JPS58149689A - Preparation of l-lysine by fermentation - Google Patents

Preparation of l-lysine by fermentation

Info

Publication number
JPS58149689A
JPS58149689A JP57031475A JP3147582A JPS58149689A JP S58149689 A JPS58149689 A JP S58149689A JP 57031475 A JP57031475 A JP 57031475A JP 3147582 A JP3147582 A JP 3147582A JP S58149689 A JPS58149689 A JP S58149689A
Authority
JP
Japan
Prior art keywords
lysine
vector
resistance
antagonist
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57031475A
Other languages
Japanese (ja)
Inventor
Takayasu Tsuchida
隆康 土田
Osamu Kurahashi
倉橋 修
Nobuki Kawashima
川嶋 伸樹
Shigeru Nakamori
茂 中森
Hitoshi Ei
仁 江井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP57031475A priority Critical patent/JPS58149689A/en
Publication of JPS58149689A publication Critical patent/JPS58149689A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To prepare L-lysine in high yield, by culturing microorganism belonging to Bacillus genus and containing a vector integrated with a gene fraction participating in the lysine antagonist resistance. CONSTITUTION:A microbial strain belonging to Bacillus genus and containing a vector integrated with a gene fraction participating in the lysine antagonist resistance and obtained from the chromosome of a mutant of Bacillus genus resistant to lysine antagonist, e.g. Bacillus subtilis AJ11781 (FERM No.6360), is inoculated in a nutrient medium and cultured under aerobic condition. L-lysine can be separated from the cultured liquid.

Description

【発明の詳細な説明】 この発明は発酵法によるL−’)ジンの製造法tこ関す
る。従来発酵法によるし一リジンの製造法については、
ブレビバクテリウム属、ジンイドモナス属、サツカロマ
イセス属、バチルス属等の人工変異株を用いる方法が知
られている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing L-') gin by fermentation. Regarding the production method of lysine using conventional fermentation method,
Methods using artificial mutant strains of Brevibacterium, Zinidomonas, Satucharomyces, Bacillus, etc. are known.

本発明者らは、上述の様な従来のし一すジンノ製造法に
対し、リジンアンタボニス) r−耐性を有するバチル
ス属の変異株の染色体より得たりジンアンタゴニスト耐
性tこ開学する遺伝子領域が組み込まれているベクター
を含有しているバチルル属の細菌が高い収率でL−リジ
ンを蓄積することを知った。本発明はこの知見tこ基づ
いて完成されたものである。
In contrast to the conventional method for producing lysine antagonists as described above, the present inventors have developed a method for producing lysine antagonists, which is obtained from the chromosome of a mutant strain of Bacillus having lysine antagonist resistance. It has been found that bacteria of the genus Bacillus containing a vector into which the region has been integrated accumulate L-lysine at a high yield. The present invention was completed based on this knowledge.

本発明でいうリジンアンタゴニストとは、バチルス属の
微生物の増殖を抑制し、且つその抑制がL−リジンを培
地中に添加すれば全体的にまたは部分的tこ解除される
ようなものである。例えば、S−(2−アミノエチル)
−システィン(以下、ABCと記す)、オキサリジン、
リジンハイドルキサメート、γ−メチルリジン、α−り
pロヵプロラクタム等がある。
The lysine antagonist as used in the present invention is one that suppresses the growth of microorganisms belonging to the genus Bacillus, and that suppression can be completely or partially relieved by adding L-lysine to the culture medium. For example, S-(2-aminoethyl)
- cysteine (hereinafter referred to as ABC), oxalidine,
Examples include lysine hydroxamate, γ-methyllysine, α-ri p-rocaprolactam, and the like.

リジンアンタゴニスト耐性に開学する遺伝子の供学菌は
、バチルス属のりジンアンタゴニストtこ耐性を有する
変異株ならどの様な曲株でもよいが耐性のより高いもの
が望ましい。また多くの場合し一リジン生産能がより高
いものを遺伝子供I4−fMとして用いれば、よりよい
結果が得られる。
The bacteria to which the gene exhibiting resistance to lysine antagonists can be provided may be any mutant strain of the genus Bacillus that is resistant to lysine antagonists, but those with higher resistance are preferable. Furthermore, in many cases, better results can be obtained if a gene with a higher monolysine production ability is used as the gene I4-fM.

