JPS5815061A - Manufacture of independent foam-rich lightweight foamed concrete - Google Patents

Manufacture of independent foam-rich lightweight foamed concrete

Info

Publication number
JPS5815061A
JPS5815061A JP9534781A JP9534781A JPS5815061A JP S5815061 A JPS5815061 A JP S5815061A JP 9534781 A JP9534781 A JP 9534781A JP 9534781 A JP9534781 A JP 9534781A JP S5815061 A JPS5815061 A JP S5815061A
Authority
JP
Japan
Prior art keywords
slurry
raw materials
added
pressure
cellular concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9534781A
Other languages
Japanese (ja)
Other versions
JPH0152356B2 (en
Inventor
大場 教夫
黒木 康秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP9534781A priority Critical patent/JPS5815061A/en
Publication of JPS5815061A publication Critical patent/JPS5815061A/en
Publication of JPH0152356B2 publication Critical patent/JPH0152356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は独立気泡に富む軽量気泡コンクリートを製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing lightweight cellular concrete rich in closed cells.

本発明にいう軽量気泡コンクリートとは一般にALOと
呼ばれるものであって、微粉砕したケイ酸質原料、石灰
質原料および必要に応じて各種の添加剤を加え、OaO
と5102のモル比をOB以下になるように調合したも
のC以下この混合物を調合原料という)に適当量の水と
アルミニウム金属粉末を加えて混練してスラリーとなし
、このスラリーを型枠に注入して発泡凝固させ、ある程
度の硬度に達したものを所定の寸法に切断し、オートク
レーブ中で高温高圧で蒸気養生したかさ比重0.45〜
0.55程度のものである。そしてケイ酸質原料として
はケイ石、文イ砂、フライアッシュ、高炉滓などが使用
され、また石灰質原料としては生石灰、消石灰などが使
用され、さらにまたその他の添加剤としては普通ポルト
ランドセメントなどの各種無機セメントが使用されてい
る。
The lightweight cellular concrete referred to in the present invention is generally referred to as ALO, and is made by adding finely pulverized silicic acid raw materials, calcareous raw materials, and various additives as necessary.
and 5102 (hereinafter referred to as the mixed raw material) is mixed with an appropriate amount of water and aluminum metal powder to form a slurry, and this slurry is poured into the mold. The product is foamed and solidified, and when it reaches a certain degree of hardness, it is cut into specified dimensions and steam-cured at high temperature and pressure in an autoclave to obtain a bulk specific gravity of 0.45~
It is about 0.55. Silica stone, clay sand, fly ash, blast furnace slag, etc. are used as silicic raw materials, quicklime, slaked lime, etc. are used as calcareous raw materials, and other additives include ordinary Portland cement, etc. Various inorganic cements are used.

本発明者等は従来の軽量気泡コンクリート中に独立気泡
をさらに多量に包含せしめ、強度の大なる軽量気泡コ〉
クリートを造らんとして種々研究を行った。
The present inventors have incorporated a larger amount of closed cells into conventional lightweight cellular concrete to create a lightweight cellular concrete with greater strength.
We conducted various research in an attempt to create cleats.

先づ考えられる方法は従来の調合原料に添加するアルミ
ニウム金属粉末の添加量を増加するか、または調合原料
に混練水を多く加える方法であるが、前者の方法では気
泡の発生量が過多になるため、発生気泡が合体するかま
たは脱泡現象を起こして調合原料のスラリーの表面上に
浮上するため得られた気泡コンクリートは強度が弱く、
不均質なものとなる。また後者の方法では調合原料のス
ラリーの粘性が低下し過ぎるため、固液分離の現象が起
きたり、脱泡現象が起きたりして気泡コンクリートを製
造することができなくなる。
The first method that can be considered is to increase the amount of aluminum metal powder added to the conventional blended raw materials, or to add more kneading water to the blended raw materials, but the former method results in the generation of too many bubbles. Therefore, the resulting aerated concrete has low strength because the generated air bubbles coalesce or defoam and float to the surface of the slurry of mixed raw materials.
It becomes heterogeneous. In addition, in the latter method, the viscosity of the slurry of the mixed raw materials decreases too much, causing phenomena of solid-liquid separation and defoaming, making it impossible to produce aerated concrete.

