JPS5814990A - Generator for ionized water - Google Patents

Generator for ionized water

Info

Publication number
JPS5814990A
JPS5814990A JP11036381A JP11036381A JPS5814990A JP S5814990 A JPS5814990 A JP S5814990A JP 11036381 A JP11036381 A JP 11036381A JP 11036381 A JP11036381 A JP 11036381A JP S5814990 A JPS5814990 A JP S5814990A
Authority
JP
Japan
Prior art keywords
water
electrodes
electricity
current
tap water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11036381A
Other languages
Japanese (ja)
Inventor
Yasuko Taniguchi
谷口 靖子
Shigeki Nakayama
繁樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11036381A priority Critical patent/JPS5814990A/en
Publication of JPS5814990A publication Critical patent/JPS5814990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To obtain drinking water having substantially stabilized pH, by controllng a current-applying period on the basis of an applied electricity quantity, when tap water and a trace amount of an electrolyte dissolved in it are treated by electrolysis, electrophoresis or the like to produce ionized water. CONSTITUTION:The interior of an electrolytic reaction cell 1 as an outer vessel made of an electric unconductive material is divided into compartments by an ion-permeable membrane 2, and each of the compartments is provided with an anode 3a and a cathode 3b. The cell 1 is filled with tap water 4, and DC voltage is charged between the electrodes 3 through the rectifying circuit 11 of a current-applying controller 5 or the like. At this time, an ammeter 12 indicates a current value in response to the capacity of the cell 1, the membrane 2, the material, surface area and distance of the electrodes and the electric conductivity of the water 4, so that a change-over switch 10 is selected while watching the indication in a manner such that the indication is set at a desired level. On the other hand, an electric current between the electrodes, whose intensity is determined by the quality and temperature-change of the water 4, is integrated by an electricity integrator 14 and detected. When a fixed quantity of electricity is detected, a signal is outputted to release the switch 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水道水及びそこに溶存する微量電解質する。 水道水の水源となる河川湖水は地殻の主成分である珪素
、ナトリウム、カリウム、アルミニウム、マグネシウム
、鉄等の金属イオンを含有する。 これら金属イオンは数ppm−数+ppmの含有量であ
り、生物に好適なミネラル水の源となっている。 一方、水道水には上記ミネラル水とは異なり、濾過のみ
では殺菌が不充分であり、しかも万一配水管が汚染され
た場合でも安全でなければならないので、持続性の殺菌
力のある塩素が消毒剤として注入されている。この量は
、水道法施行規則におい
The present invention relates to tap water and trace electrolytes dissolved therein. River and lake water, which is the source of tap water, contains metal ions such as silicon, sodium, potassium, aluminum, magnesium, and iron, which are the main components of the earth's crust. These metal ions have a content of several ppm - several + ppm, and are a source of mineral water suitable for living organisms. On the other hand, unlike the above-mentioned mineral water, tap water is not sterilized by filtration alone, and it must be safe even if the water pipes become contaminated, so chlorine, which has a long-lasting sterilizing effect, is used. Injected as a disinfectant. This amount is specified in the Water Supply Law Enforcement Regulations.

