JPS5814972B2 - Fluid pressure detection element and valve device using it - Google Patents

Fluid pressure detection element and valve device using it

Info

Publication number
JPS5814972B2
JPS5814972B2 JP52109932A JP10993277A JPS5814972B2 JP S5814972 B2 JPS5814972 B2 JP S5814972B2 JP 52109932 A JP52109932 A JP 52109932A JP 10993277 A JP10993277 A JP 10993277A JP S5814972 B2 JPS5814972 B2 JP S5814972B2
Authority
JP
Japan
Prior art keywords
magnet
cylindrical magnet
fluid pressure
diaphragm
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52109932A
Other languages
Japanese (ja)
Other versions
JPS5443784A (en
Inventor
菅野栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAINAMI BOEKI KK
Original Assignee
MAINAMI BOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAINAMI BOEKI KK filed Critical MAINAMI BOEKI KK
Priority to JP52109932A priority Critical patent/JPS5814972B2/en
Publication of JPS5443784A publication Critical patent/JPS5443784A/en
Publication of JPS5814972B2 publication Critical patent/JPS5814972B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Preventing Unauthorised Actuation Of Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 この発明は流体圧力の変動を検出する検出素子及びこれ
を使用する流体圧力応動弁装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection element for detecting fluctuations in fluid pressure and a fluid pressure responsive valve device using the detection element.

出願人は、既に円筒状磁石の内部に磁性球体をその自重
と円筒状磁石の上下端部における磁力作用とによってバ
ランスするように保持し、震動又は外部からの機械的変
位もしくは磁力変位等により磁性球体の磁力バランスが
不平衡となることにより、円筒状磁石の上端部における
磁力が強力に作用して磁性球体を上方に移動させるよう
にしだ感震素子およびとの感震素子の磁性球体の移動変
位を利用して弁装置の閉弁動作を行うよう構成した感震
弁装置を開発した。
The applicant has already held a magnetic sphere inside a cylindrical magnet in such a way that it is balanced by its own weight and the magnetic force at the upper and lower ends of the cylindrical magnet, and the magnetic sphere is made magnetic by vibration, mechanical displacement from the outside, magnetic displacement, etc. As the magnetic force balance of the sphere becomes unbalanced, the magnetic force at the upper end of the cylindrical magnet acts strongly and moves the magnetic sphere upward, causing movement of the magnetic sphere of the vibration sensing element and the vibration sensing element. We have developed a seismic valve device that uses displacement to close the valve.

近時、微少な流体圧の変化を感知して種々の機械的な変
位動作を行う装置が種々の制御装置用素子として要望さ
れているが、比較的簡単な構成で信頼性のあるものは未
だ提案されていない。
Recently, there has been a demand for devices that sense minute changes in fluid pressure and perform various mechanical displacement operations as elements for various control devices, but there is still no reliable device with a relatively simple configuration. Not proposed.

そこで、このような要望を満たす素子として出願人の開
発した上記感震素子を応用することにより微少な圧力変
化を検知して機械的変位を発生する信頼性の高い素子の
開発に成功し、特許出願を行った。
Therefore, by applying the above-mentioned vibration-sensing element developed by the applicant as an element that satisfies these demands, the applicant succeeded in developing a highly reliable element that detects minute pressure changes and generates mechanical displacement, and has obtained a patent. I filed an application.

しかしながら、この種の感震素子を応用した場合、微少
圧力変化と同時に震動によっても敏感に応動させること
ができる利点がある反面、円筒状磁石とその内部に配設
する磁性球体は常に垂直状態に設定保持しなければ安定
した動作を達成することができない難点があった。
However, when this type of vibration sensing element is applied, it has the advantage of being able to respond sensitively to vibrations as well as minute pressure changes, but on the other hand, the cylindrical magnet and the magnetic sphere placed inside it are always in a vertical state. There was a drawback that stable operation could not be achieved unless the settings were maintained.

そこで、発明者はさらに鋭意研究を重ねた結果相互に反
撥磁界を及ぼすように一対の環状磁石を同心的に離間配
置し、これらの環状磁石の内部に円筒状磁石を遊嵌し、
この円筒状磁石を一方の反撥作用関係にある環状磁石と
磁力作用のバランス下に保持するよう構成することによ
り、この円筒状磁石に対し流体の圧力変化に基づく機械
的変位乃至磁力変位を与えることにより前記磁力バラン
スが失われて円筒状磁石は他方の吸引作用関係にある環
状磁石とバランスする方向に転位させることができるこ
とを突き止めた。
Therefore, as a result of further intensive research, the inventor arranged a pair of annular magnets concentrically and spaced apart so as to exert a mutually repelling magnetic field, and a cylindrical magnet was loosely fitted inside these annular magnets.
By configuring this cylindrical magnet so that its magnetic force is balanced with one of the annular magnets in a repulsive relationship, mechanical displacement or magnetic force displacement can be applied to this cylindrical magnet based on changes in the pressure of the fluid. It has been found that the magnetic force balance is lost and the cylindrical magnet can be displaced in a direction in which it balances with the other annular magnet which is in an attractive relationship.