そこで本発明者は調合原料に適当量の水を加えて混練り
後アルミニウム金属粉末を加えて混練りしてスラリーを
造り、このスラリーを型枠に注入し、この型枠をスラリ
ーと共に減圧器内に入れて減圧し、発泡させて凝固せし
める方法について種々研究したところ、特定の条件にて
スラリーを減圧凝固せしめると発泡した気体は独立気泡
として造られる軽量コンクリート内に殆んど均一に分布
すること、および調合原料スラリーの粘度を調整しアル
ミニウム金属粉末量、スラリーの粘度および減圧度を調
整することにより独立気泡がコンクリート内に均一に分
布したかさ比重の異なる種々の製品を造ることができる
ことを知見した。こ\にかさ比重とは製品を100℃の
温度で恒量になるまで乾燥したものの比重をいう。以下
に記載するゞかさ比重′は上記と同じ方法で測定したも
のである。
Therefore, the present inventor added an appropriate amount of water to the blended raw materials, kneaded them, added aluminum metal powder and kneaded them to create a slurry, poured this slurry into a mold, and placed the mold together with the slurry in a pressure reducer. We have conducted various research on methods of placing slurry in a vacuum container, foaming it, and solidifying it under specific conditions, and found that when the slurry is solidified under reduced pressure, the foamed gas is almost uniformly distributed within the lightweight concrete, which is created as closed cells. , and discovered that by adjusting the viscosity of the mixed raw material slurry, adjusting the amount of aluminum metal powder, the viscosity of the slurry, and the degree of vacuum, it was possible to create various products with different bulk specific gravity in which closed cells were uniformly distributed in concrete. did. Bulk specific gravity refers to the specific gravity of a product dried at a temperature of 100°C until it reaches a constant weight. The bulk specific gravity' described below was measured using the same method as above.

次に実験した結果を説明する。Next, the experimental results will be explained.

〔実験例1〕 粉末度2800 crf/、乍(ブレーン値)のケイ石
60kl、88ミクロン篩残10%の生石灰10kgと
普通ポルトランドセメン)30kPとを調合しく調合原
料中のOaOと8102モル比は0.52 )、この調
合物100峙に対し水702を加え、1分間混練後、ア
ルミニウム金属粉末62F!−を加え、さらに1分間混
練して粘度500 cps (B型粘度計)を造った。
[Experimental Example 1] 60 kl of silica stone with a fineness of 2800 crf/ (Blaine value), 10 kg of quicklime with 10% sieve residue of 88 microns, and 30 kP (ordinary Portland cement) are mixed, and the molar ratio of OaO and 8102 in the mixed raw materials is 0.52), 702 parts of water was added to 100 parts of this mixture, and after kneading for 1 minute, aluminum metal powder 62F! - was added and kneaded for further 1 minute to produce a viscosity of 500 cps (B-type viscometer).

このスラリーを容積300矛の型枠3個に別々に注入後
それぞれを減圧器に入れ、減圧器内の空気を排除した後
、内部を(1) −1oo 、(2)−400、(3)
  600 lllHgに減圧して発泡凝固せしめた。
This slurry was separately injected into three molds with a capacity of 300 mm, each was placed in a pressure reducer, and after removing the air in the pressure reducer, the inside was divided into (1) -1oo, (2) -400, (3)
The pressure was reduced to 600 lllHg to foam and solidify.

次にこの凝固体を取出してオートクレーブに入れ何れも
180℃、15時間養生した後得られた軽量気泡コンク
リートを100℃で恒量になるまで乾燥し、かさ比重を
求め、また圧縮強度を測定し、次の第1表の結果を得た
Next, this solidified material was taken out and put into an autoclave and cured at 180°C for 15 hours. The resulting lightweight aerated concrete was dried at 100°C until it reached a constant weight, the bulk specific gravity was determined, and the compressive strength was measured. The results shown in Table 1 below were obtained.