【、配水管床での残留塩素量は
遊離形では0.1pprpt以上、結合形では0.4 
p pnL以上とするよう定められている。しかし、こ
の殺菌力のある塩素は水の味覚を損なうのみならず、発
ガン物質のおそ】れのあるトリハロメタン等塩素結合物
を生成するため、できるかぎり塩素を除去することが望
ましい。 このため、従来塩素の除去方法として、飲料前の水道水
に脱遊離塩素、脱カルキを行なって飲料水の質的向上を
はかる家庭用浄水器が普及したが、この家庭用浄水器は
活性炭濾過床等を水道水蛇口に取付ける構成であり、常
時湿潤な状態に保持される方法であるから、細菌の温床
となる不都合がある。 また、別のi去方法として、微孔性隔膜で電解槽を画成
して、フェライトからなる陽極とステンレス鋼からなる
陰極とを電解槽中に浸し、これら電極に直流電圧を印加
する装置が提案された。この装置は電極間に直流電界を
形成して陰極側にナトリウム、カリウム、カルシウム等
の金属イオンを集める一方、陽極側に塩素イオン、重炭
酸イオン等の陰イオンを集め、陰極側の電解槽中を水の
電解で生じた水酸イオン、金属イオンが多く陰イオンの
少ないアルカリ性のミネラル水としていた。 しかし、この従来装置は、各寂庭であらかじめPH試験
紙などでPHが最適となる必要電解時間を求めてタイマ
スイッチによりその電解時間に制御するのが一般的であ
った。しかし、このような電解時間制御方法では水道水
の水質或いは温度が変動すると、前記必要電解時間も変
動するため前記タイマスイッチによる固定された電解時
間との差に応じて処理された水のPHが低すぎたり高す
ぎたりすることがあり、飲料水としては不適となるおそ
れがあった。 本発明は上記の点に鑑みてなされたもので、通電電気量
に応じて電極間に印加する直流電圧の通電時間を制御す
ることにより、はぼ安定したPHの飲料水を提供するも
のである。 以下本発明の一賽施例を第1図と第2図に基づいて説−
する。 図において、1は非導電材料よりなる外容器としての電
解反応槽、2は電解反応槽1内を2槽1a、lbに画成
するイオン透過性の隔膜、3aは槽1aに配設されたフ
ェライトからなる陽電極、3bは槽1bに配設されたス
テンレス鋼からなる陰電極、4は!解文応槽1内に注入
された水道水、5は陽電極3aと陰電極3bとの間に印
加される直流電圧を通電電気量に応じて制御する通電制
御装置、6はコネクタ、7は主スィッチ、8は表示ラン
プ、9はトランス、10は陽電極3aと陰電極3bとの
間に印加される直流電圧を調節する切換スイッチ、11
はダイオードブリッジからなる整流回路、12は陽電極
3a及び陰電極3bを流れる電流を検出する電流計、1
3は表示ランプ、14は陽電極3a及び陰電極3bを流
れる電流を積分して通電電気量を検出する電気量積分器
、15は電気量積分器14が所定の電気量を検出した時
信号を受けて開放するスイッチである。 かかる構成では、まず電解反応槽1に水道水をみたし、
交流電源にコネクタ6を接続する。そして、主スィッチ
7を閉成するとトランス9が励磁されるとともに表示ラ
ンプ8が点灯する。トランス9が励磁されると、切換ス
イッチ100選定位置に応じた尖頭値の電圧がトランス
9の二次側に誘起される。この誘起された電圧はスイッ
チ15の閉成により整流回路11に入力されて直流電圧
となり、電流計12.電気量積分器14を介して陽電極
3aと陰電極3bとの間に印加される。尚、陽電極3a
と陰電極3bとの間に電圧が印加された時、電解反応槽
1の容量、隔膜2.電極材、電極面積、電極間距離、水
道水の導電度に応じた電流値を電流計12が示すので、
この電流計12を見ながら所望電流値となるよう切換ス
イッチ1゜を選定すればよい。一方、水道水の水質及び
温度変化に応じて変動する導電度等によりその強さが決
まって陽・陰電極3a、3b間を流れる電流は電気量積
分器14内で積分され、通電電気量がこの積分により検
出される。この電気量積分器14は所定の電気量、即ち
第2図に示したように通電電気量とPHとを各種条件の
基で測定して得られた関係曲線から得られる所定のPH
値に対応する通電電気量を検出すると信号を出方し、ス
イッチ15を開放する。このスイッチ15の開放により
、トランス9の二次側に誘起される電圧は整流回路11
に供給塔れないので、陽・陰電極3a、3b間に直流電
圧が印加されず、もって電解処理が停止する。従って、
この停止時には、陽働陰電極3a、3bに所定の電気量
が流れているので、第2図から理解されるように水道水
の水質及び温度の変動にかかわらず、陰電極3b側の槽
lb内を所定のPH値とすることができる。 参考のために、第2図の測定して得られた電気量とPH
値との、関係を説明すると、陽・陰電極3a、3b部で
生じた水酸イオン及び水素イオンが夫々隔膜2を通って
他極へ移動するため並びに抵抗による熱損失及び他のイ
オン種の電極反応の併発等により理論と比較して約5〜
6倍の電気量を必要とし、例えば陰電極3bの容量がl
!とすると50〜60クーロン、2Jの場合では100
〜120クーロンの電気量を要す。 尚、上記実施例では、電気量積分器14により開閉制御
されるスイッチ15をトランス9の二次側に介装したが
、−次側でも良いこと明らかであり、このようにすれば
、トランス9の熱損失を防ぐことができ、省エネルギに
有効となる。 以上説明したように本発明によれば、陽−陰電極間に印
加される直流電圧を、たとえ水道水の水質及び温度が変
動したとしてもその変動に応じて水道水の導電度が変わ
りこれに応じて変化する電極間を流れる通電電気量によ
り制御するようにしたので、水道水の水質及び温度の変
動にほばよらず一定したPH値のイオン水を得ることが
でき、更に電解時間の過多による電力の浪費も防止でき
・る。
[The amount of residual chlorine on the floor of the water pipe is 0.1 pprpt or more in the free form and 0.4 pprpt in the combined form.
p pnL or more. However, this sterilizing chlorine not only impairs the taste of the water, but also produces chlorine compounds such as trihalomethane, which may be a carcinogen, so it is desirable to remove chlorine as much as possible. For this reason, as a conventional method for removing chlorine, household water purifiers have become popular, which improve the quality of drinking water by removing chlorine and descaling tap water before drinking it. Since the floor etc. are attached to a tap water faucet and kept in a constantly moist state, there is an inconvenience that it becomes a breeding ground for bacteria. In addition, as another method, an electrolytic cell is defined by a microporous diaphragm, an anode made of ferrite and a cathode made of stainless steel are immersed in the electrolytic cell, and a DC voltage is applied to these electrodes. was suggested. This device creates a DC electric field between electrodes to collect metal ions such as sodium, potassium, and calcium on the cathode side, while collecting anions such as chloride ions and bicarbonate ions on the anode side, and collects anions such as chlorine ions and bicarbonate ions in the electrolytic cell on the cathode side. It was an alkaline mineral water with a lot of hydroxide ions and metal ions produced by electrolysis of water and few