すなわち、このように検出機構を構成することにより、
環状磁石と円筒状磁石との配置はいかなる方向に傾斜等
していても適正な動作を達成することができ、この結果
、検出素子の取付個所等の制限を排除して用途の拡大を
図ることかり能となった。
That is, by configuring the detection mechanism in this way,
Proper operation can be achieved even if the arrangement of the annular magnet and cylindrical magnet is tilted in any direction, and as a result, it is possible to expand the range of applications by eliminating restrictions on the mounting location of the detection element, etc. It became Karinō.

従って、円筒状磁石を磁力作用のバランス下に保持する
一方の環状磁石と隣接して流体室を設けてこの流体室内
に流体圧力の変化により変位する隔膜を配設し、前記隔
膜の一部に突出杆又は磁石を取付け、流体室内の流体圧
力の変化で隔膜を変位させ、この隔膜の変位で突出杆を
作用させるか磁石を作用させて、バランス状態にある円
筒状磁石を他方の環状磁石とのバランス状態に転位させ
ることにより、微少な圧力変化を検知して機械的変位を
発生する信頼性の高い検出素子を得ることができること
が判った。
Therefore, a fluid chamber is provided adjacent to one of the annular magnets that holds the cylindrical magnet under balance of magnetic force, and a diaphragm that is displaced by changes in fluid pressure is disposed within this fluid chamber. Attach a protruding rod or a magnet, displace the diaphragm by changing the fluid pressure in the fluid chamber, and use the displacement of the diaphragm to act on the protruding rod or the magnet, so that the cylindrical magnet in a balanced state is aligned with the other annular magnet. It has been found that by shifting to a balanced state, it is possible to obtain a highly reliable sensing element that detects minute pressure changes and generates mechanical displacement.

また、このように構成される素子を使用することにより
、素子の円筒状磁石によって弁体を直接変位するよう構
成すれば、流体の微少圧力変化に基づいて弁の自動遡析
制御を確実に達成できることが判った。
In addition, by using an element configured in this way, if the valve body is directly displaced by the cylindrical magnet of the element, automatic retrospective control of the valve can be reliably achieved based on minute pressure changes in the fluid. It turns out it can be done.

本発明の一般的な目的は、構成が簡単にして流体の圧力
変化に基づいて確実な機械的変位を生じ得る流体圧力検
出素子及びこれを使用する弁装置を提供するにある。
A general object of the present invention is to provide a fluid pressure sensing element that has a simple structure and can generate reliable mechanical displacement based on changes in fluid pressure, and a valve device using the same.

前記の目的を達成するため、本発明においては、流体圧
力の変化により変位する隔膜により上下2′室に画成し
た流体室を設け、この流体室の上部に非磁性環状部材を
介して少くとも一対の環状磁石を同心的に離間配置した
環状接合体を設け、この環状接合体の内部に円筒状磁石
を遊嵌してこの磁石を下方の環状磁石に対し磁力作用の
バランス下に保持し、前記流体室内の隔膜の一部に前記
円筒状磁石に対し直接または間接的に変位を与える部材
を設け、さらに流体室の隔膜で画成された一方の室に検
出すべき流体圧力を作用させるよう構成することを特徴
とする。
In order to achieve the above object, the present invention provides a fluid chamber defined into upper and lower 2' chambers by a diaphragm that is displaced by changes in fluid pressure, and at least a non-magnetic annular member is provided in the upper part of the fluid chamber. An annular joint in which a pair of annular magnets are arranged concentrically and spaced apart is provided, a cylindrical magnet is loosely fitted inside the annular joint, and this magnet is held in a balance of magnetic force with respect to the annular magnet below, A member that directly or indirectly displaces the cylindrical magnet is provided in a part of the diaphragm in the fluid chamber, and a fluid pressure to be detected is applied to one chamber defined by the diaphragm of the fluid chamber. It is characterized by configuring.

前記のように構成される流体圧力検出素子において、流
体室に通孔を穿設し、この通孔を介して円筒状磁石に当
接する隔膜と一体的に結合する突出杆を設け、この突出
杆の作用下に円筒状磁石を直接抑圧変位するよう構成す
ることができる。
In the fluid pressure detection element configured as described above, a through hole is provided in the fluid chamber, and a protruding rod is provided which is integrally connected to the diaphragm that contacts the cylindrical magnet through the through hole. The cylindrical magnet can be configured to be directly suppressed and displaced under the action of the cylindrical magnet.

代案として、流体室の隔膜の一部に磁石を配置し、どの
磁石の作用下に円筒状磁石の磁力バランスを失わせるよ
う構成することもできる。
Alternatively, it is also possible to arrange a magnet in a part of the diaphragm of the fluid chamber so that under the action of any magnet, the cylindrical magnet loses its magnetic balance.

