JPS58148927A - Earth sensor for artificial satellite attitude control - Google Patents

Earth sensor for artificial satellite attitude control

Info

Publication number
JPS58148927A
JPS58148927A JP3270182A JP3270182A JPS58148927A JP S58148927 A JPS58148927 A JP S58148927A JP 3270182 A JP3270182 A JP 3270182A JP 3270182 A JP3270182 A JP 3270182A JP S58148927 A JPS58148927 A JP S58148927A
Authority
JP
Japan
Prior art keywords
altitude
low
center line
satellite
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3270182A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Mikio Matsumoto
松本 幹男
Takashi Iwabuchi
岩「淵」 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3270182A priority Critical patent/JPS58148927A/en
Publication of JPS58148927A publication Critical patent/JPS58148927A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems

Abstract

PURPOSE:To increase common designed parts, by equipping >=4 infrared detectors having optical axes slanting at a prescribed angle to a center line, and fitting a detachable reflecting mirror which has reflecting surfaces at an angle corresponding to the altitude of a low-altitude artificial satellite. CONSTITUTION:An earth sensor is equipped with >=4 infrared sensors 31 arranged having optical axes slanting at the prescribed angle to the center line. Namely, the infrared detectors 31 are provided to a housing 33 for <=4 channels and the optical axis of the infrared detector for each channel slants inward or outward at thetaH=8.7 deg. to the center line. Then, the reflecting mirror 38 having reflecting surfaces at the angle corresponding to the altitude of the low-altitude artificial satellite is fitted detachably to increase parts which are designed in common regardless of the altitude; and conversion between still high altitude and low altitude is performed freely by the attachment and detachment of the reflecting mirror to obtain great effect to economy and reliability improvement.

Description

【発明の詳細な説明】 本発明は、三軸安定人に衛星の姿勢を検出制御するため
のノンスキャン型地球センサの改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a non-scan type earth sensor for detecting and controlling the attitude of a satellite using a three-axis stabilizer.

人口衛星は第1Naに示すように静fト衛星の場合その
高度Fi35,800Kmであり1人−L衛星2から地
球1を見込む視野角は1764°である。一方、低高度
衛星の場合、その高度は300Km〜2,000Km稈
度−であり1例えば第1図すに示すようにBOOKm高
度の場合の人工衛星12からみた地球11の視野角11
7j125.4°という広い角度になる。
As shown in No. 1 Na, if the artificial satellite is a geostatic satellite, its altitude Fi is 35,800 km, and the viewing angle looking at the earth 1 from the 1-person L satellite 2 is 1764°. On the other hand, in the case of a low-altitude satellite, its altitude is between 300 Km and 2,000 Km.
7j It becomes a wide angle of 125.4 degrees.

従って、ツノスピンタイプの三軸安定衛星で、地球セン
サがノンスキャンタイプの場合、地球の東西南北の4地
平線を検出するには、その高度に応じた方位角で、各チ
ャンネルの光学軸を設定してやらなければならない。ノ
ンスキャン型地球センサに、第2図aに示すように1人
工衛星が正しい姿勢でも、寸たbのようにいずれかの方
向へ振れているときでも地球端を確実に検出できるよう
少くとも4チヤンネルの赤外線検出器21,22゜23
.24を人り衛星に搭載して地球端の位置を検出するこ
とにより、入玉衛星の地球21に対する姿勢を計測する
装置であり、各チャンネルの赤外検出器22,23,2
4.25があらかじめ。
Therefore, in the case of a horn spin type three-axis stable satellite and a non-scan type earth sensor, in order to detect the four horizons of the earth (north, south, east, west, and I have to do it. The non-scanning earth sensor is equipped with at least four sensors so that it can reliably detect the edge of the earth even when the satellite is in the correct attitude as shown in Figure 2a, or when it is swaying in either direction as shown in figure b. Channel infrared detector 21, 22゜23
.. 24 is mounted on a manned satellite and detects the position of the edge of the earth, thereby measuring the attitude of the incoming satellite with respect to the earth 21. Infrared detectors 22, 23, 2 of each channel
4.25 in advance.

地球端をとらえるよう正確に設置しておかなければなら
ない。このため、従来は衛星の高度にあわせて複数の赤
外光学系の設定をしていたが、多数の赤外光学系を正確
に高精度に設置するのは非常に困雉であった。
It must be placed precisely so that it captures the edge of the earth. For this reason, conventionally multiple infrared optical systems were set up according to the altitude of the satellite, but it was extremely difficult to install a large number of infrared optical systems accurately and with high precision.

本発明はこのような欠点を解消するためになされたもの
で、基本的には静IF高度用に構造を設計しておき、単
に反射鏡を取り付けるだけで、低高度用地球セッサとし
て組上げられるようにしたもので、以下図面により詳細
に説明する。
The present invention was made in order to eliminate these drawbacks. Basically, the structure is designed for static IF altitude, and by simply attaching a reflector, it can be assembled as a low altitude earth sensor. This will be explained in detail below with reference to the drawings.