anions. However, in this conventional device, it was common to determine in advance the necessary electrolysis time at which the pH would be optimum using a pH test paper or the like in each small garden, and then control the electrolysis time to that time using a timer switch. However, in such an electrolysis time control method, when the quality or temperature of tap water changes, the required electrolysis time also changes, so the PH of the treated water changes depending on the difference from the electrolysis time fixed by the timer switch. The water may be too low or too high, making it unsuitable for drinking. The present invention has been made in view of the above points, and provides drinking water with an extremely stable pH by controlling the energization time of the DC voltage applied between the electrodes according to the amount of electricity supplied. . An embodiment of the present invention will be explained below based on FIGS. 1 and 2.
do. In the figure, 1 is an electrolytic reaction tank as an outer container made of a non-conductive material, 2 is an ion-permeable diaphragm that divides the inside of the electrolytic reaction tank 1 into two tanks 1a and lb, and 3a is arranged in tank 1a. A positive electrode made of ferrite, 3b a negative electrode made of stainless steel disposed in the tank 1b, and 4! Tap water injected into the reaction tank 1, 5 is an energization control device that controls the DC voltage applied between the positive electrode 3a and the negative electrode 3b according to the amount of electricity, 6 is a connector, and 7 is a main switch. , 8 is a display lamp, 9 is a transformer, 10 is a changeover switch that adjusts the DC voltage applied between the positive electrode 3a and the negative electrode 3b, and 11
1 is a rectifier circuit consisting of a diode bridge; 12 is an ammeter for detecting the current flowing through the positive electrode 3a and the negative electrode 3b;
3 is an indicator lamp; 14 is an electric quantity integrator that integrates the current flowing through the positive electrode 3a and the negative electrode 3b to detect the amount of electricity flowing; and 15 is an electric quantity integrator that outputs a signal when the electric quantity integrator 14 detects a predetermined quantity of electricity. It is a switch that opens when the signal is received. In this configuration, first, the electrolytic reaction tank 1 is filled with tap water,
Connect connector 6 to an AC power source. When the main switch 7 is closed, the transformer 9 is excited and the indicator lamp 8 is turned on. When the transformer 9 is excited, a voltage with a peak value corresponding to the selected position of the changeover switch 100 is induced on the secondary side of the transformer 9. This induced voltage is input to the rectifier circuit 11 by closing the switch 15 and becomes a DC voltage, and the ammeter 12. It is applied via the electrical quantity integrator 14 between the positive electrode 3a and the negative electrode 3b. In addition, the positive electrode 3a
and the negative electrode 3b, the capacity of the electrolytic reaction tank 1, the diaphragm 2. Since the ammeter 12 indicates the current value according to the electrode material, electrode area, distance between electrodes, and conductivity of tap water,
It is only necessary to select the changeover switch 1° while checking the ammeter 12 so as to obtain the desired current value. On the other hand, the current flowing between the positive and negative electrodes 3a and 3b, whose strength is determined by the conductivity, etc., which fluctuates depending on the quality of tap water and temperature changes, is integrated in the electricity quantity integrator 14, and the quantity of electricity flowing is determined by the electricity quantity integrator 14. It is detected by this integration. This electric quantity integrator 14 is used to measure a predetermined electric quantity, that is, a predetermined PH obtained from a relationship curve obtained by measuring the energized electric quantity and PH under various conditions as shown in FIG.