また、円筒状磁石を磁力作用のバランス下に保持する一
方の環状磁石に隣接して保持板を当接し、この保持板と
流体室との間に空間部を設けると共に空間部内に円筒状
磁石と反撥作用する第1磁石を配設し、さらに流体室の
隔膜の一部に前記第1磁石と反撥作用する第2磁石を設
けることもできる。
In addition, a holding plate is brought into contact adjacent to one of the annular magnets that holds the cylindrical magnet under a balance of magnetic force, and a space is provided between the holding plate and the fluid chamber, and the cylindrical magnet and the cylindrical magnet are placed in the space. It is also possible to provide a first magnet that acts repulsively, and further provide a second magnet that acts repulsively to the first magnet in a part of the diaphragm of the fluid chamber.

この場合、保持板に通孔を穿設し、この通孔を介して円
筒状磁石に当接する第1磁石と一体的に結合する突出杆
を設けることによって確実な応動を達成することができ
る。
In this case, a reliable response can be achieved by drilling a through hole in the holding plate and providing a protruding rod that is integrally coupled with the first magnet that abuts the cylindrical magnet through the through hole.

流体室は、隔膜で仕切られた一方の室に正圧又は負圧を
作用させると共に他方の室を大気と連通し、正圧又は負
圧の作用により隔膜を変位させるような使用方法が好適
である。
The fluid chamber is preferably used in such a way that positive pressure or negative pressure is applied to one chamber partitioned by a diaphragm, and the other chamber is communicated with the atmosphere, and the diaphragm is displaced by the action of the positive pressure or negative pressure. be.

なお、流体室は、隔膜で仕切られた一方の室に負圧を作
用させると共に他方の室を大気と連通した場合に、負圧
の作用する流体室と連通ずるよう弁装置を備えた大気解
放管を設け、この弁装置を異種の信号源によって制御す
るよう構成すれば、流体の圧力変動と無関係に素子をリ
セットすることができ、素子に多くの機能を持たせるこ
とが可能となる。
Note that the fluid chamber is an atmospheric release chamber that is equipped with a valve device so that when negative pressure is applied to one chamber partitioned by a diaphragm and the other chamber is communicated with the atmosphere, the fluid chamber communicates with the fluid chamber where negative pressure acts. If a pipe is provided and the valve device is configured to be controlled by different signal sources, the element can be reset regardless of fluid pressure fluctuations, and the element can be provided with many functions.

また、流体室の隔膜で仕切られた各室にそれぞれ異なる
信号圧力を作用させて隔膜を変位させるような使用方法
も可能である。
It is also possible to use a method of displacing the diaphragm by applying different signal pressures to each chamber partitioned by the diaphragm of the fluid chamber.

さらに、本発明においては、前述のように構成される流
体圧力検出素子を使用し、この素子の円筒状磁石に弁装
置の弁棒の下端部を係合しかつこの弁棒の一部に流路の
開閉を行う弁体を接続することを特徴とする流体圧力応
動弁装置を提供するにある。
Furthermore, in the present invention, a fluid pressure sensing element configured as described above is used, and the lower end of the valve stem of the valve device is engaged with the cylindrical magnet of this element, and the flow It is an object of the present invention to provide a fluid pressure responsive valve device characterized in that a valve body for opening and closing a passage is connected.

次に、本発明に係る流体圧力検出素子及びこれを使用す
る弁装置の実施例につき添付図面を参照しながら以下詳
細に説明する。
Next, embodiments of a fluid pressure detection element and a valve device using the same according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係る流体圧力検出素子の一実施例を示
すもので、2つの環状磁石10a。
FIG. 1 shows an embodiment of the fluid pressure detection element according to the present invention, which includes two annular magnets 10a.

10bをその間に非磁性材料からなる環状部材12を介
して同心的に接合して環状接合体を構成し、これらの環
状磁石10a、10bと環状部材12とからなる接合体
の内部に円筒状磁石14を遊嵌する。
10b are concentrically joined with an annular member 12 made of a non-magnetic material interposed therebetween to form an annular joined body. 14 loosely fit.

この場合、環状磁石10aylObは相互に反撥磁界を
及ぼすように構成配置し、一方の磁石10aと円筒状磁
石14とは反撥作用関係としこの円筒状磁石14はその
2等分線11が環状磁石10aの2等分線12よりも所
定寸法△lだけ変位した状態で磁力作用のバランスによ
って保持される。
In this case, the annular magnets 10aylOb are configured and arranged so as to mutually exert a repulsive magnetic field, and one magnet 10a and the cylindrical magnet 14 are in a repulsive relationship, so that the bisector 11 of the cylindrical magnet 14 is the same as that of the annular magnet 10a. It is maintained by the balance of magnetic force in a state displaced by a predetermined dimension Δl from the bisector 12 of .