遺伝子供怪菌より染色体DNAを抽出する方法は、例え
ば、J、 Bacteriol、+  89 +  1
066(1966)C記載されているような通常の方法
で行うことができる。
A method for extracting chromosomal DNA from genetic fungi is described, for example, in J. Bacteriol, + 89 + 1
066 (1966) C.

ベクターDNAとしては、バチルス属の画体中で、複製
するプラスミド又はファージならば、どのようなもので
もよい。例えば、スタフィロコッカス属微生物由来のp
T12?、pci+114、pC221、p・223、
pL]B112  (以上、Proc 。
Vector DNA may be any plasmid or phage that replicates in Bacillus organisms. For example, p from microorganisms of the genus Staphylococcus
T12? , pci+114, pC221, p・223,
pL]B112 (Proc.

Natl、Acad、Sci、U、S、A、+  74
. 1680(197?)参照)、p U B 110
(J、 Bacteriol 、1134、 318(
1978)参照)、pTP4.1)TP5 (以上、M
icrobiol Letters+  上、55(1
97B)参照)、 枯草−由来のpLs16、pLS2
8 (以上、J、 Bacteriol、+  ユニニ
ジ699(197?)参照)、pLs13(J、Bac
teriol、s  129*  1487(197?
)参照)、pPL1%pPL2 (以上、J、 Bac
teriol、+124、 484(1976)参照)
、テンペレートファージとして知られるrhol 1 
(Gene、+  589(1979)、phi 10
5 (Gene、、上、87(1979)、SPO2(
’Gjne 、 +1.61 (I Q 79))等が
ある。
Natl, Acad, Sci, U, S, A, +74
.. 1680 (197?)), p U B 110
(J, Bacteriol, 1134, 318(
1978)), pTP4.1) TP5 (see above, M
icrobiol Letters+ top, 55(1
97B)), pLs16, pLS2 derived from B. subtilis
8 (see above, J, Bacteriol, + Uniniji 699 (197?)), pLs13 (J, Bac
teriol, s 129* 1487 (197?
), pPL1%pPL2 (see above, J, Bac
teriol, +124, 484 (1976))
, rhol 1, known as the temperate phage
(Gene, +589 (1979), phi 10
5 (Gene, 1, 87 (1979), SPO2 (
'Gjne, +1.61 (IQ 79)).

更に、上先プラスミドをもとにして構築した複合プラス
ミドも当然のことながらベクターDNAとして利用でき
うる。
Furthermore, a complex plasmid constructed based on the above plasmid can of course also be used as vector DNA.

染色体DNA及びベクターDNAはそれぞれ制限エンド
ヌクレアーゼを用いて切断する。それぞれのベクターに
は、適した制限エンドヌクレアーゼがあるが、それは上
記ベクターtこついての記載がある文献等に示されてい
る。染色体DNACついては、制限エンドヌクレアーゼ
tこよる切断が部分的tこ行なわれるように反応条件を
調節すれば、多くの種類の制限酵素が使用できる。
Chromosomal DNA and vector DNA are each cut using restriction endonucleases. There is a suitable restriction endonuclease for each vector, which is indicated in the literature that describes the above-mentioned vector. For chromosomal DNA, many types of restriction enzymes can be used as long as the reaction conditions are adjusted so that partial cleavage by restriction endonucleases occurs.