When the amount of energized electricity corresponding to the value is detected, a signal is output and the switch 15 is opened. By opening this switch 15, the voltage induced on the secondary side of the transformer 9 is transferred to the rectifier circuit 11.
Therefore, no DC voltage is applied between the positive and negative electrodes 3a and 3b, thereby stopping the electrolytic treatment. Therefore,
During this stop, a predetermined amount of electricity is flowing through the positive and negative electrodes 3a and 3b, so as can be understood from FIG. The value within can be set as a predetermined PH value. For reference, the amount of electricity and PH obtained by measurement in Figure 2 are shown.
To explain the relationship with the value, the hydroxide ions and hydrogen ions generated at the positive and negative electrodes 3a and 3b move to the other electrode through the diaphragm 2, and heat loss due to resistance and other ion species occur. Approximately 5~ compared to theory due to concurrent electrode reactions, etc.
6 times as much electricity is required, for example, if the capacity of the cathode 3b is 1
! In this case, it is 50 to 60 coulombs, and in the case of 2J it is 100
~120 coulombs of electricity are required. In the above embodiment, the switch 15, which is controlled to open and close by the electric quantity integrator 14, is installed on the secondary side of the transformer 9, but it is obvious that it can also be placed on the negative side. heat loss can be prevented, making it effective for energy saving. As explained above, according to the present invention, even if the quality and temperature of the tap water fluctuates, the conductivity of the tap water changes depending on the fluctuation of the DC voltage applied between the positive and negative electrodes. Since it is controlled by the amount of electricity flowing between the electrodes, which changes according to the amount of electricity flowing between the electrodes, it is possible to obtain ionized water with a constant pH value regardless of fluctuations in the quality and temperature of tap water. It also prevents wastage of electricity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるイオン水生成器の概略
構成図、第2図は各種条件を変えて測定されたPHと電
気量との関係曲線を示す図である。 l−・・電解反応槽  2・・・隔膜  3a・・・陽
電極3b・・・陰電極  4・・・水道水  5・・・
通電制御装置  11・・・整流回路  14・−・電
気量積分器代理人 葛 野 信 −(ほか1名ン
FIG. 1 is a schematic diagram of an ionized water generator according to an embodiment of the present invention, and FIG. 2 is a diagram showing a relationship curve between PH and quantity of electricity measured under various conditions. l-... Electrolytic reaction tank 2... Diaphragm 3a... Positive electrode 3b... Negative electrode 4... Tap water 5...
Energization control device 11... Rectifier circuit 14... Electricity integrator representative Shin Kuzuno - (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 非導電材料よりなる外容器内にイオン透過性の隔膜を配
設して該外容器内を画成し、との画成により形成された
複数槽の少なくとも2つに電極を配設するとともにこれ
ら電極間に通電電気量に応じて直流電圧を印加する時間
を制御する通電制御装置を設けたことを特徴とするイオ
ン水生成器。
An ion-permeable diaphragm is provided in an outer container made of a non-conductive material to define the inside of the outer container, and electrodes are provided in at least two of the plurality of tanks formed by the definition. An ionized water generator characterized by being provided with an energization control device that controls the time during which a DC voltage is applied between electrodes according to the amount of electricity supplied.
JP11036381A 1981-07-15 1981-07-15 Generator for ionized water Pending JPS5814990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11036381A JPS5814990A (en) 1981-07-15 1981-07-15 Generator for ionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11036381A JPS5814990A (en) 1981-07-15 1981-07-15 Generator for ionized water