従って、このように構成することにより、円筒状磁石1
4に機械的変位または磁力作用を及ぼすことにより、円
筒状磁石14は磁力バランスが失われて、他方の吸引作
用関係にある環状磁石10b側に転位させることができ
る。
Therefore, with this configuration, the cylindrical magnet 1
By applying a mechanical displacement or a magnetic force to the cylindrical magnet 4, the magnetic force balance of the cylindrical magnet 14 is lost, and the cylindrical magnet 14 can be shifted toward the other annular magnet 10b which is in an attractive relationship.

なお、本実施例においては、環状磁石10a、10bの
両側端部に円筒状磁石14が保持される状態を確保する
ため、円筒状磁石14の環状磁石10a。
In this embodiment, in order to ensure that the cylindrical magnet 14 is held at both end portions of the annular magnets 10a and 10b, the annular magnet 10a of the cylindrical magnet 14 is fixed.

10bに対する変位を許容し得る寸法の非磁性材料から
なる環状部材16,18を同心的に接合すれば好適であ
る。
It is preferable to concentrically join annular members 16 and 18 made of a non-magnetic material with dimensions that allow displacement relative to 10b.

このように構成された環状磁石10a、10bを含む接
合体の一方の環状部材18と隣接して流体室20を設け
、この流体室20の内部は可撓性隔膜22を張設して2
室に画成する。
A fluid chamber 20 is provided adjacent to one of the annular members 18 of the assembled body including the annular magnets 10a and 10b configured in this way, and a flexible diaphragm 22 is stretched inside the fluid chamber 20.
Define the room.

しかるに、一方の画室20aは通孔24を設けて大気と
連通ずると共に他方の画室20bは圧力信号源26と連
通して流体圧力室を構成し、隔膜22の一部に突出杆2
8を結合してこの突出杆28を流体室20の中心部に穿
設した通孔30に挿通して、円筒状磁石14に当接し得
るよう臨ませる。
However, one compartment 20a is provided with a through hole 24 to communicate with the atmosphere, and the other compartment 20b communicates with a pressure signal source 26 to constitute a fluid pressure chamber.
8 and the protruding rod 28 is inserted through a through hole 30 formed in the center of the fluid chamber 20 so as to face the cylindrical magnet 14 so as to be able to come into contact with it.

従って、流体圧力室20bに所要の正圧が作用した場合
、隔膜22が矢印方向に変位し、その結果突出杆28が
円筒状磁石14に当接してこれを移動させ、円筒状磁石
14は磁石バランスを失って他方の安定状態に転位する
Therefore, when a required positive pressure is applied to the fluid pressure chamber 20b, the diaphragm 22 is displaced in the direction of the arrow, and as a result, the protruding rod 28 comes into contact with the cylindrical magnet 14 and moves it, and the cylindrical magnet 14 becomes a magnet. It loses its balance and shifts to the other stable state.

第2図は、本発明に係る流体圧力検出素子の別の実施例
を示すもので、円筒状磁石14に作用する突出杆28に
代えて、隔膜22の一部に円筒状磁石14と反撥作用す
る磁石32を取付けたものである。
FIG. 2 shows another embodiment of the fluid pressure detection element according to the present invention, in which, instead of the protruding rod 28 acting on the cylindrical magnet 14, a part of the diaphragm 22 has a cylindrical magnet 14 acting on the repulsive force. A magnet 32 is attached.

この場合、流体圧力室20bに所要の正圧が作用すれば
、隔膜22が矢印方向に変位し、その結果磁石32が円
筒状磁石14に近接してその磁力バランスを失わせて前
記実施例と同様に円筒状磁石14の転位を達成できる。
In this case, if a required positive pressure acts on the fluid pressure chamber 20b, the diaphragm 22 will be displaced in the direction of the arrow, and as a result, the magnet 32 will approach the cylindrical magnet 14 and lose its magnetic balance, unlike the embodiment described above. Similarly, a transposition of the cylindrical magnet 14 can be achieved.

第3図は、本発明に係る流体圧力検出素子の別の実施例
を示すもので、一方の環状磁石10aと接合する環状部
材18のさらに側端部に円筒状磁石14を保持する保持
板34を接合し、この保持板34と流体室20との間に
空間室36を形成し、この空間室36内に前記円筒状磁
石14と反撥作用する第1磁石38を保持板34に対し
接近離反自在に配設する。
FIG. 3 shows another embodiment of the fluid pressure detection element according to the present invention, in which a holding plate 34 holding the cylindrical magnet 14 is provided at the further side end of the annular member 18 joined to one of the annular magnets 10a. A space chamber 36 is formed between this holding plate 34 and the fluid chamber 20, and a first magnet 38 that acts repulsively with the cylindrical magnet 14 is moved toward and away from the holding plate 34 in this space chamber 36. Arrange as you like.

一方流体室20の内部に張設した隔膜22の一部に前記
第1磁石38と反撥磁界を生じるように第2磁石40を
取付けたものである。
On the other hand, a second magnet 40 is attached to a part of the diaphragm 22 stretched inside the fluid chamber 20 so as to generate a repelling magnetic field with the first magnet 38.

