JPS58150238A - Sealed electromagnetic relay - Google Patents

Sealed electromagnetic relay

Info

Publication number
JPS58150238A
JPS58150238A JP3240382A JP3240382A JPS58150238A JP S58150238 A JPS58150238 A JP S58150238A JP 3240382 A JP3240382 A JP 3240382A JP 3240382 A JP3240382 A JP 3240382A JP S58150238 A JPS58150238 A JP S58150238A
Authority
JP
Japan
Prior art keywords
movable contact
contact spring
support plate
spring support
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3240382A
Other languages
Japanese (ja)
Inventor
柳本 松生
和彦 岩田
英雄 鈴木
昭夫 落合
岩松 一俊
三上 信男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Hitachi Ltd
Priority to JP3240382A priority Critical patent/JPS58150238A/en
Publication of JPS58150238A publication Critical patent/JPS58150238A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は継電器に対して安定した動作特性を提供する可
動接点ばね支持板を用いた封入形電磁継電器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an encapsulated electromagnetic relay using a movable contact spring support plate that provides stable operating characteristics to the relay.

第1図は一般的な封入形電磁継電器の構成と動作原理を
示した断面図、第2図は第1図に使用される可動接点ば
ね支持板と可動接点ばねを部分的に拡大した斜視図であ
る。
Figure 1 is a sectional view showing the configuration and operating principle of a typical enclosed electromagnetic relay, and Figure 2 is a partially enlarged perspective view of the movable contact spring support plate and movable contact spring used in Figure 1. It is.

第1図、第2図において、1は42%NiFe合金等の
磁性材料からなる可動接点ばね支持板、2は該可動接点
ばね支持板1に溶接固定されている可動接点ばねで、こ
の可動接点ばね2は、第2図に示す通り磁性ばね材料か
ら成るばね部21と、その表面にクラッドされた貴金属
接点部22より一体構成されている。
1 and 2, 1 is a movable contact spring support plate made of a magnetic material such as 42% NiFe alloy, 2 is a movable contact spring fixed by welding to the movable contact spring support plate 1, and this movable contact As shown in FIG. 2, the spring 2 is integrally composed of a spring portion 21 made of a magnetic spring material and a noble metal contact portion 22 clad on the surface thereof.

このような可動接点ばね2をばね溶接部12にて溶接し
た可動接点ばね支持板1は、継電器筐体の母体となる4
2%NiFe合金等の磁性材料から成る金属基板4にガ
ラス5により気密封止(ガラスハーメチックシール)さ
れた金属端子6′に浴接固定される。また可動接点ばね
2の貴金属接点部22が対向した位置にある金属端子乙
には固定接点3が溶接され接点対向の位置を成す。7は
封止カバーで、金属基板4に溶接されスイッチ内部の気
密性を保って(・る。8は鉄心9は鉄心8を磁化するた
めの駆動用コイル、10はスイッチがはんだ付は塔載さ
れる鉄心プリント板を示している。
A movable contact spring support plate 1 obtained by welding such a movable contact spring 2 at a spring welding part 12 is made of a movable contact spring support plate 1 which is a base body of a relay casing.
A metal terminal 6' which is hermetically sealed with glass 5 (glass hermetic seal) is fixed to a metal substrate 4 made of a magnetic material such as a 2% NiFe alloy by bath welding. Further, a fixed contact 3 is welded to a metal terminal B, which is located at a position opposite to the precious metal contact portion 22 of the movable contact spring 2, and forms a position opposite to the contact. 7 is a sealing cover, which is welded to the metal substrate 4 to maintain airtightness inside the switch. The iron core printed board is shown.

