JPS5814931A - Apparatus for dehumidifying compressed air - Google Patents
Apparatus for dehumidifying compressed airInfo
- Publication number
- JPS5814931A JPS5814931A JP56112755A JP11275581A JPS5814931A JP S5814931 A JPS5814931 A JP S5814931A JP 56112755 A JP56112755 A JP 56112755A JP 11275581 A JP11275581 A JP 11275581A JP S5814931 A JPS5814931 A JP S5814931A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- compressed air
- evaporator
- valve
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Drying Of Gases (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、圧縮空気全露点以下の温度にまで冷却して除
湿するようにした圧縮空気除湿装置に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compressed air dehumidifier that dehumidifies compressed air by cooling it to a temperature below the total dew point.
従来のこの種の装置としては、例えば第1図に示すよう
に、圧縮空気の流路を構成する冷却タンク1内に蒸発器
2を収容し、この蒸発器2とタンク外に設置した冷媒の
圧縮機3と凝縮器4と全キャピラリチューブ5及びアキ
ュムレータ6を介して循環接続して冷凍サイクルを構成
することにより、冷媒の蒸発熱1で圧縮空気全露点以下
の温度に冷却して除湿するようにしたものがある。As shown in FIG. 1, for example, a conventional device of this type has an evaporator 2 housed in a cooling tank 1 that forms a flow path for compressed air, and a refrigerant connected to the evaporator 2 installed outside the tank. By connecting the compressor 3, condenser 4, all capillary tubes 5, and accumulator 6 for circulation to form a refrigeration cycle, the compressed air is cooled to a temperature below the total dew point using the heat of evaporation of the refrigerant and dehumidified. There is something I did.
ところが、このような除湿装置では、圧縮空気の流量、
温度の変化に応じて圧縮機3全起動、停止すると、圧縮
機8の起動停止頻度が高くなってその吐′醜(高圧)側
と吸入(低圧)側との圧力差が大きい時に圧縮機3が起
動されて過負荷になるおそれがあり、あるいは、圧縮空
気の負荷の急増に対して冷却除湿温度が追従できなくな
るおそれがある。However, in such a dehumidifying device, the flow rate of compressed air,
When the compressor 3 is completely started and stopped in response to temperature changes, the frequency of starting and stopping of the compressor 8 increases, and when the pressure difference between the discharge (high pressure) side and the suction (low pressure) side is large, the compressor 3 There is a risk that the system will be activated and overloaded, or that the cooling and dehumidifying temperature may not be able to keep up with the sudden increase in the compressed air load.
従って、従来では第1図に示すように、冷媒の高圧配管
7と低圧配管8と全容量制御弁9全介して接続し、この
制御弁9′If:介して低圧側に流れる高圧冷媒がその
流量を制御して圧縮空気の冷却温度全所定値に保持させ
るようにノしていた。10は圧縮空気入口、11は圧縮
空気出口、12はドレントラップである。Therefore, conventionally, as shown in FIG. 1, the high-pressure refrigerant piping 7 and low-pressure piping 8 are connected through the full capacity control valve 9, and the high-pressure refrigerant flowing to the low-pressure side via the control valve 9'If: The flow rate was controlled to maintain the cooling temperature of the compressed air at a predetermined value. 10 is a compressed air inlet, 11 is a compressed air outlet, and 12 is a drain trap.
しかしながら、このように容量制御弁9の開度全調整し
て冷却能力を調整して圧縮機8を連続運転させることは
、電力エネルギの浪費につながるので不経済でろり、か
つ、容量制御弁9を開いて運転すると冷媒の蒸発圧力が
高くなるので吸入ガス冷媒の比体積が大きくなり、部分
負荷運転といえども圧縮機の軸動力が大巾に増加するの
でこの種除湿装置の運転費が高くなる欠点があった。However, continuously operating the compressor 8 by fully adjusting the opening degree of the capacity control valve 9 to adjust the cooling capacity leads to waste of electrical energy, and is uneconomical. When operated with the dehumidifier open, the evaporation pressure of the refrigerant increases, so the specific volume of the suction gas refrigerant increases, and even in partial load operation, the shaft power of the compressor increases significantly, making the operating cost of this type of dehumidifier high. There was a drawback.
本発明は上記に鑑みてなされたものでろって、圧縮空気
の流量、温度等の変動に応じて冷媒の圧縮機全起動、停
止させるととにより、この種除湿装置の運転費を節減す
ることを目的とする。The present invention has been made in view of the above, and has an object to reduce operating costs of this type of dehumidifier by completely starting and stopping a refrigerant compressor in response to changes in compressed air flow rate, temperature, etc. With the goal.
