JPS58150846A - Test plate for nuclear magnetic resonance device - Google Patents
Test plate for nuclear magnetic resonance deviceInfo
- Publication number
- JPS58150846A JPS58150846A JP57032314A JP3231482A JPS58150846A JP S58150846 A JPS58150846 A JP S58150846A JP 57032314 A JP57032314 A JP 57032314A JP 3231482 A JP3231482 A JP 3231482A JP S58150846 A JPS58150846 A JP S58150846A
- Authority
- JP
- Japan
- Prior art keywords
- test plate
- thermosetting resin
- nuclear magnetic
- magnetic resonance
- proton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/58—Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Sampling And Sample Adjustment (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明社、核磁気共鳴装置(以下、単K mRと略称
することもある。)の技術分野に属する。[Detailed Description of the Invention] [Technical Field of the Invention] This invention belongs to the technical field of nuclear magnetic resonance apparatus (hereinafter sometimes abbreviated as single KmR).
理科学側定器として利用されているNMROjl理を応
用すれば、生体組織の1率的構成物質である水分中のプ
ロ)/1llfを無侵襲に直接に検出可能である。生体
組織中の正常細胞とガン細胞とはそのプロトン濃度が相
違するので、NMRをガン検診に利用することができる
。もつとも、正常細胞とガン細胞とのプロトン−縦葺が
僅少であるので、両細脂のプロトン濃度を安定K NM
Rで評価する大めに#i、標準ナンプルとして適当な2
m用テストプレートが必要である。By applying the NMROjl principle, which is used as a scientific measuring instrument, it is possible to directly detect pro)/1llf in water, which is a major component of living tissues, in a non-invasive manner. Since normal cells and cancer cells in living tissues have different proton concentrations, NMR can be used for cancer screening. However, since there is only a small number of protons between normal cells and cancer cells, the proton concentration in both lipids remains stable.
Larger #i to be evaluated with R, 2 appropriate as a standard number
A test plate for m is required.
従来、m用テストプレートとして、適宜O形状に成形し
九軟質ゼラチン、含水スポンジ、親水性ポリマー勢の含
水物質が用いられていえ。しかしながら、これら従来の
船用テストプレートは、温11度の影響が大きく、まえ
水分の存在によゐ変形、変質のおそれが多分にあつえ、
し九がって、これら従来のMDm用テストプレート、長
期闘えとえば10部間Kit九に一定のプロトン一度に
維持するのは困難であつえ。Conventionally, a water-containing substance such as soft gelatin, a water-containing sponge, or a hydrophilic polymer, which is suitably formed into an O-shape, has been used as a test plate for m. However, these conventional test plates for ships are greatly affected by the temperature of 11 degrees Celsius, and there is a high risk of deformation and deterioration due to the presence of moisture.
Therefore, with these conventional test plates for MDm, it is difficult to maintain a constant proton level at one time for a long period of time, for example, 10 parts.
この発明社前記事情に鎌みてなされえもOであり、長期
間にわえりプロトン一度を一定に維持することのできる
Mυ用テストプレートを提供することを目的とするもの
である。The present invention has been made in consideration of the above circumstances, and the object of the present invention is to provide a test plate for Mυ that can maintain a constant concentration of protons over a long period of time.
前記目的を達成するためのこの発明の概要は、珪酸物質
を熱硬化性樹脂中に分散してなることを特徴とするもの
である。The outline of the present invention for achieving the above object is characterized in that a silicic acid substance is dispersed in a thermosetting resin.
第1図、第2図および第6図は、この発明の実施例を示
す説明図である。FIG. 1, FIG. 2, and FIG. 6 are explanatory diagrams showing embodiments of the present invention.
この発明に係るNMR用テステストプレートマット状、
7レーク状および粉末状のいずれかの珪酸物質を熱硬化
性樹脂中に分散してなることを特長とする。NMR test plate mat shape according to this invention,
7.It is characterized by being made by dispersing either a lake-like or powder-like silicic acid substance in a thermosetting resin.
珪酸物質としては、たとえばガラスが好ましい。As the silicic acid material, for example, glass is preferable.