いま駆動用コイル9を励磁することにより鉄心8は磁化
され、第1図(ロ)に示す如き磁束11が鉄心8→固定
接点6→可動接点ばね2→可可動点ばね支持板1→鉄心
8→鉄心プリント板10→鉄心8と磁気閉ループを形成
する。可動接点ばね2は、固定接点3と可動接点ばね支
持板1との空隙に磁束11が作る吸引力により、第2図
(ロ)に示す様にばね溶接部12を固定端として固定接
点3側に十進運動を行い、固定接点6と接触を成しスイ
ッチング回路を作る。この場合鉄心8は信号用端子とし
て機能する。
Now, by exciting the driving coil 9, the iron core 8 is magnetized, and the magnetic flux 11 as shown in FIG. → Iron core printed board 10 → Iron core 8 to form a magnetic closed loop. Due to the attractive force created by the magnetic flux 11 in the gap between the fixed contact 3 and the movable contact spring support plate 1, the movable contact spring 2 is moved toward the fixed contact 3 side with the spring weld 12 as the fixed end, as shown in FIG. 2 (b). It performs a decimal motion and makes contact with the fixed contact 6 to form a switching circuit. In this case, the iron core 8 functions as a signal terminal.

以上述べた様に封入形電磁継電器においては個々の構成
部品がそれぞれ磁性材料から成り、またそれぞれが磁気
回路として機能するため、可動接点ばね支持板1とこれ
に密着溶接されている可動接点ばね2が、可動接点ばね
2のもつ残留磁束により可動接点ばね支持板1をヨーク
あるいは保磁子とした様な状態となり、第6図13に示
す様なマイナー磁気ループを形成する。
As mentioned above, in an encapsulated electromagnetic relay, each component is made of magnetic material and each functions as a magnetic circuit, so the movable contact spring support plate 1 and the movable contact spring 2 closely welded thereto However, due to the residual magnetic flux of the movable contact spring 2, the movable contact spring support plate 1 becomes like a yoke or a retainer, forming a minor magnetic loop as shown in FIG. 6 and 13.

これによりメイン磁束11が作る吸引力F14に逆向き
の吸引力f15が生じる。逆吸引力fの大きさは、可動
接点ばね2の持つ残留磁気の大きさその形状、可動接点
ばね支持板1との密着度。
This generates an attractive force f15 in the opposite direction to the attractive force F14 produced by the main magnetic flux 11. The magnitude of the reverse attraction force f depends on the magnitude of the residual magnetism of the movable contact spring 2, its shape, and the degree of contact with the movable contact spring support plate 1.

接触位置等により左右されるが、磁化の集中する可動接
点ばね接触部端部と可動接点ばね支持板の密着度が増し
た場合、通常固定接点6に対して十進運動する可動接点
ばね2が斜め動作となり、ばねの動作特性を極めて不安
定なものにするばかりでなく、更にはスイッチ機能を損
う程即ち可動接点ばね2が不動作になる程大きな逆吸引
力fを発生することがある。
Although it depends on the contact position, etc., when the degree of closeness between the end of the movable contact spring contact part where magnetization is concentrated and the movable contact spring support plate increases, the movable contact spring 2, which normally moves in decimal order with respect to the fixed contact 6, This results in diagonal operation, which not only makes the operating characteristics of the spring extremely unstable, but also generates a reverse attraction force f that is so large that it impairs the switch function, that is, the movable contact spring 2 becomes inoperable. .

本発明の目的はこれらの現象を解消し、安定したスイッ
チ動作を行わせしめる可動接点ばね支持板を備えた封入
形電磁継電器を提供することにある。
An object of the present invention is to provide an enclosed electromagnetic relay equipped with a movable contact spring support plate that eliminates these phenomena and allows stable switch operation.

前述の逆吸引力fを無くすには、可動接点ばね支持板1
を非磁性体化し、可動接点ばね2の残留磁気の作る磁気
ループを断ち切れば良いがこの場合は継電器全体の磁気
回路を劣化させるため駆動電力を大幅に改善しなければ
ならないまた可動接点ばね支持板1にめっき加工工程を
追加し、銅等の非磁性金属をめっきすることにより動作
の安定を図る方法もあるが、可動接点ばね支持板1の形
状が極めてめっき作業の難しいものである事と、均一な
厚さのめっきを施こす工法が特殊な為経済的に不利であ
る。
In order to eliminate the above-mentioned reverse attraction force f, the movable contact spring support plate 1
It would be better to make the movable contact spring 2 a non-magnetic material and break the magnetic loop created by the residual magnetism of the movable contact spring 2, but in this case, the magnetic circuit of the entire relay would deteriorate, so the driving power would have to be significantly improved.Also, the movable contact spring support plate There is a method of adding a plating process to 1 and plating with non-magnetic metal such as copper to stabilize the operation, but the shape of the movable contact spring support plate 1 is extremely difficult to plate. It is economically disadvantageous because the method of applying plating to a uniform thickness is special.