以下に本発明全第2図に示された一実施例に基づいて詳
細に説、明する。The present invention will be explained in detail below based on an embodiment shown in FIG.
圧縮空気の入口21と出口22とを設けた冷却タンク2
3内には冷媒の蒸発器24を設置し、前′記タンク28
の外部に設置した冷媒の圧縮機25と凝縮器26とを前
記蒸発器24にキャピラリチューブ27及びアキュムレ
ータ28奮介して循環接続して冷凍サイクルを構成して
いること従来と同様である。29は冷却フィン、3゜は
ドレントラップでろる。Cooling tank 2 provided with an inlet 21 and an outlet 22 for compressed air
A refrigerant evaporator 24 is installed in the tank 28.
Similar to the conventional method, a refrigerant compressor 25 and a condenser 26 installed outside the evaporator are connected to the evaporator 24 through a capillary tube 27 and an accumulator 28 to form a refrigeration cycle. 29 is a cooling fin, 3° is a drain trap.
ここに本発明では、冷媒高・圧配管31と冷媒低圧配管
32と全常閉の電磁開閉弁33を介して接続すると共に
、蒸発器24の出口部の冷媒温度全検出する第1の温度
センサ84と、冷却タンク23の出口部の空気温度を検
出する第2ノ温度−t=ンサ35とを設け、゛各センサ
84,85に接続した制御回路86.87の出力端全圧
縮機25を駆動するモータ(図示省略)の制御端子に接
続すると共に、前記回・路86,870出上
刃端と電磁開閉弁38とをタイマ88i介して接続する
ことにより、前記制御回路86.87から出力される制
御信号で圧縮機25に起動、停止させる一方、電磁開閉
弁33全開閉制御するようにしている。Here, in the present invention, a first temperature sensor is provided which is connected to the refrigerant high/pressure pipe 31 and the refrigerant low pressure pipe 32 via a fully normally closed electromagnetic on-off valve 33, and which detects the entire refrigerant temperature at the outlet of the evaporator 24. 84 and a second temperature sensor 35 for detecting the air temperature at the outlet of the cooling tank 23. The output from the control circuit 86, 87 is connected to the control terminal of the driving motor (not shown), and the output blade end of the circuit/path 86, 870 and the electromagnetic on-off valve 38 are connected via the timer 88i. The compressor 25 is started and stopped by the control signal, and the electromagnetic on-off valve 33 is fully opened and closed.
上記の構成において、圧縮機25が運転、されて蒸発器
24内で冷媒が蒸発すると、この蒸発熱によって冷却タ
ンク23内を通る圧縮空気が露点以下の温度に冷却され
、除湿される。そして、冷却タンク23の出口部の空気
温度が所定値まで低下すると、第くの制、御回路87の
接点が開となる。又、圧縮空気の流量が減少し、又は、
供給される圧縮空気の温度、湿度等が低くなって熱負荷
が減少すると、蒸発器24の冷却フィン29に水分が凍
結すると共に、声発器24の出口の冷媒温度が低下する
。このようにして霜がある程度付着する温度まで冷媒の
温度が低下すると、第2のセンサ34の出力によって第
1の制御回路36の接点が開となる。すると1、いずれ
の制御回路86.87751らも運転信号が出力されな
くなるので、圧縮機25が停止される。In the above configuration, when the compressor 25 is operated and the refrigerant evaporates in the evaporator 24, the compressed air passing through the cooling tank 23 is cooled to a temperature below the dew point by the heat of evaporation and dehumidified. When the air temperature at the outlet of the cooling tank 23 drops to a predetermined value, the contact point of the first control circuit 87 is opened. Also, the flow rate of compressed air decreases, or
When the temperature, humidity, etc. of the supplied compressed air decrease and the heat load decreases, moisture freezes in the cooling fins 29 of the evaporator 24, and the temperature of the refrigerant at the outlet of the voice generator 24 decreases. When the temperature of the refrigerant decreases to a temperature at which frost adheres to some extent in this manner, the contacts of the first control circuit 36 are opened by the output of the second sensor 34. Then, 1. Since no operation signal is output from any of the control circuits 86, 87751, the compressor 25 is stopped.
このように圧縮機25が停止した後は、冷媒が蒸発しな
くなるが、蒸発器24に付着している霜の融解熱で圧縮
空気が冷却されるので、冷却、除湿機能は維持される。After the compressor 25 is stopped in this manner, the refrigerant no longer evaporates, but the compressed air is cooled by the heat of melting the frost adhering to the evaporator 24, so the cooling and dehumidifying functions are maintained.