従って、本実施例においても、流体圧力室20bに所要
の正圧が作用した場合に隔膜22が矢印方向に変位し、
その結果、第2磁石40が第1磁石38に接近してこれ
を反撥移動しかつ第1磁石38が保持板34の底部に接
近して円筒状磁石14の磁力バランスを失わせることが
できる。
Therefore, in this embodiment as well, when a required positive pressure is applied to the fluid pressure chamber 20b, the diaphragm 22 is displaced in the direction of the arrow.
As a result, the second magnet 40 approaches the first magnet 38 to repel it, and the first magnet 38 approaches the bottom of the holding plate 34, causing the cylindrical magnet 14 to lose its magnetic balance.

第4図は、第3図に示す流体圧力検出素子の変形例を示
すもので、保持板34の中心部に通孔42を穿設し、こ
の通孔42内にそのF方に配置した第1磁石38と結合
した突出杆44を挿通してその先端を円筒状磁石14に
当接し得るよう臨ませたものである。
FIG. 4 shows a modification of the fluid pressure detection element shown in FIG. A protruding rod 44 connected to one magnet 38 is inserted through the rod so that its tip faces the cylindrical magnet 14 so that it can come into contact with it.

このように構成することにより、第1磁石38の移動に
伴い突出杆44の作用で円筒状磁石14の磁力バランス
を失わせることができ、動作が=層確実となる。
With this configuration, the magnetic force balance of the cylindrical magnet 14 can be lost due to the action of the protruding rod 44 as the first magnet 38 moves, and the operation becomes more reliable.

第5図は、本発明に係る流体圧力検出素子のさらに別の
実施例を示すもので、前述の実施例では流体室20に正
圧を作用させる場合について説明したが、流体室20に
負圧を作用させる場合も、一方の画室20aを大気と連
通ずると共に他方の画室20bを圧力信号源26に連通
して流体圧力室を形成する。
FIG. 5 shows still another embodiment of the fluid pressure detection element according to the present invention. In the above embodiment, a case where positive pressure is applied to the fluid chamber 20 has been described, but negative pressure is applied to the fluid chamber 20. In this case, one compartment 20a is communicated with the atmosphere and the other compartment 20b is communicated with the pressure signal source 26 to form a fluid pressure chamber.

この場合、流体圧力室20bに負圧が作用して隔膜22
が下方に変位し第2磁石40が第1磁石38へ対する反
撥磁界を及ぼさなくなるよう設定すれば(この時、円筒
状磁石14がリセットされるように設定する)、圧力信
号源26において圧力変動が生じた際に隔膜22が矢印
方向に変位し、その結果、前記実施例と同様に円筒状磁
石14の磁力バランスを失うよう構成することができる
In this case, negative pressure acts on the fluid pressure chamber 20b and the diaphragm 22
If the second magnet 40 is set to displace downward and no longer exerts a repulsive magnetic field to the first magnet 38 (at this time, the cylindrical magnet 14 is set to be reset), pressure fluctuations will occur in the pressure signal source 26. When this occurs, the diaphragm 22 is displaced in the direction of the arrow, and as a result, the cylindrical magnet 14 can be configured to lose its magnetic balance as in the previous embodiment.

なお、本実施例においては、隔膜22が第2磁石400
作用によって円筒状磁石14をセットする方向(矢印方
向)に復帰作用するように流体圧力室20b内にばね又
は磁石等の反撥部材46を設ければ好適である。
Note that in this embodiment, the diaphragm 22 is connected to the second magnet 400.
It is preferable to provide a repulsive member 46 such as a spring or a magnet within the fluid pressure chamber 20b so that the cylindrical magnet 14 is returned in the direction of setting (in the direction of the arrow).

また、第5図に示す実施例において、流体圧力室20b
を構成する流体室20の壁面もしくは圧力信号源26と
の連通管の適所に弁装置47を設けた大気解放管48を
接続し、前記弁装置47を別の信号源によって制御する
よう構成することににより、圧力信号源26の圧力変動
と無関係に流体圧力室20b内を直ちに大気圧にして素
子をリセツ・することができる。
Further, in the embodiment shown in FIG. 5, the fluid pressure chamber 20b
An atmosphere release pipe 48 provided with a valve device 47 is connected to the wall surface of the fluid chamber 20 constituting the fluid chamber 20 or a communication pipe with the pressure signal source 26 at an appropriate location, and the valve device 47 is controlled by another signal source. Accordingly, the inside of the fluid pressure chamber 20b can be immediately brought to atmospheric pressure regardless of pressure fluctuations of the pressure signal source 26, and the element can be reset.

従ってこのように構成することにより、本発明に係る流
体圧力検出素子に多くの機能を持たせることができ、そ
の用途も拡大することができる。
Therefore, with this configuration, the fluid pressure detection element according to the present invention can be provided with many functions, and its uses can be expanded.