本発明においては、安定した動作特性を持つ継電器を得
る為に、磁性材料からなる可動接点ばね支持板の母材の
両面に、非磁性金属材料をクラッドしたことを特徴とす
る。
In order to obtain a relay with stable operating characteristics, the present invention is characterized in that both sides of the base material of the movable contact spring support plate made of a magnetic material are clad with a non-magnetic metal material.

第4図は本発明の一実施例を示したものである。可動接
点ばね支持板16は、42%NiFe合金等の磁性材料
170両面に、耐食性に富んだ非磁性の金属材料18例
えば非磁性ステンレス銅板、?W、? 304等をクラ
ッドした金属材料を用いて得られる。
FIG. 4 shows an embodiment of the present invention. The movable contact spring support plate 16 has a magnetic material 170 such as a 42% NiFe alloy on both sides, and a non-magnetic metal material 18 with high corrosion resistance, such as a non-magnetic stainless steel copper plate, etc. W-? It can be obtained using a metal material clad with 304 or the like.

ここでクラッド材料として耐食性に秀れた材料を選定し
たのは、部品加工から組立までの中間工程仕掛りが長期
に亘る場合、特に梅雨期には従来使用している可成り耐
食性の良い42%N1Ft合金に於いても、その表面に
微細な錆を生じる事があり、これを防ぐためである。こ
の場合可4 ・ 動接点ばね支持板16は完全な防錆効果が得られる。
The reason why we selected a material with excellent corrosion resistance as the cladding material is that when the intermediate process from parts processing to assembly lasts for a long time, especially during the rainy season, we selected a material with excellent corrosion resistance, which is 42%, which is conventionally used. This is to prevent fine rust from forming on the surface of N1Ft alloy as well. In this case, OK 4 - The moving contact spring support plate 16 has a complete rust prevention effect.

また両面にクラッドした理由は、母材とクラッド材料と
の熱膨張係数差などにより生じる可動接点ばね支持板の
そり等を緩和することにある。
The reason for cladding on both sides is to alleviate warping of the movable contact spring support plate caused by the difference in coefficient of thermal expansion between the base material and the cladding material.

第5図は封入形電磁継電器の接点空隙Xgと感動電流値
比(実測値/規格値)の関係を表わしたものである。白
抜きの打点が従来品の実測値で、破線Aがその回帰直線
を示している。また黒点の打点が本発明による継電器の
電流値実測値で実線Bが、その回帰直線である。第5図
に示すとおり、従来品の場合可動接点ばね2と可動接点
ばね支持板10間に生じる逆吸引力の影響で、感動電流
値の変化が接点空隙Xgの変化に対して非常に敏感であ
り、かつ特定の接点空隙をとらえて見た場合電流値のば
らつきが大きい。
FIG. 5 shows the relationship between the contact gap Xg and the sensing current value ratio (actual value/standard value) of the enclosed electromagnetic relay. The white dots are actual measured values for the conventional product, and the broken line A shows the regression line. Further, the black dots are actual measured current values of the relay according to the present invention, and the solid line B is its regression line. As shown in Fig. 5, in the case of the conventional product, changes in the moving current value are extremely sensitive to changes in the contact gap Xg due to the influence of the reverse attraction force generated between the movable contact spring 2 and the movable contact spring support plate 10. There is a large variation in the current value when looking at a specific contact gap.

このため継電器製造の段階で接点空隙の大きさを厳しく
管理する必要があり、接点空隙を構成する部品個個の製
造公差を狭い管理中で厳しく押えることが必要であった
。しかもこの様に厳しく管理した接点空隙ですら、電流
値特性の歩留りが極めて悪化するものが発生する欠点を
持っていた。
For this reason, it is necessary to strictly control the size of the contact gap at the stage of manufacturing the relay, and it is necessary to strictly control the manufacturing tolerances of the individual components that make up the contact gap. Moreover, even with such a strictly controlled contact gap, there is a drawback that the yield of current value characteristics is extremely poor.