そして、霜が完全に融簾して冷却タンク23の出口部の
空気温度が設定値より高くなると、第2のセンサ25か
らの信号で第2の制御回路37の接点が閉となると共に
、冷媒温度もに1判しているので第1の制御回路36の
接点も閉となっている。従って、霜の融解後は、再び圧
縮機25が起動されて運転されるが、第1の制御回路8
6の接点が閉となると同時にタイマ38が作動して所定
時間だけ電磁開閉弁88に開弁作動させるため、圧縮機
25の起動時には高圧側と低圧側との圧力差がほとんど
ない状態にな、っている。このために、°圧縮機′25
の起動時の負荷を軽減でき、起動電力全低下できる。When the frost completely melts and the air temperature at the outlet of the cooling tank 23 becomes higher than the set value, a signal from the second sensor 25 closes the contacts of the second control circuit 37, and the refrigerant Since the temperature is also 1, the contacts of the first control circuit 36 are also closed. Therefore, after the frost melts, the compressor 25 is started and operated again, but the first control circuit 8
At the same time as the contact point 6 closes, the timer 38 operates and causes the electromagnetic on-off valve 88 to open for a predetermined period of time, so when the compressor 25 is started, there is almost no pressure difference between the high pressure side and the low pressure side. ing. For this purpose, °compressor'25
The load at startup can be reduced, and the total startup power can be reduced.
尚、通常の運転時には、蒸発器24に一定茄ノー
の霜が付着しているので、圧縮空気の流量が、負増し、
又は、圧縮空、気の温度が急激に上昇しようとも蒸発器
24による冷却作用の他に霜の融解による冷却作用が行
なわれるので圧縮空気の負荷が急上昇しようとも所期の
除湿性能を維持できる。Note that during normal operation, a certain amount of frost adheres to the evaporator 24, so the flow rate of compressed air increases negatively.
Alternatively, even if the temperature of the compressed air or air suddenly rises, the cooling effect by melting the frost is performed in addition to the cooling effect by the evaporator 24, so that even if the load of the compressed air suddenly increases, the desired dehumidification performance can be maintained.
尚、上記実施例では蒸発器出口の冷媒温度と冷却タンク
出口の空気温度と?検出して圧縮機と電磁開閉弁と全制
御するようにしたものであるが、いずれか−万全省略し
ても良い。In the above embodiment, the temperature of the refrigerant at the outlet of the evaporator and the temperature of the air at the outlet of the cooling tank? Although the compressor and the electromagnetic on-off valve are all controlled by detection, either of them may be omitted.
又、実施例では、外部空気で凝縮器全冷却するようにし
ているが、冷却除湿された圧縮空気で凝縮器?冷却すれ
ば、いわゆる常温の乾燥圧縮空気を得ることができる。Also, in the embodiment, the condenser is completely cooled with external air, but is it possible to cool the condenser with cooled and dehumidified compressed air? By cooling, dry compressed air at room temperature can be obtained.
以上説明したように本発明によれば、圧縮空気の負荷に
応じて圧縮機全起動、停止させると共に部分負荷時に蒸
発器に付着した霜の融解熱を過負荷時又は停止時ρ冷却
エネルギとして有効利用するようにした、ものであるか
ら、圧縮機の稼動時間上短縮して運転費全節減できる。As explained above, according to the present invention, the compressor is fully started or stopped depending on the compressed air load, and the heat of melting of the frost attached to the evaporator during partial load is used as cooling energy during overload or stop. Since the compressor is designed to be used, the operating time of the compressor can be shortened and operating costs can be reduced entirely.
又、起動時には電磁開閉弁全開弁作動させて高圧側と低
圧側と全均圧にさせているので、圧縮機の起動動力を軽
減できると共に、通常の運転時は電磁開閉弁全閉じて蒸
発圧力を低くしているので圧縮機の吸入冷媒がその比体
積が小さくなり圧縮機軸動力全軽減できるなど、装置運
転費の大部分を占める圧縮機の運転費を大巾に節減して
電力エネルギ等全有効利用できる。In addition, at startup, the solenoid on-off valve is fully opened to equalize the pressure on both the high and low pressure sides, reducing the starting power of the compressor, and during normal operation, the solenoid on-off valve is fully closed to reduce the evaporation pressure. Since the specific volume of the refrigerant sucked into the compressor is reduced, the compressor shaft power can be completely reduced, which greatly reduces the operating cost of the compressor, which accounts for the majority of the equipment operating cost, and saves electricity and other energy. Can be used effectively.
第1図は従来例の系統図、第2図は本発明の一実施例の
系統図である。
23・・・冷却タンク 24・・・蒸発器25・
・・圧縮機 26・・・凝縮器27、・・・
キャピラリチューブ
28・・・アキュムレータ 31・・・冷媒高圧配管
32・・・冷媒低圧配管 33・・・電磁開閉弁8
4.85・・・温度センサ
36.87・・・制御回路 38・・・タイマ特許出
願人 オリオン機械株式会社FIG. 1 is a system diagram of a conventional example, and FIG. 2 is a system diagram of an embodiment of the present invention. 23...Cooling tank 24...Evaporator 25.