本発明に係る流体圧力検出素子において、隔膜22によ
って画成された2つの流体室にはそれぞれ異なる圧力信
号源26からの圧力を作用させて圧力差が生じた場合に
隔膜22が変位して素子が作動するよう構成することが
できる。
In the fluid pressure detection element according to the present invention, when pressure from different pressure signal sources 26 is applied to the two fluid chambers defined by the diaphragm 22 and a pressure difference is generated, the diaphragm 22 is displaced and the element is can be configured to operate.

本発明に係る流体圧力検出素子は、円筒状磁石に対し流
体圧力の変化による隔膜22の変位を利用して機械的変
位又は磁力作用を直接付加することにより、環状磁石に
より所定のバランス状態に保持された円筒状磁石14を
他のバランス状態へ転位させることができ、この円筒状
磁石14の機械的変位を利用して種々の制御装置へ組込
んで各種の制御を達成することが可能である。
The fluid pressure detection element according to the present invention maintains a predetermined balanced state with an annular magnet by directly applying mechanical displacement or magnetic force to the cylindrical magnet using the displacement of the diaphragm 22 due to changes in fluid pressure. The cylindrical magnet 14 can be shifted to another balanced state, and the mechanical displacement of the cylindrical magnet 14 can be used to incorporate it into various control devices to achieve various types of control. .

なお、転位した円筒状磁石14を元の状態にリセットす
るには、適宜機械的手段によって達成することができる
Note that resetting the dislocated cylindrical magnet 14 to its original state can be accomplished by appropriate mechanical means.

第6図は、前記のように構成した流体圧力検出素子を弁
装置の自動閉塞制御装置として応用した実施例を示すも
ので、弁ケーシング50の下部に本発明に係る流体圧力
検出素子を一体的に設け、円筒状磁石14の上部に弁棒
52の下端部を係合し、この弁棒52の一部に弁座54
に着座して流路の開閉を行う弁体56を接続したもので
ある。
FIG. 6 shows an embodiment in which the fluid pressure detection element configured as described above is applied as an automatic closing control device for a valve device, in which the fluid pressure detection element according to the present invention is integrated in the lower part of the valve casing 50. The lower end of the valve stem 52 is engaged with the upper part of the cylindrical magnet 14, and the valve seat 54 is attached to a part of the valve stem 52.
A valve element 56 is connected to the valve element 56, which opens and closes the flow path.

このように構成することにより流体圧力検出素子の流体
室20内における流体圧力の変化により円筒状磁石14
が上方に転位した場合に弁体56が弁座54に着座して
流路の遮断を行うことができる。
With this configuration, the cylindrical magnet 14 is affected by a change in fluid pressure within the fluid chamber 20 of the fluid pressure detection element.
When the valve body 56 is displaced upward, the valve body 56 seats on the valve seat 54 and can shut off the flow path.

従って、本発明によれば、流体圧力の変化に感応して直
接遮断動作する弁装置を得ることができる。
Therefore, according to the present invention, it is possible to obtain a valve device that directly performs a shutoff operation in response to changes in fluid pressure.

本発明に係る流体圧力検出素子及びこれを使用する弁装
置は、構成が簡単であるから製造も容易であり、しかも
磁石を組合せて構成するものであるため動作が確実で寿
命も長い等の利点を有する。
The fluid pressure detection element according to the present invention and the valve device using the same have advantages such as being simple in structure and easy to manufacture, and also having reliable operation and a long life since it is constructed by combining magnets. has.

また、流体の圧力変化を感知する流体室内に張設される
隔膜は、圧力変化に対し極めて敏感なものを得ることが
可能であるために微少圧力変化をも感知することが可能
であり、しかも磁石材料の軽量化によって感度及び信頼
性の高い検出素子及び弁装置を得ることができる。
In addition, the diaphragm stretched in the fluid chamber that senses pressure changes in the fluid can be extremely sensitive to pressure changes, making it possible to sense even minute pressure changes. By reducing the weight of the magnet material, a detection element and valve device with high sensitivity and reliability can be obtained.

さらに、本発明に係る流体圧力検出素子は、環状磁石の
接合体が地平面に対し凡ゆる方向に傾斜配置されても確
実な応動を達成することができるため、弁装置に応用す
るに際七その取付個所を任意に設定することができる等
取扱いが簡便である。
Furthermore, the fluid pressure detection element according to the present invention can achieve a reliable response even if the annular magnet assembly is arranged inclined in any direction with respect to the horizontal plane. It is easy to handle, as the mounting location can be set arbitrarily.