熱硬化性樹脂としては、たとえば不飽和ポリエステル、
エポキシ樹脂、フェノール樹脂等が好ましい。珪酸物質
の熱硬化性樹脂中への分散としては、たとえば第1図に
示すように長繊維グラスファイバ1の織物、編物、不織
布をマット状に熱硬化性樹脂2中2中に分布させること
(マット状分散)、短繊維グラスファイバ6をフレーク
状に熱硬化性樹112中に分布させること(フレーク状
分散)、ガラス九とえばグラスファイバの粉末4を熱硬
化性樹脂2中に分布させること(粉末状分散)が挙げら
れる。このように種々の状態で分散させるのは、それぞ
れの分散状態によりプロトン濃度の異なる種々のNMR
用テステストプレート成することができるからである。Examples of thermosetting resins include unsaturated polyester,
Epoxy resins, phenol resins, etc. are preferred. Dispersion of the silicic acid substance into the thermosetting resin can be achieved by, for example, distributing woven, knitted or nonwoven fabrics of long fiber glass fibers 1 in the thermosetting resin 2 in the form of a mat, as shown in FIG. (matte-like dispersion), distributing the short glass fibers 6 in flakes in the thermosetting resin 112 (flake-like dispersion), distributing glass fiber powder 4, for example, in the thermosetting resin 2 (powdered dispersion). Dispersing in various states in this way means that various NMR molecules with different proton concentrations are produced depending on the dispersion state.
This is because it can be used as a test plate.
ま九、分散状態によ)プロトン濃度が相違するのは、そ
れぞれの状態によ)珪酸物質の破壊断面の断面積が相違
することから、破壊原子価により結合するH+あるいは
0ft)量が相違することになるからである。(9) The proton concentration differs depending on the state of dispersion because the cross-sectional area of the fracture cross section of the silicic acid material differs depending on the state, so the amount of H+ or 0ft) bonded differs depending on the fracture valence. This is because it will happen.
以上のように、珪酸物質を熱硬化性樹脂中に分酸させる
と、珪酸物質の破壊断@に、破壊原子価により結合する
r+ωrを、熱硬化性機態で麹じ込め、外気から遮断す
るので、この発明に係るNMR用テストプレート中のプ
ロトン濃度を長期間にわ九って一定に維持することがで
きる。As described above, when a silicic acid substance is dissolved into a thermosetting resin, r+ωr, which is bonded to the fracture valence of the silicic acid substance by the fracture valence, is incorporated in a thermosetting state and is isolated from the outside air. Therefore, the proton concentration in the NMR test plate according to the present invention can be maintained constant over a long period of time.
以上この発明の一実施例について詳述し九が、この発明
は前記実施例に限定されるものではなく、この発明の要
旨の範囲内で様々に変形して実施することができる。Although one embodiment of the present invention has been described above in detail, the present invention is not limited to the above embodiment, and can be implemented with various modifications within the scope of the gist of the invention.
この発明によると、簡単な構造でありながら、長期間に
わ九ってプロトン濃度が一定に維持されi NMR用テ
ステストプレート供することができる。According to the present invention, although the structure is simple, the proton concentration is maintained constant over a long period of time, and a test plate for iNMR can be provided.
まえ、珪酸物質の分散状IIK応じてプロトン濃度を変
えることができるので、種々のプロトン濃度を有するN
MR用テステストプレート供することができる。First, since the proton concentration can be changed depending on the dispersion IIK of the silicic acid material, N with various proton concentrations can be used.
A test plate for MR can be provided.
第1図、第2図および第6図はこの発明の一実施例を示
す説明図である。
1・・・長繊維グラスファイバ、2・・・熱硬化性樹脂
、6・・・短繊維グラスファイバ、4・・・グラスファ
イバの粉末。
代理人弁理士 則 近 憲 佑 (ほか1名)第1図
第2図
第3図FIG. 1, FIG. 2, and FIG. 6 are explanatory diagrams showing one embodiment of the present invention. 1... Long fiber glass fiber, 2... Thermosetting resin, 6... Short fiber glass fiber, 4... Glass fiber powder. Representative Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure 3
Claims (2)
とを特徴とするftS気共鳴装置用テストプレート。(1) A test plate for an ftS air resonance device, characterized in that it is made by dispersing a silicic acid substance in a thermosetting resin.