こ−に圧縮強度とは製品中の含水率が10%になるまで
70℃で乾燥したときの強度をいう。以下に記載する圧
縮強度も上記と同じ方法で測定したものである。
Compressive strength here refers to the strength when the product is dried at 70°C until the moisture content in the product reaches 10%. The compressive strength described below was also measured using the same method as above.

また比較のため上記と同じ調合原料に上記と同量の水お
よびアルミニウム金属粉末を添加し混練りしたものを上
記と同じ型枠に入れ、常圧で発泡凝固させた後凝固体を
上記と同じ条件でオートクレーブ養生した結果を第1表
に併記した。
For comparison, the same amount of water and aluminum metal powder as above were added to the same blended raw materials as above and kneaded, put into the same mold as above, foamed and solidified under normal pressure, and the solidified product was the same as above. The results of autoclave curing under these conditions are also listed in Table 1.

第  1  表 上記実験結果から調合原料のスラリー粘度(500cp
s )およびアルミニウム金属粉末添加量が一定の場合
減圧器の減圧度を大にすればする程得られル[量気泡コ
ンク・リート中の気泡の径は大きくなり、かつ発生気泡
は何れも独立球状を呈することが認められた。しかもア
ルミニウム金属粉末の添加量を減量しても−350ll
lHg程度に減圧すればかさ比重が0.45程度の軽量
気泡コンクリートが得られること、また−100龍Hg
程度に減圧すれば、かさ比重が0.45より大なる軽量
気泡コンクリートが得られるが、発生した気泡は軽量コ
ンクリート内に均一に分布されているため圧縮強度の大
なる製品が得られることが認められた。
Table 1 Based on the above experimental results, the slurry viscosity of the blended raw material (500 cp
s) and when the amount of aluminum metal powder added is constant, the larger the degree of vacuum in the pressure reducer, the larger the diameter of the bubbles in cellular concrete, and the bubbles formed are all independent spherical. It was recognized that the Moreover, even if the amount of aluminum metal powder added is reduced -350 liters
Lightweight aerated concrete with a bulk specific gravity of about 0.45 can be obtained by reducing the pressure to about 1Hg, and -100 DragonHg
If the pressure is reduced to a certain degree, lightweight aerated concrete with a bulk specific gravity greater than 0.45 can be obtained, but it is recognized that the generated air bubbles are uniformly distributed within the lightweight concrete, resulting in a product with high compressive strength. It was done.

これに対し調合原料スラリーを大気中で発泡せしめた後
オートクレーブ処理して軽量気泡コ〉クリートを造った
場合はコンクリート内に包含された気泡は不揃いで横割
れ状態になったものが多く、かさ比重が高い割には圧縮
強度も小さいことが認められた。
On the other hand, when lightweight cellular concrete is made by foaming the mixed raw material slurry in the air and then autoclaving it, the air bubbles contained in the concrete are often uneven and have horizontal cracks, and the bulk density It was recognized that the compressive strength was low even though it was high.