かくして得られた染色体DNA断片と、切断されたベク
ターDNAとを連結せしめ乙方法は、リガーゼを用いる
通常の方法が使用できる。一方ターミナルトランスフエ
ラーゼを用いて染色体DNA断片と開裂したベクターD
NAとに、デオキシアゾニール酸とデオキシシチジル酸
をそれぞれ付加し、混合した後アニーリングして連結せ
しめる方法も利用し得る。
The chromosomal DNA fragment thus obtained and the cut vector DNA are ligated to each other by a conventional method using ligase. On the other hand, vector D was cleaved into a chromosomal DNA fragment using terminal transferase.
It is also possible to use a method in which deoxyazonylic acid and deoxycytidylic acid are added to NA, mixed, and then annealed to link them.

かくして得られた、染色体DNA断片とベクターの結合
物の受容菌はバチルス属の微生物ならば、どのようなも
のでもよいが、リジン7ンタゴニストに耐性を有しない
菌株又はアスパルトキーゼ欠失変異株等を用いれば形質
転換株を選択する際に好都合である。
The recipient bacterium for the thus obtained conjugate of the chromosomal DNA fragment and the vector may be any microorganism belonging to the genus Bacillus, but it is preferable to use a strain that does not have resistance to lysine 7 antagonists or an aspartokase deletion mutant. This is convenient when selecting transformed strains.

染色体DNA断片とベクターの結合物をDNA受容dl
iに導入するには例えば、Mo1ec、 Gen。
The combination of the chromosomal DNA fragment and the vector is transferred to the DNA receptor
For example, Molec, Gen.

Genet、、  上68. 111(1979) r
−記載されているような通常の形質転換法が使用できる
Genet, 68. 111 (1979) r
- Conventional transformation methods can be used as described.

t、 −v シン生産能を有し、リジン7ンタゴニスト
耐性に関学する遺伝子領域が組み込まれているベクター
を含有する形質転換株を選択するには、例エバ、D N
 A 受容■としてリジンアンタゴニストに耐性を有し
ない菌株を用いて形質転換し、リジンアンタゴニストを
含有する培地で生育してくる菌株を選択すればよい。ま
た、ベクターDPJAの抗生物質耐性等の性質を併せも
つ菌株を選別できるような培地を用いれば、より選別が
容易である。このようにして、−風選別されたリジンア
ンタゴニスト耐性に開学する遺伝子領域が組込まれてい
る組換えベクターは、形質転換株より抽出後、他のDN
A受容菌、例えば、L−!jレジン産能を有する菌株に
導入し、L−’)ジン蓄積量を更に増大することができ
る。
t, -v To select a transformant strain containing a vector having the ability to produce lysine 7 and into which a gene region related to lysine 7 antagonist resistance has been integrated, use e.g.
A. As a recipient (■), a strain that is not resistant to lysine antagonists may be used for transformation, and a strain that grows in a medium containing the lysine antagonist may be selected. In addition, if a medium is used that allows selection of strains that also have the properties of vector DPJA, such as antibiotic resistance, selection will be easier. In this way, a recombinant vector incorporating a gene region that confers resistance to a lysine antagonist that has been screened for lysine is extracted from a transformed strain, and then
A receptor bacteria, such as L-! It is possible to further increase the amount of L-') resin accumulated by introducing it into a strain capable of producing j resin.

かくして得られたし一リジン生産菌を用いて、L−リジ
ンを製造する方法は従来のし一リジン生産菌の培養方法
と特tこ変らない。即ち、培地としては、炭素源、窒素
源、無機イオン更に必要に応じてアミノ酸、核酸、ビタ
ミン等を含有する通常ノモのである。炭素源としては、
グルコース、シュークロース、ラクトース、キシロース
等及びこれらを含有する澱粉加水分解物等が用いられる
The method for producing L-lysine using the thus obtained lysine-producing bacteria is not particularly different from the conventional culture method for lysine-producing bacteria. That is, the medium is a normal medium containing a carbon source, a nitrogen source, inorganic ions, and, if necessary, amino acids, nucleic acids, vitamins, etc. As a carbon source,
Glucose, sucrose, lactose, xylose, etc. and starch hydrolysates containing these are used.