...Compressor 26...Condenser 27,...
Capillary tube 28...Accumulator 31...Refrigerant high pressure piping 32...Refrigerant low pressure piping 33...Solenoid on-off valve 8
4.85...Temperature sensor 36.87...Control circuit 38...Timer patent applicant Orion Machinery Co., Ltd.
Claims (1)
アキュムレータと全循環接続して冷凍サイクルを構成し
、圧縮空気の流路を構成する冷却タンク内に前記蒸発器
全設置することにより、該タンク内全流れる空気全露点
以下の温度に冷却して除湿するように構成した圧縮空気
除湿装置において、高圧冷媒配管と低圧冷媒配管と全常
閉の電磁開閉弁を介して接続し、蒸発器出口部の冷媒温
度及び/又は冷却タンク出口部の空気温度を介して圧縮
空気の負荷を検出して圧縮機全起動・停止させる七ンサ
全設けると共に、圧縮機の起動時に前記電磁弁を所定時
間だけ開弁作動させるタイマ全般けたこと全特徴とする
圧縮空気除湿装置。A refrigeration cycle is constructed by connecting a refrigerant compressor, a condenser, a capillary tube, an evaporator, and an accumulator, and the evaporator is completely installed in a cooling tank that constitutes a flow path for compressed air. In a compressed air dehumidifier configured to cool and dehumidify all flowing air to a temperature below the total dew point, the high-pressure refrigerant piping and low-pressure refrigerant piping are connected via a normally closed electromagnetic shut-off valve, and the evaporator outlet section The system is equipped with seven sensors that detect the compressed air load through the refrigerant temperature and/or the air temperature at the outlet of the cooling tank and start and stop the compressor, and the solenoid valve is opened for a predetermined period of time when the compressor is started. A compressed air dehumidifier that features a valve-operated timer and all features.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56112755A JPS5814931A (en) | 1981-07-17 | 1981-07-17 | Apparatus for dehumidifying compressed air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56112755A JPS5814931A (en) | 1981-07-17 | 1981-07-17 | Apparatus for dehumidifying compressed air |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5814931A true JPS5814931A (en) | 1983-01-28 |
Family
ID=14594729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56112755A Pending JPS5814931A (en) | 1981-07-17 | 1981-07-17 | Apparatus for dehumidifying compressed air |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5814931A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016052610A (en) * | 2014-09-02 | 2016-04-14 | オリオン機械株式会社 | Compressed-air dehumidifying apparatus |
JP2016052611A (en) * | 2014-09-02 | 2016-04-14 | オリオン機械株式会社 | Compressed-air dehumidifying apparatus |
-
1981
- 1981-07-17 JP JP56112755A patent/JPS5814931A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016052610A (en) * | 2014-09-02 | 2016-04-14 | オリオン機械株式会社 | Compressed-air dehumidifying apparatus |
JP2016052611A (en) * | 2014-09-02 | 2016-04-14 | オリオン機械株式会社 | Compressed-air dehumidifying apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9829238B2 (en) | Dehumidifying apparatus | |
US20070266719A1 (en) | Air conditioner and method of controlling the same | |
JPH10325621A (en) | Air-conditioning device | |
JP4328892B2 (en) | Temperature and humidity control device and environmental test device | |
JPS5814931A (en) | Apparatus for dehumidifying compressed air | |
JP4082040B2 (en) | Refrigeration equipment | |
JP3046740B2 (en) | Expansion mechanism added control type refrigeration system | |
JP3306455B2 (en) | Air conditioner | |
JP2771887B2 (en) | Constant temperature and humidity device | |
JP2974869B2 (en) | Dehumidifier | |
JPH07158979A (en) | Dehumidifier | |
JPS58140567A (en) | Dehumidifier for compressed air | |
JPH07332736A (en) | Air conditioner | |
JP2015148414A (en) | air conditioner | |
JPS6146368Y2 (en) | ||
WO2024214130A1 (en) | Dehumidification device | |
JPH02171562A (en) | Freezing cycle device | |
JP2953683B2 (en) | Dehumidifier | |
JPS5954788A (en) | Electrically-driven compressor | |
JPH0439578B2 (en) | ||
JPH02149790A (en) | Protection device for rotary compressor | |
JP2686307B2 (en) | Operation control device for turbo refrigerator | |
JPS6222805B2 (en) | ||
JP2643427B2 (en) | Refrigerator refrigerant control device | |
JPH10267446A (en) | Air-conditioner |