JPS58150534A - Preparation of cyclopentanone - Google Patents

Preparation of cyclopentanone

Info

Publication number
JPS58150534A
JPS58150534A JP57032272A JP3227282A JPS58150534A JP S58150534 A JPS58150534 A JP S58150534A JP 57032272 A JP57032272 A JP 57032272A JP 3227282 A JP3227282 A JP 3227282A JP S58150534 A JPS58150534 A JP S58150534A
Authority
JP
Japan
Prior art keywords
palladium
catalyst
cyclopentanone
reaction
cyclopentanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57032272A
Other languages
Japanese (ja)
Other versions
JPH0152373B2 (en
Inventor
Akihiko Niina
新名 昭彦
Ryoji Sato
良治 佐藤
Terutaka Yao
八尾 照隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP57032272A priority Critical patent/JPS58150534A/en
Publication of JPS58150534A publication Critical patent/JPS58150534A/en
Publication of JPH0152373B2 publication Critical patent/JPH0152373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound which is an intermediate for solvents, perfumes, etc. in a high space-time yield, per-pass yield and selectivity, by using easy unit operations to bring cyclopentanol into contact with a palladium catalyst having improved durability. CONSTITUTION:Cyclopentanol is brought into contact with a catalyst and dehydrogenated to give cyclopentanone. In the process, a palladium catalyst is used as a catalyst to carry out the reaction at 150-400 deg.C and 0.2-5kg/cm<2>. A catalyst prepared by supporting palladium ions or palladium amine complex, etc. on a carrier, e.g. silica, alumina or silica alumina, by the ion exchange or ligand exchange method is suitable for preparing the cyclopentanone in large amounts with a small amount of the palladium. USE:An intermediate for chemicals.

Description

【発明の詳細な説明】 本発明はシクロペンタノンの製造方法に関し、さらに詳
しくは、シクロペンタノールをパラジウム触麹と豪触反
応せしめ脱水素反応をおこさせることによりシクロペン
タノンt−m造する方法Kllする・ シクロペンタノンは層剤、香料や化学薬品の中間−など
仁して有用な物質であり、近時その大量生産が望まれて
いる。向して、かかるシクロペンタノンの製造法として
、従来からjl!鉛−銅系触轟を用いるシクロペンタノ
ールの脱水素法が知られている(例えば米−畳許$12
.577.412号、特公昭55−5579号など)。
Detailed Description of the Invention The present invention relates to a method for producing cyclopentanone, and more specifically, cyclopentanone t-m is produced by subjecting cyclopentanol to a strong catalytic reaction with palladium-catalyzed koji to cause a dehydrogenation reaction. Cyclopentanone is a very useful substance as a layering agent, a fragrance, and an intermediate between chemicals, and its mass production has recently been desired. Therefore, as a method for producing such cyclopentanone, jl! A method of dehydrogenating cyclopentanol using a lead-copper catalyst is known (for example, U.
.. 577.412, Special Publication No. 55-5579, etc.).

しかし、この方法では空間時間蟲りの収率が必ずしも充
分でな(、また触謙の活性が比蓼的蝙期間で劣化するた
め工業化iiK逼した方法とは云いがたい。
However, this method does not necessarily provide a sufficient yield of spatiotemporal insects (and the activity of the insects deteriorates over time, so it cannot be said that it is a method suitable for industrialization).

一方、イソ10パノール、ベンジルアルコール、シクロ
ヘキサノールなどのごとき2−級・アルコールを白金属
元素を用いて脱水素する方法も公知である。例えば英国
特許第824514号には非酸性担体に担持した白金属
元素で第2級アルコールを脱水素する方法が記載さnて
おり、その臭体例としてイソプロパツールな白金、ルテ
ニウム、パラジウムまたはロジウムで処理する実験例が
示されている。面し【、その記載によれば、同じ白金属
元素であっても8曽及びルテニウムがきわめて^い活性
な有するのく対し、四ジウムの活性は低く、パラジウム
はさらに低活性であることが示されている。
On the other hand, a method of dehydrogenating secondary alcohols such as iso-10panol, benzyl alcohol, cyclohexanol, etc. using a platinum metal element is also known. For example, British Patent No. 824,514 describes a method for dehydrogenating secondary alcohols using a platinum metal element supported on a non-acidic carrier. An experimental example of the process is shown. According to the description, octagon and ruthenium, which are the same white metal elements, have extremely high activity, whereas tetradium has low activity, and palladium has even lower activity. has been done.