のいずれかで分散していることを特徴とする特許請求の
範囲第1項に記載の核磁気共鳴装置用テストプレート。(2) The test plate for a nuclear magnetic resonance apparatus according to claim 1, wherein the silicic acid substance is dispersed in any one of a matte, flake, and powder form.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57032314A JPS58150846A (en) | 1982-03-03 | 1982-03-03 | Test plate for nuclear magnetic resonance device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57032314A JPS58150846A (en) | 1982-03-03 | 1982-03-03 | Test plate for nuclear magnetic resonance device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58150846A true JPS58150846A (en) | 1983-09-07 |
JPS6355938B2 JPS6355938B2 (en) | 1988-11-04 |
Family
ID=12355471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57032314A Granted JPS58150846A (en) | 1982-03-03 | 1982-03-03 | Test plate for nuclear magnetic resonance device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58150846A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4644276A (en) * | 1984-09-17 | 1987-02-17 | General Electric Company | Three-dimensional nuclear magnetic resonance phantom |
US4719406A (en) * | 1986-02-07 | 1988-01-12 | General Electric Company | Phantom for performance evaluation of a nuclear magnetic resonance scanner |
US5321358A (en) * | 1993-03-01 | 1994-06-14 | General Electric Company | Embedded NMR sensors for cure monitoring and control of composite structures |
CN101838927A (en) * | 2010-05-21 | 2010-09-22 | 中纺标(北京)检验认证中心有限公司 | Testing device and method for magnetic induction intensity of textile surfaces |
-
1982
- 1982-03-03 JP JP57032314A patent/JPS58150846A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4644276A (en) * | 1984-09-17 | 1987-02-17 | General Electric Company | Three-dimensional nuclear magnetic resonance phantom |
US4719406A (en) * | 1986-02-07 | 1988-01-12 | General Electric Company | Phantom for performance evaluation of a nuclear magnetic resonance scanner |
US5321358A (en) * | 1993-03-01 | 1994-06-14 | General Electric Company | Embedded NMR sensors for cure monitoring and control of composite structures |
CN101838927A (en) * | 2010-05-21 | 2010-09-22 | 中纺标(北京)检验认证中心有限公司 | Testing device and method for magnetic induction intensity of textile surfaces |
Also Published As
Publication number | Publication date |
---|---|
JPS6355938B2 (en) | 1988-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thu et al. | Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation‐induced X‐ray emission, magnetic resonance microimaging, and mathematical modeling | |
Prevost et al. | Optimization of inhomogeneous magnetization transfer (ihMT) MRI contrast for preclinical studies using dipolar relaxation time (T1D) filtering | |
FI85815C (en) | ANVAENDNING AV MAGNETISKT KAENSLIGT MATERIAL FOR FRAMSTAELLNING AV ETT MEDEL, SOM ANVAENDS VID NMR-AVBILDNING. | |
Work et al. | A physico-chemical study of the supercontraction of spider major ampullate silk fibers | |
Weiss et al. | Three‐dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging | |
Sheppard et al. | Models of long-range order in cerebral macromolecules: Effects of sub-ELF and of modulated VHF and UHF fields | |
Olsen | Electron microscope studies on collagen: I. Native collagen fibrils | |
Raymond et al. | In situ synthesis of ferrites in cellulosics | |
JPS58150846A (en) | Test plate for nuclear magnetic resonance device | |
CN107519524A (en) | A kind of polycaprolactone/collagen/quaternary ammonium salt electrospun composite fibers film and preparation method thereof | |
Zu | Toward more reliable measurements of NOE effects in CEST spectra at around− 1.6 ppm (NOE (− 1.6)) in rat brain | |
Li et al. | Gadolinium-coated mesoporous silica nanoparticle for magnetic resonance imaging | |
Cai et al. | Facile Synthesis of Gd (OH) 3‐Doped Fe3O4 Nanoparticles for Dual‐Mode T1‐and T2‐Weighted Magnetic Resonance Imaging Applications | |
CN116098605A (en) | Water mold for multi-nuclear-element synchronous integrated magnetic resonance imaging and using method thereof | |
Parkinson et al. | Diatom response to extremely low-frequency magnetic fields | |
Masuda et al. | No dynamic changes in blood-brain barrier permeability occur in developing rats during local cortex exposure to microwaves | |
EP0326135A1 (en) | Carrier fleece for impregnated releasable reagents | |
Grant | The dielectric method of investigating bound water in biological material: An appraisal of the technique | |
Fiorelli et al. | Enhanced tissue penetration of antibodies through pressurized immunohistochemistry | |
Desrosiers et al. | Study of myocardial cell inhomogeneity of the human heart: simulation and validation using polarized light imaging | |
Rodin | Methods of magnetic resonance in studying natural biomaterials | |
Savoiardo et al. | MRI findings in Leigh’s disease with cytochrome-c-oxidase deficiency | |
Zhao et al. | Influence of embedded boron nitride nanosheets on Fe 3+ diffusion in Fricke gel dosimeter and its response to γ rays | |
IT9067274A1 (en) | SYNTHETIC FIBER AND VEGETABLE FIBER PRODUCTION PROCESS BY FIBROIN PROTEIN | |
JPH03165746A (en) | Heating mat for medical diagnostic device |