the detenting of multiphase stepper motors
JPH0349973A (en) Recorder
JP3546821B2 (en) Stepping motor drive circuit
JPS58151898A (en) Driving method for pulse motor
JPH028908B2 (en)
JP2676058B2 (en) Motor drive circuit
JPH09219995A (en) Drive method of stepping motor
JPH09313000A (en) Method of driving stepping motor
JPS61147799A (en) Drive circuit of stepping motor
JPS62100196A (en) Drive circuit for stepping motor
JP2576877B2 (en) Step motor driving device and head moving device
JPS61236397A (en) Drive circuit for stepping motor
JPS62281797A (en) Drive control of stepping motor
JPH0491699A (en) Drive for pulse motor
JPH11252996A (en) Driver of pulse motor and drive method therefor
JP2674581B2 (en) Step motor driving device and head moving device
JPH01231693A (en) Pulse motor drive control circuit
JPH0343869B2 (en)
JPH1042598A (en) Drive method for stepping motor
JPS63234897A (en) Step motor driver
JPS59187882A (en) Printer
JPH1189279A (en) Pulse width modulation method which can change switching frequency
JPS6281997A (en) Method for driving stepping motor
JPH04325899A (en) Drive of stepping motor
JPH099689A (en) Driver of stepping motor