本発明から成る可動接点ばね支持板16を用いた継電器
の場合、非磁性クラッド材料の効果により従来品の欠点
の原因である逆数引力の発生を解消しているため、従来
品の回帰直線Aに比べ生産性の向上した回帰直線Bとな
っている。
In the case of the relay using the movable contact spring support plate 16 of the present invention, the effect of the non-magnetic cladding material eliminates the generation of reciprocal attraction, which is the cause of the drawback of the conventional product, so that the regression line A of the conventional product In comparison, regression line B shows improved productivity.

すなわち感動電流値の変化が、接点空隙の変化に対して
鈍化しており、かつ回帰直線Bに対するばらつきが少な
くなっている事により、従来品に比べ接点空隙の管理幅
を約1.5倍にすることができる。従って電流値規格を
満足する接点空隙を従来の設定値の約1.5倍の公差で
設定することができ、各部品に配分していた厳しい製造
公差を量産に適したレベルまで拡大することが可能とな
った。なお逆数引力の解消により従来あった可動接点ば
ねの斜め動作が無くなり、可動接点ばねの極めて長いチ
ャツタリングによる時間値特性の不安定要因を一掃し、
時間値特性の安定したスイッチを得ることができる。
In other words, the change in the sensing current value is slower than the change in the contact gap, and the variation with respect to the regression line B is reduced, making the control width of the contact gap approximately 1.5 times that of conventional products. can do. Therefore, it is possible to set the contact gap that satisfies the current value standard with a tolerance approximately 1.5 times the conventional setting value, and the strict manufacturing tolerances allocated to each component can be expanded to a level suitable for mass production. It has become possible. Furthermore, by eliminating the reciprocal attraction force, the diagonal movement of the movable contact spring that existed in the past is eliminated, and the cause of instability in the time value characteristics due to the extremely long chatter of the movable contact spring is eliminated.
A switch with stable time value characteristics can be obtained.

以上説明した様に、本発明による磁性材料母材に非磁性
材料を両面クラッドした金属材料より製造した可動接点
ばね支持板を用いた継電器は、接点空隙を構成する各部
品の公差を拡大でき、しかも安定した電流値、動作特性
を有する。
As explained above, the relay using the movable contact spring support plate manufactured from a metal material in which a magnetic material base material is clad on both sides with a non-magnetic material according to the present invention can expand the tolerance of each component constituting the contact gap. Furthermore, it has stable current values and operating characteristics.

すなわち経済的に秀れた封入形電磁継電器が得られる。In other words, an economically superior encapsulated electromagnetic relay can be obtained.

第6図(イ)、(ロ)は本発明の応用例からなる複数個
の接点を封入した継電器の斜視図及び分解斜視図であり
、可動接点ばね支持板19のそり、電流値のばらつきを
規正する目的に対し両面クラツド材を用いた可動接点ば
ね支持板が特に有効である。
6(a) and 6(b) are a perspective view and an exploded perspective view of a relay encapsulating a plurality of contacts, which is an application example of the present invention. A movable contact spring support plate made of double-sided clad material is particularly effective for regulating purposes.

