JPS5815178A - Picture processor of synthetic aperture radar - Google Patents

Picture processor of synthetic aperture radar

Info

Publication number
JPS5815178A
JPS5815178A JP56113359A JP11335981A JPS5815178A JP S5815178 A JPS5815178 A JP S5815178A JP 56113359 A JP56113359 A JP 56113359A JP 11335981 A JP11335981 A JP 11335981A JP S5815178 A JPS5815178 A JP S5815178A
Authority
JP
Japan
Prior art keywords
circuit
data
data obtained
azimuth
synthetic aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56113359A
Other languages
Japanese (ja)
Inventor
Minoru Murata
稔 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56113359A priority Critical patent/JPS5815178A/en
Publication of JPS5815178A publication Critical patent/JPS5815178A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9011SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth

Abstract

PURPOSE:To easily attain compensation of distortion and reduction of a noise, by using both a data obtained by Fourier conversion of a conjugate function of a transmitting signal at the time of range compression, and a data obtained by Fourier conversion of a time domain reference function at the time of azimuth compression. CONSTITUTION:In a range compression part A, a data obtained by high speed Fourier conversion in an FET circuit 9, as to a conjugate function of a transmitting signal obtained by a time domain reference function generating circuit 8 is multiplied by a data obtained by high speed Fourier conversion in the range direction in an FET circuit 10, as to a synthetic aperture radar (SAR) data, by a multiplier 11. The data obtained in this way is subjected to Fourier reverse conversion in an IFFT circuit 12, and after that, is arranged in the azimuth direction by a corner turning circuit 13. In an azimuth compression part B, the processing is executed by a time domain reference function generating circuit 15, FET circuits 14, 16, a multiplying circuit 17 and an IFFT circuit 18 in the same way.

Description

【発明の詳細な説明】 本発明は1合成開口レーダ取得データのディジタル処l
l装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides digital processing of synthetic aperture radar acquisition data.
l device.

合成開口レーダ(8ynthetic Apertur
e Radar:以下8ARと称す)は、サイドルッキ
ングレーダの一種で、航空機・人工衛星等の移動プラッ
トホームに搭載され、地表の写真を電波で撮る全天候型
高分解能センサである。
Synthetic Aperture Radar
e Radar (hereinafter referred to as 8AR) is a type of side-looking radar, and is an all-weather high-resolution sensor that is mounted on a mobile platform such as an aircraft or an artificial satellite and takes pictures of the earth's surface using radio waves.

通常レーダの距離分解能は、送信パルスの実効パルス幅
が狭いほど、また方位分解能は、アンテナのビーム幅が
狭いほど向上する。従つて、高分解能を得るためには、
狭いパルスで大電力の送信機と大口径のアンテナが必要
である。
Normally, the distance resolution of a radar improves as the effective pulse width of the transmitted pulse becomes narrower, and the azimuth resolution improves as the beam width of the antenna becomes narrower. Therefore, in order to obtain high resolution,
It requires a narrow pulse, high power transmitter and a large diameter antenna.

それに対して、SARでは合成開口技術とパルス圧縮技
術を用いている8合成間口技術では、プラットホームの
移動に従って比較的小口径のアンテナから、一定間隔で
送信パルスを放射し、目標からの反射波の振幅情報と位
相情報を記録し、これらの情報を処理する仁とにより、
大口径アンテナと等価な高方位分解能を得ている(方位
圧縮)。
In contrast, in SAR, the 8 synthetic aperture technique uses synthetic aperture technology and pulse compression technology, which emits transmitted pulses at regular intervals from a relatively small-diameter antenna as the platform moves, and reduces the amount of reflected waves from the target. By recording amplitude and phase information and processing these information,
Obtains high azimuth resolution equivalent to a large diameter antenna (azimuth compression).

また、パルス圧縮技術では、尖頭電力を増大した夛パル
ス4[′ft小さくする代わシに、パルス幅を大きくし
て平均電力を増大させ、かつ、この長いパルスに適当な
変調(線形周波数変調など)を加えたパルスを送信し、
目標からの受信信号を、処理することによ)、受信信号
内の全パワーを1時点に圧縮し、高距離分解能を得てい
る(距離圧縮)。
In addition, in pulse compression technology, instead of reducing the peak power of a pulse 4 ['ft], the pulse width is increased to increase the average power, and this long pulse is subjected to appropriate modulation (linear frequency modulation). etc.) and sends a pulse with
By processing the received signal from the target), the total power in the received signal is compressed to one point in time, and high range resolution is obtained (distance compression).