〔実験例2〕 実験例1に使用した原料と同じ粉末度の原料を使用し、
ケイ砂70ky、、生石灰13kl、普通ポルトランド
七メン)17kpを調合し、この調合原料100kgに
対し水55ノを加え、1分間混練り後アルミニウム金属
粉末を40?および12oz添加し、さらに1分間混練
してスラリー(粘度1500 cps )を造った。こ
のスラリーをそれぞれ容積300 Aの型枠6個に別々
に注入して減圧器に入れ、器内の空気を排除した後、器
内を第2表に示すように試料1においては(4)のとき
は−400、(5)のときは−500、(6)のときは
−600龍Hgにし、また試料nにおいてはく7)のと
き−50、(8)のとき−100、(9)のとき−30
0■lHgに減圧して発泡凝固せしめた。次にこの凝固
体を取り出してオートクレーブに入れ、何れモ180℃
、15時間養生した後、得られた軽量気泡コンクリート
を100℃で恒量になるまで乾燥し、かさ比重を求め、
また圧縮強度を測定し、次の第2表の結果を得た。  
      ′1 また比較のため、上記と同じ調合原料に上記と同じ量の
水およびアルミニウム金属粉末を添加しで発泡凝固させ
た後凝固体を上記と同じ条件でオートクレーブ養生した
結果を第2表にそれぞれ比較例として併記した。
[Experimental Example 2] Using raw materials with the same powderiness as those used in Experimental Example 1,
Mix 70ky of silica sand, 13kl of quicklime, and 17kp of ordinary Portland powder, add 55kg of water to 100kg of this mixed raw material, mix for 1 minute, and then add 40kg of aluminum metal powder. and 12 oz were added and kneaded for an additional minute to make a slurry (viscosity 1500 cps). This slurry was separately injected into six molds each having a volume of 300 A, and placed in a pressure reducer to remove the air inside the molds. -400 for sample n, -500 for (5), -600 for sample n, -50 for sample n, -100 for (8), -100 for sample n. When -30
The pressure was reduced to 0 1Hg to foam and solidify. Next, this coagulated material was taken out and placed in an autoclave, both at 180°C.
After curing for 15 hours, the resulting lightweight cellular concrete was dried at 100°C until it reached a constant weight, and the bulk specific gravity was determined.
The compressive strength was also measured and the results shown in Table 2 below were obtained.
'1 For comparison, Table 2 shows the results of adding the same amount of water and aluminum metal powder to the same blended raw materials as above, foaming and solidifying the material, and then curing the solidified material in an autoclave under the same conditions as above. It is also listed as a comparative example.

第  2  表 上記実験結果から、調合原料のスラリー粘度を1600
 cpsで一定にし、アル、ミニラム金属粉の添加量を
変えたとき、何れも軽量気泡コンクリート中に独立気泡
が均一に分散した製品が得られるが、スラリーを発泡せ
しめる減圧度は添加したアルミニウム金属粉の量が多い
程減圧度を小さくすることができ、また実験例1の場合
と同様に減圧度を大にするに従いかさ比重が小になるこ
とが認められた。
Table 2 From the above experimental results, the slurry viscosity of the blended raw material was set to 1600.
When cps is kept constant and the amounts of Al and Minilam metal powder added are varied, a product with closed cells uniformly dispersed in lightweight cellular concrete can be obtained in both cases, but the degree of vacuum that foams the slurry varies depending on the amount of added aluminum metal powder. The larger the amount, the lower the degree of pressure reduction, and as in Experimental Example 1, it was found that as the degree of reduction was increased, the bulk specific gravity became smaller.

〔実験例3〕 実験例IK使用した原料と同じ粒度の原料を使用し、ケ
イ砂55kp、生石灰30kp、普通ポルトランドセメ
> ) 15 kIIを調合し、この調合原料100k
gに対し水75!を加え、1分間混練後、アルミニウム
金属粉末55f!−を添加してさらに1分間混練し、ス
ラリー(粘度360 cps )を造った。このスラリ
ーを容積3002の型枠に注入して、型枠と共に減圧器
に入れ、器内の空気を除去した後器内圧を−40011
1HHに減圧して発泡凝固せしめた。次にこの凝固体を
取り出しオートクレーブに入れて180℃、15時間養
生した後、得られた軽量気泡コンクリートを100℃で
恒量になるまで乾燥し、かさ比重を求め、また圧縮強度
を測定し、次の第。
[Experimental Example 3] Using raw materials with the same particle size as those used in Experimental Example IK, 55 kp of silica sand, 30 kp of quicklime, and 15 kII of ordinary Portland cement were mixed, and 100 k of this mixed raw material was prepared.
75 grams of water! was added, and after kneading for 1 minute, aluminum metal powder 55f! - was added and kneaded for further 1 minute to prepare a slurry (viscosity: 360 cps). This slurry was injected into a mold with a volume of 3002, put into a pressure reducer together with the mold, and after removing the air inside the container, the internal pressure of the container was reduced to -40011.
The pressure was reduced to 1HH to foam and solidify. Next, this solidified material was taken out and placed in an autoclave and cured at 180℃ for 15 hours.The obtained lightweight cellular concrete was dried at 100℃ until it reached a constant weight, the bulk specific gravity was determined, and the compressive strength was measured. No.