また耐食性に富んだ可動接点ばね支持板を有した継電器
が得られ、めっき等の防錆加工を施こす必要がない。
In addition, a relay having a movable contact spring support plate with high corrosion resistance can be obtained, and there is no need for anti-rust treatment such as plating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な封入形電磁継電器の断面図7 。 第2図は第1図の継電器に使用されている可動接点ばね
支持板と可動接点ばね部の拡大図、第6図は可動接点ば
ね支持板と可動接点ばね間に発生する逆数引力の説明図
、第4図は本発明の一実施例の要部断面図、第5図は封
入形電磁継電器の接点空隙と電流値との関係図、第6図
は本発明の応用例の多接点を封入した継電器の斜視図で
ある。 2:可動接点ばね 6:固定接点 1(S、19 :可動接点ばね支持板 17:支持板母材 1日:支持板クラツド材 代理人弁理士 薄 1)利1.ミ幸 筋1図 (イ)              (ロ)11 蛇 2 図 (A)             (ロ)第 3 図 (イ)                (ロ)第4 
図 第 5 図 橙点空降 X悸、ゆっ 第6 図 第1頁の続き 0発 明 者 三上信男 東京都港区芝五丁目33番1号日 本電気株式会社内 ■出 願 人 日本電信電話公社 ■出 願 人 日本電気株式会社 東京都港区芝五丁目33番1号
Figure 1 is a cross-sectional view 7 of a typical enclosed electromagnetic relay. Figure 2 is an enlarged view of the movable contact spring support plate and movable contact spring part used in the relay shown in Figure 1, and Figure 6 is an explanatory diagram of the reciprocal attractive force generated between the movable contact spring support plate and the movable contact spring. , FIG. 4 is a cross-sectional view of a main part of an embodiment of the present invention, FIG. 5 is a diagram of the relationship between the contact gap and current value of an encapsulated electromagnetic relay, and FIG. 6 is an encapsulated multi-contact example of an application of the present invention. FIG. 2: Movable contact spring 6: Fixed contact 1 (S, 19: Movable contact spring support plate 17: Support plate base material 1st: Support plate clad material Patent attorney Sui 1) Interest 1. Miyukisuji Figure 1 (A) (B) 11 Snake 2 Figure (A) (B) Figure 3 (A) (B) Figure 4
Figure 5 Orange point falling in the sky ■Applicant NEC Corporation 5-33-1 Shiba, Minato-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 磁性材料から成る可動接点ばね支持板に溶接固定された
可動接点ばねを固定接点に対向させるとともに、それら
を筐体内に封入した封入形電磁継電器において、前記可
動接点ばね支持板は、磁性材料を母材とし、これに耐食
性に富んだ非磁性金属材料を両面にクラッドして構成さ
れたことを特徴とする封入形電磁継電器。
In an enclosed type electromagnetic relay in which a movable contact spring welded and fixed to a movable contact spring support plate made of a magnetic material faces a fixed contact and is enclosed in a housing, the movable contact spring support plate is made of a magnetic material as a base. An encapsulated electromagnetic relay characterized in that it is constructed by cladding a non-magnetic metal material with high corrosion resistance on both sides.
JP3240382A 1982-03-03 1982-03-03 Sealed electromagnetic relay Pending JPS58150238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3240382A JPS58150238A (en) 1982-03-03 1982-03-03 Sealed electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3240382A JPS58150238A (en) 1982-03-03 1982-03-03 Sealed electromagnetic relay

Publications (1)

Publication Number Publication Date
JPS58150238A true JPS58150238A (en) 1983-09-06

Family

ID=12357984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3240382A Pending JPS58150238A (en) 1982-03-03 1982-03-03 Sealed electromagnetic relay

Country Status (1)

Country Link
JP (1) JPS58150238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127891A (en) * 2011-12-19 2013-06-27 Panasonic Corp Electromagnetic relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127891A (en) * 2011-12-19 2013-06-27 Panasonic Corp Electromagnetic relay

Similar Documents

Publication Publication Date Title
US3205323A (en) Magnetic reed proximity switch
JPH0373976B2 (en)
JPS58150238A (en) Sealed electromagnetic relay
US4366459A (en) Miniature magnetic latch relay
US3196232A (en) Reed relay
US2764647A (en) Magnetostrictive relay
JPS58150237A (en) Sealed electromagnetic relay
US3716810A (en) Reed switch
US5243313A (en) Tractive magnet with asymmetric permanent air gap
US3125650A (en) Sealed reed switch
US5049844A (en) Enclosed electromagnetic relay
JPS587577Y2 (en) Multi-contact sealed switch
JPH11191352A (en) Electromagnet
US3118987A (en) Electromagnetic bistable relay
US2834846A (en) Relay switch
JP4059203B2 (en) Micro relay
GB1468978A (en) Electromagnetic relays
US3497840A (en) Magnetically operated relay switches
US3166653A (en) Polarized magnetic switch mechanism
GB1564637A (en) Sealed polarised electromechanical relay
JPS5810340A (en) Relay
JPS61127105A (en) Electromagnet device
JPH05174691A (en) Seesaw balance type polarized relay
JPH0614410Y2 (en) electromagnetic switch
JPS61167368A (en) Linear dc motor