従来、受信信号に対するこれらの処理KMI図に示すよ
うなレンズ系を用いた光学処理が常用されていた。すな
わち、ポログラフィの原理を応用して、フィルム1上に
記鍮された8ARデータに光学的処理を施し、画像を得
る方法である。同図のように、下にいくほど焦点距離が
短くなっているコニカルレンズ2を8ARデータフイル
ムの前に置き、フィルム内のどの部分も波面がX軸に平
行な光線になるよう位相補正をおこなう、〔方位(X軸
方向)″FE縮〕、コニカルレンズを出た光は。
Conventionally, optical processing using a lens system as shown in the KMI diagram for processing received signals has been commonly used. That is, this method applies the principle of porography to optically process the 8AR data recorded on the film 1 to obtain an image. As shown in the figure, a conical lens 2 whose focal length becomes shorter toward the bottom is placed in front of the 8AR data film, and phase correction is performed so that the wavefront becomes a ray parallel to the X-axis in any part of the film. , [Azimuth (X-axis direction) FE reduction], the light exiting the conical lens is.

y軸方向には円筒形の発散波である。そこで、y軸方向
のシリンドリカルレンズ3を用いてy軸方向にも平行な
光線となるよう位相補正する〔距離(y軸方向)圧縮〕
、このようKして得た光線は。
It is a cylindrical diverging wave in the y-axis direction. Therefore, the cylindrical lens 3 in the y-axis direction is used to correct the phase so that the rays become parallel to the y-axis direction [distance (y-axis direction) compression]
, the ray obtained by K in this way is.

X軸・y軸両方向に平行な光線とな)1円形レンズ4を
用いて集光させることで、イメージフィルム5上に再生
画像を得ていた。
A reproduced image was obtained on the image film 5 by condensing light beams parallel to both the X-axis and y-axis directions using a circular lens 4.

しかしながら、このような光学処理方式では。However, in such an optical processing method.

レンズ系を精度良く構成することや、データの加工(雑
音の低減、歪補正など)が難しいという欠点があり九。
The drawback is that it is difficult to configure the lens system with high precision and to process the data (noise reduction, distortion correction, etc.).

本発明は1合成開ロレーダ取得データ全ディジタル処理
することによ)、上記欠点を解決し、データ処理時にお
いて歪補正、雑音の低減など極めて自由度の高い処理が
でき、がっ、精度の優れた合成開口レーダ画像処理装置
を提供するものである。
The present invention solves the above-mentioned drawbacks by performing all digital processing on data acquired by a single-synthetic open radar, and enables highly flexible processing such as distortion correction and noise reduction during data processing, resulting in excellent accuracy. The present invention provides a synthetic aperture radar image processing device.

即ち1本発F!Aは合成開ロレーダ堆得データの処理に
おいて、距離圧縮時に、送信信号の共役関数をフーリエ
変換して得られるデータと、方位圧縮時に時間領域参照
関数をフーリエ変換して得られるデータを用いて、ディ
ジタル処理することにょシ、再生画像を得るもので、処
理の途中で、歪補正や、雑音の低減操作を容易に達成す
ることを可能にし、かつ、処理精度の向上を達成したも
のである。
In other words, one F! In processing the synthetic open radar data, A uses data obtained by Fourier transforming the conjugate function of the transmitted signal during distance compression, and data obtained by Fourier transforming the time domain reference function during azimuth compression. A reproduced image is obtained through digital processing, making it possible to easily perform distortion correction and noise reduction operations during the processing, and achieving improved processing accuracy.

次に、本発明の実施例について図面(第2図)を参照し
て説明する。同図は1本発明による合成開口レーダ取得
データのディジタル画像処理の基本的な流れを示してい
る。パラメータ計算部7では、8Al(データのヘッダ
ー・ファイル6から。
Next, an embodiment of the present invention will be described with reference to the drawings (FIG. 2). This figure shows the basic flow of digital image processing of synthetic aperture radar acquired data according to the present invention. The parameter calculation unit 7 calculates 8Al (from the data header file 6).

移動プラットホームの軌道、姿勢データを読み込み、以
後の処理に必要な地球表面における速度ベクトル等のパ
ラメータを計算して距離圧縮部人と方位圧縮部Bに送出
する。距離圧縮部人は、送信パルスの線形周波数変調波
を尖鋭なパルスに圧縮する部分で、2次元ホログラムと
して広がっているターゲット情報を距離方向に圧縮する
。この操作は、受信信号と、送信信号の共役関数との相
関をとることで1行かうがデータ量が多いので。
It reads the orbit and attitude data of the moving platform, calculates parameters such as velocity vectors on the earth's surface necessary for subsequent processing, and sends them to the distance compression section and azimuth compression section B. The distance compression section compresses the linear frequency modulated wave of the transmitted pulse into a sharp pulse, and compresses the target information spread as a two-dimensional hologram in the distance direction. This operation takes one line by correlating the received signal with the conjugate function of the transmitted signal, but it requires a large amount of data.