窒素源としては、アンモニアガス、アンモニア水、アン
モニウム塩、その他が使用できる。培養は好気的条件下
で培地のpH及び温度を適宜調節しつつ実質的にL−リ
ジンの蓄積が停止するまで行なわれる。かくして、培養
液中には著量のL−リジンが生成蓄積される。培養液よ
りL−11ジンを採取するtこは、通常の方法が適用で
きる。
As the nitrogen source, ammonia gas, aqueous ammonia, ammonium salt, and others can be used. Cultivation is carried out under aerobic conditions while adjusting the pH and temperature of the medium as appropriate until accumulation of L-lysine substantially stops. In this way, a significant amount of L-lysine is produced and accumulated in the culture solution. Conventional methods can be applied to collect L-11 gin from the culture solution.

実施例 バチルス・ズブチリスAJ 1315 (FERM−P
635B  )をr Bact 、−Penaasay
 Broth J (商品名Djfco製)を用いて1
8時間振盪培養し、菌体を集め、これをN−メチル−N
’−二)Gl−N−ニトロソグアニジン500μt /
wlを含有する0、1M燐酸緩衝液(pH7,0)r−
懸濁し、a o rcて20分振盪して変異処理を行っ
た。次に同緩衝液で2回菌体を洗滌し、通常のレプリカ
法によりトリプトファン要求株およびアルギニン要求株
を得た。このアミノ酸要求株を更に上記の変異処理をく
りかえすことによりバチルス・ズブチリスAJ1177
8()リプトファン、メチオニン、チミン複要求株及び
バチルス・ズブチリスAJ11771(アルギニン、ロ
イシン複要求株)を得た。
Example Bacillus subtilis AJ 1315 (FERM-P
635B) r Bact , -Penaasay
1 using Broth J (product name: manufactured by Djfco)
After culturing with shaking for 8 hours, the bacterial cells were collected, and this was transformed into N-methyl-N
'-2) Gl-N-nitrosoguanidine 500μt/
0, 1M phosphate buffer (pH 7,0) containing wl r-
The suspension was suspended and shaken for 20 minutes in ao rc to carry out mutation treatment. Next, the bacterial cells were washed twice with the same buffer solution, and a tryptophan auxotroph and an arginine auxotroph were obtained by the usual replica method. Bacillus subtilis AJ1177 was obtained by further repeating the above mutation treatment with this amino acid auxotrophic strain.
8 () a liptophan, methionine, and thymine polyauxotroph and Bacillus subtilis AJ11771 (arginine and leucine polyauxotroph) were obtained.

AJ11778を上記変異操作tこより変異せしめ、次
の培地に描画し、5日間、31.5r培養することりこ
より、生じたコロニーをABC耐性菌として釣菌した。
AJ11778 was mutated using the above mutagenesis procedure, transferred to the next medium, and cultured for 31.5 r for 5 days.The resulting colonies were harvested as ABC-resistant bacteria.

培地ニゲル=+ −ス0.5 t / di、硫安o、
lt/d7!、クエン酸ナトリウムo、o s t /
dl、 KH,PO40,85t /dt、 KOHO
,23t /d11MgSO4・7H200,02t/
di、FeSO4−7H200,11197dl。
Medium Nigel = + -su 0.5 t/di, ammonium sulfate o,
lt/d7! , sodium citrate o, o s t /
dl, KH, PO40, 85t/dt, KOHO
,23t/d11MgSO4・7H200,02t/
di, FeSO4-7H200, 11197dl.

MnSO4II ?H,OO,1mgl di、   
L  −)   リ プ ト フ ァ ン10mg/(
17!、L−)fオニン10m9/di、 L−fミツ
 5 Q/dl、 AECIIHCl  100mg/
d11mgl9/dl、pH7,0゜ 釣−シたコロニー300株についてリジン生産検定用培
地に植菌し、31.5r196時間培養することにより
L−リジン生産能を検定し、蓄積性の優れた菌株として
、AJ11?79(FERM−P6359  ’)を選
択した。
MnSO4II? H,OO,1mgl di,
L-) Liptofan 10mg/(
17! , L-)f Onine 10m9/di, L-f Mitsu 5 Q/dl, AECIIHCl 100mg/
d11mgl9/dl, pH 7.0°, and 300 colonies were inoculated into a medium for lysine production assay, and cultured for 31.5r196 hours to assay L-lysine production ability. , AJ11?79 (FERM-P6359') was selected.