またR@act、 Kin@t、0ata1.Lett
@r 1 (2)121(1974)やKem、Kog
l、44(1−2)35(1975)には、シクロヘキ
サノールを8雀で処理するとシクロヘキすノンを経ずに
直接フェノールが生成しUNKシクロヘキ竜ン、ベンゼ
ンなどが副生ずると報告されている。画して、かかる記
載は前記英国待針の記載と矛盾しており、脂環式アルコ
ールの白雀属元素による脱水素については必ずしも明確
な知覚が擾られていない状況にあった。
Also R@act, Kin@t, 0ata1. Lett
@r 1 (2) 121 (1974) and Kem, Kog
1, 44 (1-2) 35 (1975), it is reported that when cyclohexanol is treated with octane, phenol is directly produced without passing through cyclohexone, and UNK cyclohexone, benzene, etc. are produced as by-products. . In contrast, this description contradicts the description in the British guidebook, and there was not always a clear understanding of the dehydrogenation of alicyclic alcohols by elements of the genus Elus.

そこで本発明者らはかかる従来技術の知見の下でシクロ
ペンタノンの効率的な合成法を−発すぺ(鋭意検討な進
めた結果、シクロペンタノールの脱水素に際してはイン
グロパノールの脱水素に際して低い活性しか示さなかっ
たパラジウムがきわめて優れた性能を有することを見い
出し、本発明を完成するに剃った。
Therefore, based on the knowledge of the prior art, the present inventors have devised an efficient method for synthesizing cyclopentanone. It was discovered that palladium, which had exhibited only low activity, had extremely excellent performance, and the present invention was completed.

かくして重置@によれば、シクロペンタノールをパラジ
ウム金属またはパラジウム化合物と接触させて脱水素す
ること′kIIIl黴とするシクロペンタノンの製造方
法がII供される。
Thus, according to Superposition@, a method for producing cyclopentanone is provided II, which involves dehydrogenating cyclopentanol by contacting it with palladium metal or a palladium compound to form a 'kIIIl mold'.

本発明は工業的に有f!@にシクロペンタノンV製造す
ることな目的とするものであり、原料であるシクロペン
タノールをパラジウム触媒と接触させるという簡単な単
位操作によって、^い空間時間収量と轟い単流収率、^
い選択性を示し、かつ触1の耐久性がすぐれたシクロペ
ンタノンの製造方法である。
The present invention is industrially useful! The purpose is to produce cyclopentanone V in a simple unit operation of bringing the raw material cyclopentanol into contact with a palladium catalyst, resulting in high space-time yields and impressive single-stream yields.
This is a method for producing cyclopentanone that exhibits high selectivity and excellent durability.

本発明で原料として使用するシクロペンタノールは、い
かなる製法によって播たものであっても差し支えな(、
また本発明の効果を本質的に妨げない範囲内であれば必
ずしも高純度である必要もない。かかるシクロペン貞ノ
ールの工業的入手法、の具体例としては、例えばシクロ
ペンテンの水利法、シクロペンタンの液相空気赦化法、
アジピン#l製造時の鯛生留分中に存在するシクロペン
タノールなどがあり、必要に応じて遍實分−精製して使
用される。
The cyclopentanol used as a raw material in the present invention may be sown by any manufacturing method (
Further, it does not necessarily have to be highly pure as long as it does not essentially impede the effects of the present invention. Specific examples of such industrial methods for obtaining cyclopenteinol include, for example, cyclopentene water utilization method, cyclopentane liquid phase air amelioration method,
Cyclopentanol is present in the raw sea bream fraction during the production of adipine #1, and is used after being purified in a uniform manner if necessary.

この際、シクロペンタノールとともに水、アルコール、
ケトン、エーテル、・エステル、縦化水累尋が共存して
いてもよ(、アルコール勢の脱水素されやすい化合物を
含む場合には脱水素反応が併発し、またケトンや不飽和
縦比水嵩等の水嵩化されやすい化合物を含む場合には水
素化反応が併発するO 本発明で使用する触媒はパラジウム金属またはパラジウ
ム化合物であり、公知の触媒調製方法に従ってll製す
ることができる。かかる触媒は単体で使用することもで
きるが、工業的には少量のパラジウムでシクロペンタノ
ンを大量に製造するために担体物質に担持した階謙を使
用するのが有利である。
At this time, along with cyclopentanol, water, alcohol,
Ketones, ethers, esters, and vertical water ratios may coexist (if a compound such as an alcohol that is easily dehydrogenated is included, a dehydrogenation reaction will occur concurrently, and ketones, unsaturated vertical water volume, etc.) may coexist. When the catalyst contains a compound that easily bulks up water, a hydrogenation reaction occurs simultaneously.The catalyst used in the present invention is palladium metal or a palladium compound, and can be prepared according to a known catalyst preparation method. However, industrially, it is advantageous to use cyclopentanone supported on a carrier material in order to produce large amounts of cyclopentanone with small amounts of palladium.