3表の結果を得た。The results shown in 3 tables were obtained.

また比較のため上記と同じ調合原料に上記と同じ量の水
およびアルミニウム金属粉末を添加して混練シしたもの
を、上記と同じ型枠に入れ、常圧で発泡凝固させた後凝
固体を上記と同じ条件でオートクレーブ養生して得た製
品(従来法製品)を第3表に併記した。
For comparison, the same amount of water and aluminum metal powder as above were added to the same blended raw materials as above and kneaded, then put into the same mold as above and foamed and solidified under normal pressure. Products obtained by autoclave curing under the same conditions as (conventional method products) are also listed in Table 3.

第  3  表 この結果から従来方法で得られる軽量気泡フ〉クリート
と同じかさ比重の製品を得んとすればアルミニウム金属
粉を従来法の約1/2量使用し、スラリーを−4001
@lHgの減圧にして発泡凝固せしめた後従来法と同様
にオートクレーブ養生すれば得られることが認められる
。しかも本発明方法にょれば得られた軽量気泡フンクリ
−°器内の気泡は2〜3111程度で良く揃い、圧縮強
度も大であったが従来法の軽量気泡コンクリート内の気
泡は不揃いで破泡合体したものがあり、圧縮強度も本発
明で造ったものより小になることが認められた。
Table 3 From this result, if you want to obtain a product with the same bulk specific gravity as lightweight cellular concrete obtained by the conventional method, use approximately 1/2 the amount of aluminum metal powder in the conventional method, and use a slurry of -4001
It is recognized that the product can be obtained by foaming and solidifying under reduced pressure of @lHg and then curing in an autoclave as in the conventional method. Moreover, according to the method of the present invention, the air bubbles in the lightweight aerated concrete container obtained were well-aligned at about 2 to 3111, and the compressive strength was high, but the air bubbles in the lightweight aerated concrete obtained using the conventional method were uneven and the cells broke. It was found that some of the products were combined, and the compressive strength was also lower than that of the products made according to the present invention.

以上の実験例は何れも発泡剤としてアルミニウム金属粉
末を使用した場合を例示したものであるがアルミニウム
金属以外の亜鉛、バリウムなどの金属粉末を使用した場
合にも上記とはソ同様な結果が得られた。
The above experimental examples all illustrate cases where aluminum metal powder is used as a foaming agent, but similar results can be obtained when metal powders other than aluminum metal, such as zinc or barium, are used. It was done.

本発明はこれらの知見に基くものであって、軽、量気泡
コンクリートを製造するKMす、ナイ酸質原料、石灰質
原料およびその他の結合材よシなる調合原料中のOaO
と5102をモル比で0.3〜0.8の範囲に混合した
調合原料100重量部に対し水と重量部で0.03〜0
.15の発泡剤を添加し、混練してスラリーの粘度を3
00〜1600 apeに調整したものを減圧度−50
〜−600lllHg 4C減圧して発泡凝固せしめた
後、オートクレーブ養生することを特徴とする独立気泡
に富む軽量気泡コンクリートの製造方法である。
The present invention is based on these findings, and aims to reduce OaO in mixed raw materials such as niic acid raw materials, calcareous raw materials, and other binders in KM for producing light, high-volume cellular concrete.
and 5102 in a molar ratio of 0.3 to 0.8 to 100 parts by weight of the raw material, and 0.03 to 0 parts by weight of water.
.. Add a blowing agent of 15 and knead to reduce the viscosity of the slurry to 3.
00~1600 ape adjusted to -50 degree of vacuum
~-600lllHg This is a method for producing lightweight cellular concrete rich in closed cells, which is characterized by foaming and solidifying under reduced pressure of 4C and then curing in an autoclave.