FFT t−用いて周波数領域で演算し、高速化を図る
。その演算は、まず1時間領域参照関数発生回路8で得
られる送信信号の共役関数(参照関数)〔τ:送信信号
の幅 k:周波数掃引率〕を、FFT回路9で高速フー
リエ変換して得られるデータと8ARデ一タQFFT回
路10で距離方向に高速フーリエ変換して得られるデー
タとを乗算1iitllで乗算する0次にこのようにし
て得られたデータ@、IPFT  (高速フーリエ逆変
換)回路12でフーリエ逆変換する。その結果は、距離
圧縮されたデータが距離方向に並んだ形となっている。
FFT t- is used to calculate in the frequency domain to speed up the calculation. The calculation is first performed by fast Fourier transforming the conjugate function (reference function) of the transmission signal [τ: width of the transmission signal, k: frequency sweep rate] obtained by the 1-time domain reference function generation circuit 8 using the FFT circuit 9. The data thus obtained is multiplied by 1iitll by the data obtained by performing fast Fourier transform in the distance direction using the 8AR data QFFT circuit 10. 12 performs inverse Fourier transform. The result is distance-compressed data arranged in the distance direction.

このデータを、方位圧縮(後述)するため、データを方
位方向に並べ替える操作をコーナ・ターニング回路13
で行なう。
In order to azimuthally compress this data (described later), the corner turning circuit 13 performs an operation to rearrange the data in the azimuth direction.
Let's do it.

一方2方位圧縮部Bにおいては、方位方向(距離方向と
垂直な方向)に広がっているデータを。
On the other hand, in the two-direction compression section B, the data spread in the azimuth direction (direction perpendicular to the distance direction).

方位方向に圧縮する。この操作も、距離圧縮と同様に、
距離方向に圧縮された8ARデータと参照関数との相関
をとることで行なうが、データ量が多いので、FFT 
=i用いて周波数領域で演算し、高速化を画る。tず1
時間領域参照関数発生回路〔F2:ドツプラー周波数の
傾き〕 t−FFT回路16で高速フーリエ変換したデータと、
距離圧縮した8ARデ一タ’1FFT回路14で方位方
向に高速フーリエ変換したものを乗算器17で乗算した
後、得られたデータ?、IPFT回路18でフーリエ逆
変換する。
Compress in azimuth direction. This operation is similar to distance compression,
This is done by correlating the 8AR data compressed in the distance direction with a reference function, but since the amount of data is large, FFT
= i is used to calculate in the frequency domain to speed up the calculation. tzu1
Time domain reference function generation circuit [F2: slope of Doppler frequency] Data fast Fourier transformed by the t-FFT circuit 16,
Distance-compressed 8AR data '1 Data obtained after fast Fourier transform in the azimuth direction by the FFT circuit 14 is multiplied by the multiplier 17? , the IPFT circuit 18 performs inverse Fourier transform.

このIPFT回路18の出力データは、複素データであ
るので、その絶対値を画像データ19として、出力する
。tたスペックル・ノイズ全低減するため方位方向スペ
クトルを分割し、それぞれ独立に方位圧縮して画像化し
た後、インコヒーレントに重ね合わせる操作(マルチル
ック処理)ヲ行な゛う、更に方位圧縮後の画像データに
対して、歪補正、浸度変換、テクス千ヤ解析1画像の平
滑化や尖鋭化、画像の線の検出・境界の検出などの実行
が、ソフトウェアによシ可能である。
Since the output data of this IPFT circuit 18 is complex data, its absolute value is outputted as image data 19. In order to completely reduce speckle and noise, the azimuth spectrum is divided, each is independently compressed and imaged, and then incoherently superimposed (multi-look processing) is performed. Software can perform distortion correction, immersion conversion, texture analysis, smoothing and sharpening of a single image, detection of image lines and boundaries, etc. on the image data.

本発明は1以上説明したように、第2図に示すようなデ
ィジタルシステムを構成することにより。
The present invention, as described above, is accomplished by configuring a digital system as shown in FIG.

精度の良いSAR画像処理をおこなうことができ。Accurate SAR image processing can be performed.