fll  染色体DNAの調製 AJ+1779をItのr Bact −Penass
ayBroth J (商品名Di fco製)中、3
0rで約2時間振盪培養を行ない、対数増殖期の菌体を
集菌後、通常のDNA調製法(J、 Bacterio
l、+89、  +oas(t9as))cより染色体
DNAを2.3■9得た。
fll Chromosomal DNA Preparation AJ+1779 Itr Bact-Penass
ayBroth J (product name manufactured by Di fco) medium, 3
After culturing with shaking at 0r for about 2 hours and collecting the cells in the logarithmic growth phase, the usual DNA preparation method (J, Bacterio
2.3*9 chromosomal DNA was obtained from 1, +89, +oas(t9as))c.

(2)  染色体DNA断片のベクターの挿入ABC耐
性およびL−リジン生産能を支配する遺伝子領域をクロ
ーニングするため、そのベクターとして自律増殖性のプ
ラスミドpUB110(カナマイシン、ネオマイシン耐
性を発現する)を用いた。(1)で得た染色体DNA5
μtとプラスミドpUB110 5μtをそれぞれ制限
エンドヌクレアーゼEcoR1で37C160分作用さ
せてDNA鎖を切断した。65C110分間の熱処理後
、両反応液を混合し、ATP及びジチオスライトール存
在下、T4ファージ由来のDNAリガーゼにて10C,
24時間、DNA鎖の連結反応を行なった。
(2) Insertion of a chromosomal DNA fragment into a vector In order to clone the gene region governing ABC resistance and L-lysine production ability, an autonomously replicating plasmid pUB110 (expressing kanamycin and neomycin resistance) was used as the vector. Chromosomal DNA5 obtained in (1)
μt and 5 μt of plasmid pUB110 were each treated with restriction endonuclease EcoR1 for 37C160 minutes to cleave the DNA strands. After heat treatment with 65C for 10 minutes, both reaction solutions were mixed and treated with T4 phage-derived DNA ligase at 10C in the presence of ATP and dithiothreitol.
The DNA strand ligation reaction was carried out for 24 hours.

[31AEC耐性且つリジン生産遺伝子を担ったプラス
ミドによる形質転換 バチルス・ズブチリスAJ11711(アルギニン、ロ
イシン複要求性変異株)を r Pennassay Btoth J (Djfc
o ) tこ接種して30Cにて一晩振盪培養を行ない
、第1培養培地(グルコース0.5 v/di、 (N
H4)、5o40.2t/di、 KH,Po、  0
.6 t/d1%に、HPO41,4t/dl、Mg5
O1・7H,OO,02f /di、 クエン酸ナトリ
ウム0.1t/di1酵母エキス0.217dl、L−
アルギニン25 mg / d7!、L−ロイシン51
Ig/dtを含む)tこ接種し、37C1こて4時間振
盪培養を行なった後、さらに第1培養培地(グk )−
7,0,5t / di、(NH4)、5o40.2 
t 7dl、KH,PO40,6f/dl、K、HPO
41,4t/rte。
[Transformation of Bacillus subtilis AJ11711 (arginine and leucine double auxotrophic mutant strain) with a plasmid carrying AEC-resistant and lysine-producing genes was transformed into r Pennassay Btoth J (Djfc
o) The cells were inoculated and cultured overnight at 30C with shaking, and the first culture medium (glucose 0.5 v/di, (N
H4), 5o40.2t/di, KH, Po, 0
.. 6 t/d1%, HPO41.4t/dl, Mg5
O1・7H, OO, 02f/di, sodium citrate 0.1t/di1 yeast extract 0.217dl, L-
Arginine 25 mg/d7! , L-leucine 51
After inoculating the first culture medium (containing Ig/dt) and culturing with shaking for 4 hours using a 37C1 trowel, the first culture medium (Gk)-
7,0,5t/di, (NH4), 5o40.2
t 7dl, KH, PO40, 6f/dl, K, HPO
41.4t/rte.