本発明において、ケイ酸質原料としてはケイ砂、ケイ石
、フライアッシュ、高炉滓などの粉末度が88μ篩残3
0%以下の粉末で、石灰質原料としては生石灰、消石灰
′、どの粒度が88ミクロン篩残分10%以下の粉末で
、またその他の結合材としてはポルトランド系セメント
、混合セメント、アルミナセメ〉ト等が使用される。さ
らに発泡剤としてはアルカリ性水溶液と反応して水素を
発生するような金属粉末、例えばアルミニウム金属、亜
鉛金属、バリウム金属および銅とアルミニウムとの合金
金属の粉末が使用される。
In the present invention, the siliceous raw materials used include silica sand, silica stone, fly ash, blast furnace slag, etc., with a powder degree of 88μ sieve residue 3
Calcareous raw materials include quicklime, slaked lime, powder with particle size of 88 microns and sieve residue of 10% or less, and other binders include Portland cement, mixed cement, alumina cement, etc. is used. Further, as the blowing agent, there are used metal powders which generate hydrogen when reacting with an alkaline aqueous solution, such as powders of aluminum metal, zinc metal, barium metal, and alloy metals of copper and aluminum.

次に本発明方法においては発泡剤の添加量、調合原料の
スラリー粘度、スラリーに対する減圧度が互に密接に関
係するものであるが、調合原料のスラリー粘度が300
 cps未溝のときはスラリーの固液分離がおこるので
、使用することができず、またスラリー粘度が1600
 apeを超えるときは粘度が高すぎるため製造される
軽量気泡コンクリートの上層部と下層部において気泡密
度が相違するようになるので、高粘度のスラリーを使用
することは不適当である。
Next, in the method of the present invention, the amount of blowing agent added, the slurry viscosity of the raw material for preparation, and the degree of pressure reduction for the slurry are closely related to each other.
If the cps is not grooved, solid-liquid separation of the slurry will occur, so it cannot be used, and the slurry viscosity is 1600.
When the slurry exceeds the ape, the viscosity is too high and the cell density will be different between the upper and lower layers of the lightweight cellular concrete produced, so it is inappropriate to use a slurry with a high viscosity.

従って本発明において使用する調合原料スラリーの粘度
範囲は300〜1600 cpsが好ましいが、より好
ましくは400〜700 cpsである。次に発泡剤の
添加量が少なければ減圧度を大にし、大きければ減圧度
を小にして所望の軽量気泡コンクIJ +ト製品を造る
ことができるのであるが、経済的見地から発泡剤は調合
原料100重量部に対し0.03〜0.15重量部、好
ましくは0.05〜0.10重量部である。スラリーに
対する減圧は−50〜−600lllHgにすることが
好ましいが、より好ましくは−300〜−500雪ll
Hgである。
Therefore, the viscosity range of the raw material slurry used in the present invention is preferably 300 to 1600 cps, more preferably 400 to 700 cps. Next, if the amount of blowing agent added is small, the degree of vacuum can be increased, and if it is large, the degree of vacuum can be decreased to produce the desired lightweight cellular concrete IJ+ product, but from an economical point of view, the blowing agent is The amount is 0.03 to 0.15 parts by weight, preferably 0.05 to 0.10 parts by weight, based on 100 parts by weight of the raw material. The reduced pressure on the slurry is preferably -50 to -600 Hg, more preferably -300 to -500 Hg.
It is Hg.

本発明によれば、調合原料のスラリー粘度、発泡剤添加
量、調合原料スラリーを発泡凝固せしめる減圧度を適宜
調整することにより、所望のか門“比重で独立気泡を包
含した強度の大なる軽量気泡コ〉クリートを容易に製造
することができる。
According to the present invention, by appropriately adjusting the slurry viscosity of the blended raw material, the amount of blowing agent added, and the degree of reduced pressure for foaming and solidifying the blended raw material slurry, it is possible to create strong, lightweight cells containing closed cells with a desired specific gravity. concrete can be easily produced.