担体物質としては、例えばシリカ、ケイ酸塩、縦嵩質瞼
質、嶽駿塩、マグネシア、アルミナ、アルミン酸塩、チ
タニア、チタン酸塩、ケイソウ土、ジルコニア、シリカ
アルンナおよびその金属塩、軽石等があげられる。イオ
ン交換法や配位子交換法によってパラジウムイオン、パ
ラジウムアンミン錯イオン、その倫−イオン等のイオン
で交換担持させる場合には担体がこれらのイオンを交換
数層しうる峨点や配位馬な有することが好ましい。
Examples of the carrier material include silica, silicate, vertical bulky palpebrium, Takeshun salt, magnesia, alumina, aluminate, titania, titanate, diatomaceous earth, zirconia, silica aluna and its metal salts, pumice, etc. can give. When carrying ions such as palladium ions, palladium ammine complex ions, and their ions by ion-exchange or ligand-exchange methods, the carrier must have an anchor point or a coordination horse that can exchange these ions in several layers. It is preferable to have.

パラジウムの担持量は目標とする反応速度、反応龜度等
や反応器の大きさ、生成物分布等から目的に応じて選び
5るが、(11〜10重量%11度が経隣的である。担
体Km持する方法としては、例えばイオン交換法、配位
子交換法、含浸法、沈着法、コーティング法、共沈法、
混線法等があげられるが、イオン交換法や配位子交換流
勢により担持するのが好ましく、含浸コーティングの方
法と組合わせて担体の表面近くに交換担持させることも
パラジウム原子を効率的に利用する好ましい方法である
The amount of palladium supported is selected depending on the purpose based on the target reaction rate, reaction density, etc., reactor size, product distribution, etc. (11 to 10% by weight, 11 degrees is the ideal range). Examples of methods for supporting Km include ion exchange method, ligand exchange method, impregnation method, deposition method, coating method, coprecipitation method,
Examples include the crosstalk method, but it is preferable to support the palladium by an ion exchange method or a ligand exchange flow. Combining with the impregnating coating method, carrying the exchange support near the surface of the carrier is also an effective way to utilize palladium atoms. This is the preferred method.

パラジウムは、反応前、どのような存在状−になってい
てもよく、例えばイオン状態、クラスター状態、金属状
態、酸化物、錯化合物等があげられるが、分散度の高い
伏1i1Kしておくのが好ましい。パラジウムだけでな
く10モータとして公知の化合物、例えばアルカリ金属
やアルカリ土類金属その他を共存させたり、触媒毒とな
らない化合物を共存させ表面修飾を行1う公知の方法を
適用することもできる。また担体の酸性が強すぎる場合
、パラジウムを担持した後で担体な中和することもでき
る。触1の形状は粉末状、成形吻状等公知のどのような
形状でも使用し5る。触媒はそのまま使用することもで
きるが1反応に先だって公知の方法で熱処理、酸化処理
、還元処1等を単独または組付わせて行ってもよい。
Palladium may be in any state before the reaction, such as ionic state, cluster state, metal state, oxide, complex compound, etc., but palladium is preferably kept in a state with a high degree of dispersion. is preferred. It is also possible to apply not only palladium but also known methods for surface modification in which compounds known as 10 motors, such as alkali metals, alkaline earth metals, etc., are present, or compounds that do not poison the catalyst are present. Furthermore, if the acidity of the carrier is too strong, the carrier can be neutralized after supporting palladium. The shape of the tip 1 may be any known shape, such as a powdered shape or a molded nose shape. The catalyst can be used as it is, but prior to one reaction, it may be subjected to heat treatment, oxidation treatment, reduction treatment, etc. alone or in combination by a known method.

反応の過用形態は液相、気相どちらでもかまわないが、
工業的には気相で行い、固定床または流動床として使用
するのが普通であり、固定床方式な過用すると操作が簡
単となり便利である。反応#IA度は、反応圧力、反応
時間との関係で広範ilK選びうるが、100〜450
C,好ましくは150C〜400Cである。また反応圧
力は減圧から高圧まで選び5るが、(L2〜5#鷹で行
うのが経済的である。反応時間は反応形式、触課の製法
や担持負勢によって必ずしも一定ではないが、固定床流
通式気相反応器を用いてα5!!1嘔担持触1を使用し
た場合、α1〜100秒、好ましくは15秒〜20秒機
If:v選ぶのがよい。また原料は窒素、水蒸気等の不
活性ガスで稀釈して供給してもよい。
The overuse form of the reaction can be either liquid phase or gas phase, but
Industrially, it is common to carry out the process in a gas phase and use a fixed bed or fluidized bed, and the fixed bed system is more convenient because it is easier to operate. The reaction #IA degree can be selected from a wide range depending on the reaction pressure and reaction time, but it can be selected from 100 to 450.
C, preferably 150C to 400C. In addition, the reaction pressure can be selected from reduced pressure to high pressure, but it is economical to carry out the reaction using a L2 to 5# tank.The reaction time is not necessarily constant depending on the reaction type, the method of preparation of the reactor, and the loading force, but it is fixed. When using a bed flow type gas phase reactor with α5! It may be diluted with an inert gas such as the following.