Publications (1)

Publication Number Publication Date
JPS5814990A true JPS5814990A (en) 1983-01-28

Family

ID=14533883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11036381A Pending JPS5814990A (en) 1981-07-15 1981-07-15 Generator for ionized water

Country Status (1)

Country Link
JP (1) JPS5814990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189871U (en) * 1983-06-03 1984-12-17 岡崎 龍夫 water electrolyzer
JPH01192962A (en) * 1988-01-28 1989-08-03 Akosuta Richard Drive-in service trade shop
JPH01163494U (en) * 1988-02-15 1989-11-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189871U (en) * 1983-06-03 1984-12-17 岡崎 龍夫 water electrolyzer
JPH01192962A (en) * 1988-01-28 1989-08-03 Akosuta Richard Drive-in service trade shop
JPH01163494U (en) * 1988-02-15 1989-11-14
JPH055999Y2 (en) * 1988-02-15 1993-02-16

Similar Documents

Publication Publication Date Title
CN100574842C (en) The method of determining the replaceable cartridge exhaustion situation of filter kettle reaches the kettle of method operation according to this
EP0537528A1 (en) Controlling apparatus for continuous electrolytic ion water producing apparatus
US6168692B1 (en) Apparatus for generating alkali ion water
JP2005105289A (en) Hydrogen water feeder
US6235188B1 (en) Water pollution evaluating system with electrolyzer
JPS5814990A (en) Generator for ionized water
US5133848A (en) On-site oxidant generator
EP2569254A1 (en) Device for producing an electrochemically activated solution by means of an electrolysis process
JP2006167706A (en) Ion water generator
JPS5811092A (en) Ion water producer
JPH0852476A (en) Superoxidized water forming device
JPH06238281A (en) Sterilization system for water tank
JPH10192855A (en) Electrolytic water making apparatus
JP3648867B2 (en) Alkaline ion water conditioner
JP3440674B2 (en) Ion water generator
EP1086049A1 (en) Apparatus and method for the production of disinfectant
JP4806951B2 (en) Ionized water generator
JP3329872B2 (en) Control device for continuous electrolyzed water generator
JPH04284890A (en) Continuous electrolytic ionic water producing apparatus
CN205473996U (en) Anticorrosive device of adjustable water pitcher
SU1026732A1 (en) Apparatus for growing fish
JPS6014085Y2 (en) steam generator
SU842036A1 (en) Method of automatic control of waste water electrochemical purification process
JPH0580587U (en) Ion water generator with pH control function
JPH0790224B2 (en) Electrolytic ionized water generator