実施例 粉末度3000梯乍(ブレーン値)のケイ石60に1.
88μ篩残5%の生石灰10klと普通ポルトランドセ
メンh3skyとを調合しく調合原料中のOaOと81
02モル比は0.6)、この調合物100kjLに対し
水70Aを加え、1分間混線後、アルミニウム金属粉末
62?を添加し、さらに1分間混練して粘度500 a
pe (B型粘度計)のスラリーを造った。このスラリ
ーを300!の型枠に注入して、減圧器に入れ、器内の
空気を排除した後、−400lllHgに減圧して発泡
凝固せしめた。次にこの凝固体を取り出してオートクレ
ーブに入れ、180℃で15時間養生した。
Example: Silica stone 60 to 1.
10kl of quicklime with 5% residue on 88μ sieve and ordinary Portland cement h3sky are mixed and OaO and 81
02 molar ratio is 0.6), 70A of water was added to 100kjL of this mixture, and after stirring for 1 minute, aluminum metal powder 62? was added and kneaded for another minute until the viscosity was 500 a.
pe (Type B viscometer) slurry was made. 300 for this slurry! The mixture was poured into a mold, placed in a pressure reducer, and after removing the air inside the container, the pressure was reduced to -400 lllHg to foam and solidify. Next, this coagulated body was taken out, placed in an autoclave, and cured at 180°C for 15 hours.

得られた軽量気泡コンクリートのかさ比重は0.35、
圧縮強度は42¥1であり、製品中の気泡径は1.5〜
2.0II11で、総て独立気泡であった。
The bulk specific gravity of the lightweight cellular concrete obtained was 0.35.
The compressive strength is 42 yen 1, and the bubble diameter in the product is 1.5 ~
2.0II11, all of them were closed cells.

手続補正書(自発) 昭和56年 8月10日 特許庁長官  島 1)春 樹殿 1、事件の表示 特願昭 56 − 95347号 2、発明の名称 独立気泡に富む軽量気泡コ〉クリートの製造方法3、補
正をする者 事件との関係 特許出願人 山ロ県小野田市大字小野田6276番地(024)小野
田七メント株式会社 (ほか1名)4、代理人 明細書の「発明の詳細な説明」の欄 6、補正の内容 明細書を次の通りに補正する。
Procedural amendment (spontaneous) August 10, 1980 Commissioner of the Japan Patent Office Shima 1) Haru Judono 1, Indication of the case Patent Application No. 1983-95347 2, Name of the invention Manufacture of lightweight foam co-crete rich in closed cells Method 3: Relationship with the person making the amendment Patent applicant: 6276 Oaza Onoda, Onoda City, Yamaro Prefecture (024) Onoda Shichiment Co., Ltd. (and 1 other person) 4. "Detailed description of the invention" in the agent's specification Column 6, the statement of contents of the amendment, shall be amended as follows.

(1)第7頁3行「調合し」と「、」との間に次、の字
句を加入する。
(1) Add the following words between page 7, line 3, ``preparation'' and ``,''.

[(調合原料中のOaOと5i02モル比は0.38)
J(2)第9頁9行「調合し」と「、」との間に次の字
句を加入する。
[(The molar ratio of OaO and 5i02 in the blended raw materials is 0.38)
J(2) Page 9, line 9, add the following phrase between ``preparation'' and ``,''.

「(調合原料中のOaOと5i02モル比は0.78)
J(3)第13頁最下行r60kfJをr55kfPJ
に訂正する。
(The molar ratio of OaO and 5i02 in the blended raw materials is 0.78)
J (3) Page 13 bottom line r60kfJ to r55kfPJ
Correct.

(4)第14頁3行「モル比は0.6」を「モル比は0
.604に訂正する。
(4) Page 14, line 3, “The molar ratio is 0.6” is changed to “The molar ratio is 0.
.. Corrected to 604.