かくして本111!IKよればシクロペンタノールから
高収率、^選択率で耐久性よくシクロペンタノンを製造
することができる。
Thus book 111! According to IK, cyclopentanone can be produced from cyclopentanol in high yield, selectivity, and durability.

以下に実施例をあげて本発明をさらに具体的に説明する
が1本発明は以下のsm例に限定されるものではない。
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples.

なお、実施例中の部及び唾はと(に断わりのないかぎり
重量基準であり、また実施例における生成物の分析はガ
スクロマトグラフィー及び質量分析針を併用して行った
Note that parts and saliva in Examples are based on weight unless otherwise specified, and analysis of products in Examples was performed using a combination of gas chromatography and mass spectrometry needles.

実施例t 10〜20メツシユのシリカゲル(ダビソン社製、ダビ
ソン1しゲル)5001を10暢アンモニア水1500
部と混合し、アスピレータで脱気した後、IJi夜浸漬
する。水洗、乾燥した後、塩化アンミンパラジウム(P
d(MHs )h 107s 115部を水1500部
に溶解した水溶液に1星夜浸漬してイオン交換させる。
Example t 10 to 20 meshes of silica gel (manufactured by Davison Co., Ltd., Davison 1 gel) 5001 was mixed with 10 ml of ammonia water 1500
After degassing with an aspirator, soak in IJi overnight. After washing with water and drying, amminepalladium chloride (P
It was immersed in an aqueous solution in which 115 parts of d(MHs)h 107s was dissolved in 1500 parts of water for 1 star night to perform ion exchange.

水洗、IIi燥後、マツフル炉で!5OOtl’、2時
間焼成処mを行った。この触媒はパラジウム11&を含
む。
After washing with water and drying, use a Matsufuru furnace! A firing process was performed for 5OOtl' for 2 hours. This catalyst contains palladium 11&.

次いで触&10−を内径20■声のステンレス製反応器
内に充填し、触1層編度が250Cとなるようにして水
素還元した後、シクロペンタノールを所定の接触時間と
なるように気相状1で供給し、常圧下に所定の素度で反
応させ活性が一定となった後、生成物の分析を行い、収
*1選択亭を求めた。結果を嬉1表に示す。
Next, a stainless steel reactor with an inner diameter of 20 mm was filled with 10- and 10-20% carbon, and hydrogen reduction was performed so that the 1-layer mesh was 250C, and then cyclopentanol was added to the gas phase for a predetermined contact time. After the activity became constant, the product was analyzed to determine the yield*1 selectivity. The results are shown in Table 1.

gt* 実施例2 実施例1における熱II&運後の触−100部、炭酸ナ
トリウム1s、水150部を混合し減圧脱気した後、1
星複浸漬して蒸発乾固した。
gt* Example 2 After mixing 100 parts of heat II & post-treatment in Example 1, 1 s of sodium carbonate, and 150 parts of water and degassing under reduced pressure, 1
The star was double dipped and evaporated to dryness.

次いでこの触烏1Ω−を内径20端一のステンレス製反
応器内に充填し、水1/A1l1元の代わりにシクロペ
ンタノールを気相状−で供給して予備処理した後、反応
圧力vm御した他は実施例1と同様に反応を行った。そ
のM来、シクロペンタノンの収率と選択率は第2表に示
す通りであった。また実験喬号(2−2)の反応!t1
0日間続けたが活性低下ははとんど見られなかった。
Next, this 1 Ω tube was filled into a stainless steel reactor with an inner diameter of 20 mm, and after pretreatment by supplying cyclopentanol in a gas phase instead of water 1/A 1 l, the reaction pressure was controlled at vm. The reaction was carried out in the same manner as in Example 1 except for the following. Since then, the yield and selectivity of cyclopentanone were as shown in Table 2. Also, the reaction of Experimental Qiaogo (2-2)! t1
Although the treatment was continued for 0 days, no decrease in activity was observed.