MgSO4・7H,OO,+ 2 f/di1 クエン
酸ナトリウム0.1f//dl、酵母エキス0.02 
f/d11L−アルギニン51g/d7!及びL−ロイ
シン0.5mg / diを含む)へ接種し、37 t
rtnテ1.5時間振盪培養を行なうことeこよってい
わゆるコンピテントな(DNA取り込み能を有する)細
胞を調製した(参考文献: J、 Bacteriol
、+  8上−74B+961))。このコンピテント
細胞懸濁液に(2)で得たDNAの溶液を加えて37C
でさらtこ2時間振盪培養を行なって形質転換反応を完
了させた後、細胞懸濁液をカナマイシン51.4t/d
1% Mg5O,拳7H,OO,02f/di、 りエ
ン酸ナトリウム0.1 f/d1. L−アルギニン1
0 mg/d1%L −Rイシ710 wg/ di%
A E CIo o @y/di、寒天29/di%I
)H7,2)に塗抹し、37rで培養した。3日後に上
記培地上に5個のコロニーが出現したので、これを釣菌
し各クローンをそれぞれ純粋に分離した。
MgSO4・7H, OO, + 2 f/di1 Sodium citrate 0.1 f//dl, yeast extract 0.02
f/d11L-Arginine 51g/d7! and L-leucine 0.5 mg/di) and 37 t
So-called competent cells (having the ability to take up DNA) were prepared by culturing with shaking for 1.5 hours (Reference: J, Bacteriol).
,+8 on -74B+961)). Add the DNA solution obtained in (2) to this competent cell suspension and incubate at 37C.
After completing the transformation reaction by further shaking culture for 2 hours, the cell suspension was treated with kanamycin at 51.4 t/d.
1% Mg5O, fist 7H, OO, 02f/di, sodium phosphate 0.1 f/d1. L-arginine 1
0 mg/d1%L-R Ishi710 wg/di%
A E CI o @y/di, agar 29/di%I
) H7,2) and cultured in 37r. After 3 days, 5 colonies appeared on the medium, which were harvested and each clone was isolated.

得られた形質転換株の性質は、いずれもアルギニン、ロ
イシン複要求性、ABC耐性、カナマイシン耐性を示し
た。
The properties of the obtained transformants all showed arginine, leucine multi-auxotrophy, ABC resistance, and kanamycin resistance.

f41AEc耐性領域を担うpUBlloの抽出(3)
で得られたクローンのうちAJ1178−0(FERM
−P6361   )を用いてC,I、 Kadaらの
方法(J、 Bacteriol、、  工45. 1
365(1981))に基づいたDNA抽出法により菌
体のDNAを抽出し、アガロースゲル電気泳動會こよっ
てプラスミドDNAと染色体DNAな分離し、プラスミ
ドDNA区分を分画採取し、精製した。
Extraction of pUBllo carrying the f41AEc resistance region (3)
Among the clones obtained, AJ1178-0 (FERM
-P6361) using the method of C.I. Kada et al. (J, Bacteriol, Eng. 45.1).
365 (1981)), plasmid DNA and chromosomal DNA were separated by agarose gel electrophoresis, and the plasmid DNA fraction was collected and purified.

こうして得られた新規プラスミドを(3)で述べたのと
同様の方法tこよって、今度は原株のL−リジン生産菌
AJ11?79へ形質転換法?こより導入し、カナマイ
シン耐性株AJ11781(FERM−P6360  
 )を得た。
The new plasmid thus obtained was transformed into the original L-lysine producing strain AJ11?79 using the same method as described in (3). Kanamycin-resistant strain AJ11781 (FERM-P6360
) was obtained.