3737

Claims (1)

【特許請求の範囲】[Claims] 軽量気泡コンクリートを製造するに当り、ケイ酸質原料
、石灰質原料、その他の結合材よりなる調合原料中の(
ao (!: 5in2との比をモル比で0.3〜0.
8の範囲に調合したもの100重量部に対し水と0.0
3〜0.15重量部の発泡剤を添加し混練してスラリー
粘度を300〜1600 cpsに調整したものを減圧
度−50〜−600lllHgに減圧して発泡凝固せし
めた後オートクレーブ養生することを特徴とする独立気
泡に富む軽量気泡コンクリートの製造方法。
In producing lightweight cellular concrete, (
ao (!: The ratio with 5in2 is 0.3 to 0.0 in molar ratio.
Water and 0.0 parts by weight for 100 parts by weight of the mixture in the range of 8.
A characteristic feature is that 3 to 0.15 parts by weight of a blowing agent is added and kneaded to adjust the slurry viscosity to 300 to 1600 cps, which is then foamed and solidified by reducing the pressure to a degree of vacuum of -50 to -600 lllHg, and then curing in an autoclave. A method for producing lightweight cellular concrete rich in closed cells.
JP9534781A 1981-06-22 1981-06-22 Manufacture of independent foam-rich lightweight foamed concrete Granted JPS5815061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9534781A JPS5815061A (en) 1981-06-22 1981-06-22 Manufacture of independent foam-rich lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9534781A JPS5815061A (en) 1981-06-22 1981-06-22 Manufacture of independent foam-rich lightweight foamed concrete

Publications (2)

Publication Number Publication Date
JPS5815061A true JPS5815061A (en) 1983-01-28
JPH0152356B2 JPH0152356B2 (en) 1989-11-08

Family

ID=14135135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9534781A Granted JPS5815061A (en) 1981-06-22 1981-06-22 Manufacture of independent foam-rich lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPS5815061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108585941A (en) * 2018-05-02 2018-09-28 金陵科技学院 A kind of foam concrete and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363426A (en) * 1976-11-18 1978-06-06 Nippon Iton Kougiyou Kk Gas concrete and its manufacture
JPS5516110A (en) * 1978-06-30 1980-02-04 Nat Jutaku Kenzai Device for attaching frame

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363426A (en) * 1976-11-18 1978-06-06 Nippon Iton Kougiyou Kk Gas concrete and its manufacture
JPS5516110A (en) * 1978-06-30 1980-02-04 Nat Jutaku Kenzai Device for attaching frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108585941A (en) * 2018-05-02 2018-09-28 金陵科技学院 A kind of foam concrete and preparation method thereof

Also Published As

Publication number Publication date
JPH0152356B2 (en) 1989-11-08

Similar Documents

Publication Publication Date Title
US2880101A (en) Manufacture of steam-cured light-weight concrete
CA1182608A (en) Light-weight building material and method for the production thereof
US3834918A (en) Raw batch for forming porous architectural structures and method of preparing same
DE102009061053B4 (en) Pressed dry mortar moldings and process for their preparation
CA2125364C (en) Process for producing heat-insulating material
EP0254501B1 (en) Foamable composition
CN113173769B (en) Chemical foaming sludge light soil and production method thereof
CN116041008B (en) Sludge solid waste resource utilization method and application thereof
EP0069095A1 (en) A method in the manufacture of steam-cured inorganic insulating material of extremely low volumetric weight and having good heat-insulating properties
US4126470A (en) Light concrete and method of preparing the same
JP2001322842A (en) Underwater hardening body using steelmaking slag as raw material
US2880100A (en) Methods for the manufacture of light-weight concrete
US2081802A (en) Manufacture of light concrete
WO2001070647A1 (en) Method of producing a hydraulic binder foam
JPS5815061A (en) Manufacture of independent foam-rich lightweight foamed concrete
CN115466094A (en) Industrial solid waste base cementing grouting filling material, preparation method and application
CN108821677A (en) Ultralight big partial size haydite concrete and preparation method thereof for light cellular partition board
JPS5820767A (en) Manufacture of lightweight foamed concrete
JP3833304B2 (en) Method for producing porous sound absorbing material
CN117567108A (en) Vanadium-titanium slag light mortar, preparation method and application thereof
JPH0616484A (en) Production of lightweight concrete
RU2077521C1 (en) Raw mix for manufacturing building parts
CN117209242A (en) Short-curing high-durability autoclaved aerated concrete and preparation method thereof
JPH03218988A (en) Production of lightweight gas concrete product
JPH0826849A (en) Lightweight concrete product