かつ、ソフトウェアで、容易に、雑音の低減、歪補正、
などの操作をおこなうことができるという効果がある。
And with software, you can easily reduce noise, correct distortion,
This has the effect of allowing you to perform operations such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来から多用されているレンズ系を用いた光
学処理装置の構成例を示す図、第2図は本発明の一実施
例を示すブロック図である。 1・・・・・SARデータフィルム、2・・・・・・コ
ニカルレンズ、3・・・・・・シリンドリカルレンズ、
4・旧・・円形レンズ、5・・・・・・イメージフィル
ム% 6・・・・・・SAWデータファイル、7・・・
・・・パラメータ計算部、8゜15・・・・・・時間領
域参照関数発生回路、9,10゜14.16・・・・・
・高速フーリエ変換回路、11.17・・・・・・乗算
器、12.18・・・・・・高速フーリエ逆変換回路、
13・・・・・・コーナ・ターニング回路、19・・・
祭 1 回
FIG. 1 is a diagram showing an example of the configuration of an optical processing apparatus using a lens system that has been widely used in the past, and FIG. 2 is a block diagram showing an embodiment of the present invention. 1...SAR data film, 2...Conical lens, 3...Cylindrical lens,
4. Old... Circular lens, 5... Image film% 6... SAW data file, 7...
...Parameter calculation unit, 8゜15...Time domain reference function generation circuit, 9,10゜14.16...
・Fast Fourier transform circuit, 11.17... Multiplier, 12.18... Fast Fourier inverse transform circuit,
13... Corner turning circuit, 19...
Festival 1 time

Claims (1)

【特許請求の範囲】[Claims] 距離方向と方位方向に関する合成開口レーダ取得データ
を距離方向および方位方向圧縮することによ)距離分解
能と方位分解能を向上せしめる合成開口レーダ画像処理
装置において、前記取得データを距離方向および方位方
向にフーリエ変換して得られるデータに送信信号の共役
関数をフーリエ変換して得られるデータと乗算すること
によシそれぞれ距離方向および方位方向圧縮を行なうこ
とを特徴とする合成開口レーダ画像処理装置。
In a synthetic aperture radar image processing device that improves range resolution and azimuth resolution by compressing synthetic aperture radar acquired data in the range direction and azimuth direction, the acquired data is compressed by Fourier processing in the range direction and azimuth direction. A synthetic aperture radar image processing device characterized in that data obtained by the conversion is multiplied by data obtained by Fourier transform by a conjugate function of a transmission signal, thereby compressing the data in the distance direction and the azimuth direction, respectively.
JP56113359A 1981-07-20 1981-07-20 Picture processor of synthetic aperture radar Pending JPS5815178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113359A JPS5815178A (en) 1981-07-20 1981-07-20 Picture processor of synthetic aperture radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113359A JPS5815178A (en) 1981-07-20 1981-07-20 Picture processor of synthetic aperture radar

Publications (1)

Publication Number Publication Date
JPS5815178A true JPS5815178A (en) 1983-01-28

Family

ID=14610277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113359A Pending JPS5815178A (en) 1981-07-20 1981-07-20 Picture processor of synthetic aperture radar

Country Status (1)

Country Link
JP (1) JPS5815178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786906A (en) * 1985-06-17 1988-11-22 Forsvarets Forskningstjeneste Method of motion compensation in synthetic aperture radar target imaging and a system for performing the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786906A (en) * 1985-06-17 1988-11-22 Forsvarets Forskningstjeneste Method of motion compensation in synthetic aperture radar target imaging and a system for performing the method

Similar Documents

Publication Publication Date Title
US7450470B2 (en) High resolution images from reflected wave energy
Cumming et al. Digital processing of SEASAT SAR data
US5431167A (en) Method and apparatus for increasing the frame rate and resolution of a phased-array imaging system
US3950723A (en) Sonar apparatus
AU671920B2 (en) Auto-focusing correction for rotational acceleration effects on inverse synthetic aperture radar images
US5760732A (en) Method and apparatus for enhanced resolution of range estimates in echo location for detection and imaging systems
RU2168741C2 (en) Device for reduction of errors of motion for radar with synthesized aperture on the basis of rotatable antennas (rosar) for helicopters
AU630029B2 (en) Computed-interferometry radar detection method with coherent integration
CN111965643B (en) Method for refocusing moving ship target in squint SAR BP image
US5943006A (en) RF image reconstruction and super resolution using fourier transform techniques
CN108872983A (en) A kind of Missile-borne SAR imaging self-focusing method
CN110879391B (en) Radar image data set manufacturing method based on electromagnetic simulation and missile-borne echo simulation
EP0139242B1 (en) Ultrasonic imaging device
Burckhardt et al. Methods for increasing the lateral resolution of B-scan
US4157665A (en) Formation of acoustical images
JPS5815178A (en) Picture processor of synthetic aperture radar
US3790926A (en) Method for determining the speed of a vehicle
US4040056A (en) Method for aberration-free optical recording of highly resolved sonar or radar maps
US3805222A (en) Method for the production of highly-resolved sonar pictures
JPH0138274B2 (en)
GB2104753A (en) Radars
JPS5815177A (en) Picture processor of synthetic aperture radar
Farrah et al. An underwater viewing system using sound holography
US5865753A (en) Coherent detection ultrasound system
JPS61138189A (en) Synthetic aperture radar image processing device