以上、本発明の好適な実施例について説明したが、本発
明の精神を逸脱しない範囲内において種種の設計変更を
なし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る流体圧力検出素子の一実施例を示
す断面図、第2図は別の実施例を示す要部断面図、第3
図はさらに別の実施例を示す要部断面図、第4図及び第
5図は第3図に示す検出素子の変形例をそれぞれ示す要
部断面図、第6図は本発明に係る検出素子の変形例をそ
れぞれ示す要部断面図、第6図は本発明に係る検出素子
を利用した弁装置の一実施例を示す断面図である。 10・・・・・・環状磁石、12・・・・・・環状部材
、14・・・・・・円筒状磁石、16,18・・・・・
・環状部材、20・・・・・・流体室、22・・・・・
・隔膜、24・・・・・・通孔、26・・・・・・圧力
信号源、28・・・・・突出杆、30・・・・・・通孔
、32・・・・・・磁石、34・・・・・・保持板、3
6・・・・・・空間室、38・・・・・・第1磁石、4
0・・・・・・第2磁石、42・・・・・・通孔、44
・・・・・・突出杆、46・・・・・・反撥部材、47
・・・・・・弁装置、48・・・・・・大気解放管、5
0・・・・・・弁ケーシング、52・・・・・弁棒、5
4・・・・・・弁座、56・・・・・・弁体。
FIG. 1 is a cross-sectional view showing one embodiment of a fluid pressure detection element according to the present invention, FIG. 2 is a cross-sectional view of main parts showing another embodiment, and FIG.
The figure is a cross-sectional view of a main part showing still another embodiment, FIGS. 4 and 5 are cross-sectional views of a main part showing a modification of the detection element shown in FIG. 3, and FIG. FIG. 6 is a sectional view showing an embodiment of a valve device using a detection element according to the present invention. 10... Annular magnet, 12... Annular member, 14... Cylindrical magnet, 16, 18...
・Annular member, 20...Fluid chamber, 22...
・Diaphragm, 24...Through hole, 26...Pressure signal source, 28...Protruding rod, 30...Through hole, 32... Magnet, 34... Holding plate, 3
6... Space chamber, 38... First magnet, 4
0...Second magnet, 42...Through hole, 44
...Protruding rod, 46 ... Repulsion member, 47
... Valve device, 48 ... Atmospheric release pipe, 5
0... Valve casing, 52... Valve stem, 5
4... Valve seat, 56... Valve body.

Claims (1)

【特許請求の範囲】 1 流体圧力の変化により変化する隔膜により上下2室
に画成した流体室を設け、この流体室の上部に非磁性環
状部材を介して少くとも一対の環状磁石を同心的に離間
配置した環状接合体を設け、この環状接合体の内部に円
筒状磁石を遊嵌してこの磁石を下方の環状磁石に対し磁
石作用のバランス下に保持し、前記流体室内の隔膜の一
部に前記円筒状磁石に対し直接または間接的に変位を与
える部材を設け、さらに流体室の隔膜で画成された一方
の室に検出すべき流体圧力を作用させるよう構成するこ
とを特徴とする流体圧力検出素子。 2 円筒状磁石に対し直接変位を与える部材は、隔膜と
一体的に結合する突出杆からなり、この突出杆の先端部
を流体室に設けた通孔を介して円筒状磁石に直接接触す
るよう構成配置してなる特許請求の範囲第1項記載の流
体圧力検出素子。 3 円筒状磁石に対し間接的に変位を与える部材は、隔
膜の一部に配置した磁石からなる特許請求の範囲第1項
記載の流体圧力検出素子。 4 円筒状磁石に対し間接的に変位を与える部材は、流
体室と環状接合体との間に空間部を両投しこの空間部内
に円筒状磁石と反撥作用する第1磁石を収納配置し、さ
らに流体室の隔膜の一部に前記第1磁石と反撥作用する
第2磁石を設けてなる特許請求の範囲第1項記載の流体
圧力検出素子。 5 第1磁石に突出杆を設け、この突出杆の先端部を空
間部に設けた通孔を介して円筒状磁石に直接接触するよ
う構成配置してなる特許請求の範囲第4項記載の流体圧
力検出素子。 6 流体圧力の変化により変位する隔膜により上下2室
に画成した流体室を設け、この流体室の上部に非磁性環
状部材を介して少くとも一対の環状磁石を同心的に離間
配置した環状接合体を設け、この環状接合体の内部に円
筒状磁石を遊嵌してこの磁石を下方の環状磁石に対し磁
力作用のバランス下に保持し、前記流体室内の隔膜の一
部に前記円筒状磁石に対し直接または間接的に変位を与
える部材を設け、さらに流体室の隔膜で画成された一方
の室に検出すべき流体圧力を作用させて流体圧力検出素
子を構成し、このように構成した流体圧力検出素子を弁
装置の下部に配置し、この弁装置の弁棒の下端部を円筒
状磁石に係合すると共に弁棒の一部に前記円筒状磁石の
上動にまり流路の閉塞を行う弁体を設けることを特徴と
する流体圧力応動弁装置。
[Claims] 1. A fluid chamber defined into two upper and lower chambers is provided by a diaphragm that changes with changes in fluid pressure, and at least a pair of annular magnets are concentrically connected to the upper part of this fluid chamber via a non-magnetic annular member. A cylindrical magnet is loosely fitted into the annular joint, and the magnet is held in a balanced manner with respect to the annular magnet below, and one of the diaphragms in the fluid chamber is The cylindrical magnet is provided with a member that directly or indirectly displaces the cylindrical magnet, and is further configured to apply fluid pressure to be detected to one chamber defined by a diaphragm of the fluid chamber. Fluid pressure detection element. 2. The member that directly displaces the cylindrical magnet consists of a protruding rod that is integrally combined with the diaphragm, and the tip of the protruding rod is in direct contact with the cylindrical magnet through a through hole provided in the fluid chamber. A fluid pressure detecting element according to claim 1, which is configured and arranged. 3. The fluid pressure detection element according to claim 1, wherein the member that indirectly applies displacement to the cylindrical magnet is a magnet disposed on a part of the diaphragm. 4. The member that indirectly displaces the cylindrical magnet has a space between the fluid chamber and the annular joined body, and a first magnet that acts repulsively with the cylindrical magnet is housed in this space, and 2. The fluid pressure detection element according to claim 1, further comprising a second magnet provided in a part of the diaphragm of the fluid chamber to act in repulsive action with the first magnet. 5. The fluid according to claim 4, wherein the first magnet is provided with a protruding rod, and the tip of the protruding rod is configured and arranged so as to directly contact the cylindrical magnet through a through hole provided in the space. Pressure detection element. 6. An annular joint in which a fluid chamber defined into two upper and lower chambers is provided by a diaphragm that is displaced by a change in fluid pressure, and at least a pair of annular magnets are arranged concentrically and spaced apart above the fluid chamber via a non-magnetic annular member. A cylindrical magnet is loosely fitted inside this annular joint body to hold this magnet under balance of magnetic force with respect to the annular magnet below, and the cylindrical magnet is attached to a part of the diaphragm in the fluid chamber. A fluid pressure detection element is constructed by providing a member that directly or indirectly displaces the fluid chamber, and applying fluid pressure to be detected to one chamber defined by a diaphragm of the fluid chamber. A fluid pressure detection element is disposed at the lower part of the valve device, and the lower end of the valve stem of this valve device is engaged with a cylindrical magnet, and a part of the valve stem is caught in the upward movement of the cylindrical magnet, resulting in blockage of the flow path. A fluid pressure responsive valve device characterized by being provided with a valve body that performs.
JP52109932A 1977-09-14 1977-09-14 Fluid pressure detection element and valve device using it Expired JPS5814972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52109932A JPS5814972B2 (en) 1977-09-14 1977-09-14 Fluid pressure detection element and valve device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52109932A JPS5814972B2 (en) 1977-09-14 1977-09-14 Fluid pressure detection element and valve device using it