+51  新MLリジン生産菌によるリジン生産以上の
ようtこして得られた各菌株へJ11?79、AJ 1
1780およびAJ11781を培養した結果を第1表
に−示す。培養は50〇−容肩付フラMgSO4・7H
,OO,04f/di1酵母エキス0.3f  / d
l 1  F e SO4” 4Hs OI  T11
9 / dl s  MnSO4’ 4H,。
+51 Lysine production by new ML lysine-producing bacteria J11?79, AJ 1
Table 1 shows the results of culturing 1780 and AJ11781. Culture is carried out in 500-capacity MgSO4・7H
,OO,04f/di1 yeast extract 0.3f/d
l 1 F e SO4” 4Hs OI T11
9/dl s MnSO4' 4H,.

189 / di1CaCO85f / dl、pH7
,0)を20−ずつ分注し、菌体な接種後31.5 C
189/di1CaCO85f/dl, pH7
.
.

96時間培養して行なった。The culture was performed for 96 hours.

Claims (1)

【特許請求の範囲】[Claims] バチルス属のりジンアンタゴニストに耐性を有スる変異
株より得たリジンアンタゴニスト耐性に開学する遺伝子
領域が組み込まれているベクターを、バチルス属の微生
物に含有せしめたL−リジン生産性微生物を培養し、培
地中に蓄積したし一リジンを採取することを特徴とする
し一リジンの製造法。
An L-lysine-producing microorganism is cultured in which a microorganism belonging to the genus Bacillus contains a vector incorporating a gene region that is resistant to lysine antagonists obtained from a mutant strain resistant to lysine antagonists of the genus Bacillus. A method for producing lysine, which comprises collecting lysine accumulated in a medium.
JP57031475A 1982-02-27 1982-02-27 Preparation of l-lysine by fermentation Pending JPS58149689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57031475A JPS58149689A (en) 1982-02-27 1982-02-27 Preparation of l-lysine by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57031475A JPS58149689A (en) 1982-02-27 1982-02-27 Preparation of l-lysine by fermentation

Publications (1)

Publication Number Publication Date
JPS58149689A true JPS58149689A (en) 1983-09-06

Family

ID=12332283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57031475A Pending JPS58149689A (en) 1982-02-27 1982-02-27 Preparation of l-lysine by fermentation

Country Status (1)

Country Link
JP (1) JPS58149689A (en)

Similar Documents

Publication Publication Date Title
JPH0691827B2 (en) New vector-plasmid
JPH024276B2 (en)
JPS6012995A (en) Production of l-threonine and l-isoleucine by fermentation
JPH0129559B2 (en)
US4374200A (en) Broad host range small plasmid rings as cloning vehicles
JPS6062982A (en) Recombinant dna, bacteria having said recombinant dna and production of l-threonine or l-isoleucine using said bacteria
FR2559781A1 (en) NOVEL HYBRID PLASMIDIC VECTOR OF E. COLI PROVIDING THE POWER TO FERMENT SUCROSE AND ITS PREPARATION METHOD
JPS62155081A (en) Novel microorganism and production of biotin by fermentation with said microorganism
JPS59156294A (en) Preparation of histidine
JPS5889194A (en) Preparation of l-tryptophan by bacterium
JP2722504B2 (en) Novel microorganism and method for producing d-biotin using the same
JPS61202686A (en) Novel microorganism, and production of biotin by fermentation using same
JP2587764B2 (en) Method for producing N-acylneuraminic acid aldolase
JPS58149689A (en) Preparation of l-lysine by fermentation
US4376164A (en) Process for preparing broad host range small plasmid rings as cloning vehicles
JPH0333318B2 (en)
Dijkhuizen et al. Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes
US4418194A (en) DNA Fragments for forming plasmids
JPH0428357B2 (en)
JPS58134994A (en) Preparation of l-phenylalanine by fermentation
EP0179025A1 (en) Method for the production of neutral protease
JPS58107192A (en) Preparation of l-histidine by fermentation
JPH0459877B2 (en)
JPH06102029B2 (en) Method for producing L-tryptophan
EP0178744A2 (en) Shuttle vector