第2表 與施eIl五 実施N2と同様にして、酸化処理してプロトン酸点をつ
(つた活性炭に2唾のパラジウムをイオン交換担持した
触ai、vm製した。実施例2と同様に反応な行ったと
ころ、反応開始後5時間目のシクロペンタノン収率およ
び選択率はそれぞれ6α8う、857sであった。
In the same manner as in Table 2, oxidation treatment was carried out to create proton acid sites (2 parts of palladium were supported by ion exchange on activated carbon). As a result, the cyclopentanone yield and selectivity 5 hours after the start of the reaction were 6α8 and 857s, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1シクロペンタノールをパラジウム触部と接触させて脱
水素することを特徴とするシクロペンタノンの製造方法
1. A method for producing cyclopentanone, which comprises dehydrogenating 1-cyclopentanol by contacting it with a palladium catalyst.
JP57032272A 1982-03-03 1982-03-03 Preparation of cyclopentanone Granted JPS58150534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57032272A JPS58150534A (en) 1982-03-03 1982-03-03 Preparation of cyclopentanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57032272A JPS58150534A (en) 1982-03-03 1982-03-03 Preparation of cyclopentanone

Publications (2)

Publication Number Publication Date
JPS58150534A true JPS58150534A (en) 1983-09-07
JPH0152373B2 JPH0152373B2 (en) 1989-11-08

Family

ID=12354349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57032272A Granted JPS58150534A (en) 1982-03-03 1982-03-03 Preparation of cyclopentanone

Country Status (1)

Country Link
JP (1) JPS58150534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084499A (en) * 2005-09-26 2007-04-05 Kobe Univ Method for oxidizing alcohol compounds
CN107935832A (en) * 2017-12-30 2018-04-20 郑州智谷工业技术有限公司 A kind of method using fabricated by dehydrogenating alcohol for aldehyde or hemiacetal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084499A (en) * 2005-09-26 2007-04-05 Kobe Univ Method for oxidizing alcohol compounds
CN107935832A (en) * 2017-12-30 2018-04-20 郑州智谷工业技术有限公司 A kind of method using fabricated by dehydrogenating alcohol for aldehyde or hemiacetal

Also Published As

Publication number Publication date
JPH0152373B2 (en) 1989-11-08

Similar Documents

Publication Publication Date Title
US4094918A (en) Hydroalkylation process using multi-metallic zeolite catalyst
US4083809A (en) Hydrogenation catalyst and method of producing same
Nitta et al. Enantioselective hydrogenation of (E)-α-phenylcinnamic acid over cinchonidine-modified palladium catalysts
US4665274A (en) Method for producing cycloolefins
JP2742091B2 (en) Catalyst compositions, methods for their preparation and methods for hydrogenating chlorofluoroalkenes with these compositions
JP2840085B2 (en) Catalyst compositions, methods for obtaining them, and methods for hydrogenating 1,1,2-trichloro-1,2,2-trifluoroethane using these compositions
JPH069656B2 (en) Supported catalyst for producing hydroxydiphenyl and method for producing the same
RU2119905C1 (en) Method of synthesis of 1,4-butanediol
JP3497202B2 (en) Catalyst and method for selective hydrogenation of unsaturated compounds and method for preparing the catalyst
JPS58150534A (en) Preparation of cyclopentanone
JPH04305541A (en) Method of manufacturing chloroform from carbon tetrachloride and catalyst composition used therefor
US20020019573A1 (en) Process for the preparation of d,l-menthol
US5684207A (en) Preparation of methyl isobutyl ketone
WO2002048077A1 (en) Process for producing adamantane compound
JPH11322738A (en) Hydrogenation of saccharide or saccharide mixture, and synthesis of vitamin c
US4115462A (en) Gas phase aromatic hydrogenation using palladium lithium aluminum spinel catalyst
JPH10204002A (en) Nucleus hydrogenation of substituted aromatic compound
JP3266332B2 (en) Method for producing hydroxydiphenyls
KR100502604B1 (en) Process for preparing 6-aminocapronitrile
JPS59186932A (en) Process for producing cycloolefin
JP2000503979A (en) Method for selective hydrogenation of vinyloxirane to 1,2-butylene oxide with heterogeneous catalyst
JP3046862B2 (en) Method for producing di- (4-aminocyclohexyl) -methane containing 15 to 25% by weight of trans-trans isomer
JPS6140226A (en) Production of cycloolefin
US10717697B2 (en) Method for preparing 1,3-cyclohexanedicarboxylic acid
JPS61189244A (en) Method and catalyst for gas phase isomerizing saturated alkene or cycloalkene oxide to corresponding ketones