Publications (2)

Publication Number Publication Date
JPS5443784A JPS5443784A (en) 1979-04-06
JPS5814972B2 true JPS5814972B2 (en) 1983-03-23

Family

ID=14522755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52109932A Expired JPS5814972B2 (en) 1977-09-14 1977-09-14 Fluid pressure detection element and valve device using it

Country Status (1)

Country Link
JP (1) JPS5814972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222248A (en) * 1983-05-30 1984-12-13 Hitachi Condenser Co Ltd Coating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978388U (en) * 1982-11-13 1984-05-26 小林 勇三 simple crane
JPS61165084A (en) * 1985-12-25 1986-07-25 Tokyo Tatsuno Co Ltd Fluid change-over valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222248A (en) * 1983-05-30 1984-12-13 Hitachi Condenser Co Ltd Coating device

Also Published As

Publication number Publication date
JPS5443784A (en) 1979-04-06

Similar Documents

Publication Publication Date Title
US3532121A (en) Latching valve
US3570807A (en) Electromechanical control valve
CA1263134A (en) High sensitivity magnetic actuator
JPH0351287U (en)
US4534375A (en) Proportional solenoid valve
JPS5814972B2 (en) Fluid pressure detection element and valve device using it
US3766333A (en) Shock insensitive transducer
JPS5921333Y2 (en) Improvement of seismic valve device
US4874005A (en) Current to pressure tranducer employing magnetic fluid
JPS6010258Y2 (en) pressure change detector
JPS6114390B2 (en)
JPS6132539B2 (en)
JPS6123978Y2 (en)
JPS6010257Y2 (en) pressure change detector
JPS6134027B2 (en)
JPH07260027A (en) Vibration isolating valve device
KR790001512B1 (en) Vibration induction terminal
JPH0512650B2 (en)
JPH112561A (en) Vibration detecting sensor
KR790001973Y1 (en) Vibrating valve device used by vibrating element
JP2002156385A (en) Mass support device for accelerometer
JPS6123984Y2 (en)
JP3562097B2 (en) Seismic sensor
JPH0650775Y2 (en) Acceleration sensor
JPS6257209B2 (en)