第3図a、bは本発明による地球センサを静市高度人り
衛星用として使用したときの断面図および乎面図である
。図において、31は赤外線検出素子で、筐体33に設
けられた四部39内に設置さねでいる。32は赤外線レ
ンズで、赤外線検出素子31および赤外線レンズ32に
より赤外検出器が構成される。赤外検出器は筐体に対し
て4チヤンネル以上設けられ、谷チャンネルの赤外検出
器の光軸は中心線に対して内側又は外側にθH=8.7
゜傾くよう設置される。図では内側に傾けた場合を示し
ている。この角度はアライシメント精度等を考(赦して
も8.7°王0.1°におさゝえることが好ましい。
FIGS. 3a and 3b are a sectional view and a plan view when the earth sensor according to the present invention is used for an advanced manned satellite. In the figure, numeral 31 denotes an infrared detection element, which is installed in four parts 39 provided in the housing 33. 32 is an infrared lens, and the infrared detection element 31 and the infrared lens 32 constitute an infrared detector. The infrared detector is provided with four or more channels for the housing, and the optical axis of the infrared detector in the valley channel is θH = 8.7 inside or outside of the center line.
It is installed so that it is tilted. The figure shows a case where it is tilted inward. This angle is preferably set to 8.7° and 0.1°, taking into consideration alignment accuracy, etc.

34は電子機器部および電源部でその具体的構成は周知
であり本発明と直接関係々いので詳細に省略する。36
は反IN鏡取付ビス孔である。この構成では、赤外検出
器の光軸が中心線に対してθ、=8.7°傾イテイるノ
アイティ35,800 Kmにある都市衛星用の地球セ
ンサとして使用される。
Reference numeral 34 denotes an electronic equipment section and a power supply section, the specific configurations of which are well known and directly related to the present invention, so a detailed description thereof will be omitted. 36
is the anti-IN mirror mounting screw hole. In this configuration, the optical axis of the infrared detector is used as an earth sensor for an urban satellite located at an altitude of 35,800 km with an angle of θ=8.7° relative to the center line.

低高度衛星用として使用するには、第4図に示すように
、第3図の構成に反射鏡38をとりつける。反1!f鏡
38は中心線に対して27°の角度を有する少くとも4
つの反射面を外面に有しており、ビス4oによりビス孔
35に対して固定される。
For use as a low-altitude satellite, as shown in FIG. 4, a reflector 38 is attached to the configuration shown in FIG. 3. Anti-1! The f-mirror 38 has at least 4
It has two reflective surfaces on its outer surface, and is fixed to the screw hole 35 with a screw 4o.

反射鏡38の取付けは精度良く行われる必要があるので
、鏡の取付は面、保持台の取付面の面積度を良くシ1両
各の間に微調整用の薄板37を、3本の谷取付ビス部に
設置し、アライメノト鏡36で、取付角の確認をしなが
ら、精度良く取付けるようにする。h−位角は図ではθ
、=62.7°になるように設計されており、高度80
0に77Lの低高度衛星用に設定されている。この場合
反射鏡の取付角θmは、中心線と鏡面の垂線とでなす角
を90から引いた等で定義すると 0m”(θL−fly )/2   −−− (1)で
表わされ、反射鏡の垂線と低高度衛星からの入射赤外光
の光軸とのなす角θ、nは θL4θ1 θ −90°−□  −・・・・・・(2)n−2 となる。
Since the installation of the reflecting mirror 38 must be carried out with high precision, the surface area of the mounting surface of the mirror and the mounting surface of the holder should be well adjusted, and a thin plate 37 for fine adjustment should be placed between each car with three valleys. Install it on the mounting screw part and check the mounting angle with the alignment note mirror 36 to ensure accurate mounting. The h-position angle is θ in the figure.
, = 62.7°, and the altitude is 80°.
0 and 77L for low altitude satellites. In this case, the mounting angle θm of the reflecting mirror is defined as 90 minus the angle formed by the center line and the perpendicular to the mirror surface, and is expressed as 0m"(θL-fly)/2 --- (1), and the reflection The angles θ and n between the perpendicular of the mirror and the optical axis of the incident infrared light from the low-altitude satellite are θL4θ1 θ −90°−□ − (2) n−2.

なお、谷チャノネルの光軸が中心線に対して。Note that the optical axis of the valley channel is relative to the center line.

外側に87の角度をしている場合、すなわち赤外線検出
器が外側に開くよう傾けて4置されているときは θ。′−(θL10M)/2    ・・・・・(3)
。 θし−θ□ θ1n−=9Q−□    ・・・・・・・(4)であ
る。  。
If the angle is 87 to the outside, that is, if the infrared detector is placed 4 tilted so as to open outward, then θ. '-(θL10M)/2 (3)
. θshi−θ□ θ1n−=9Q−□ (4). .

θ、。とθinを比較すれば、明らかにθ、。の方が小
さいので、静止高度用の角度θll二8.7°は中心線
に対し内側に傾いている第3図、第4図の構成の力が、
反射鏡の面積は少くて済むことになる。
θ,. If we compare θin with θin, it becomes clear that θ,. is smaller, so the angle θll28.7° for static altitude is tilted inward from the center line.The force of the configuration in Figures 3 and 4 is
The area of the reflecting mirror can be reduced.

このように、本発明による地球センサは、簡単に)X射
鏡を取り付けられるようになっており1反射鏡を付けな
ければ静止高度衛星用になり、反射鏡を取付ければ、要
求仕様通りの高度の低高度衛星用の地球センサを組存て
ることができるという特長を有しており、この特長によ
り、高度にかかわらず共通設計できる部分が増大し1反
射鏡の着脱により静1[、高度用と低高度用に自由に変
換でき経済性、信頼性向トに大きな効果が得られる。
In this way, the earth sensor according to the present invention can easily be equipped with an It has the feature of being able to assemble earth sensors for low-altitude satellites, and this feature increases the number of parts that can be commonly designed regardless of the altitude. It can be freely converted to both low-altitude and low-altitude use, resulting in significant improvements in economy and reliability.

なお、低高度人[衛星用の反射鏡の角度が異なるものを
複数個用意しておけば、種々の高度の低高度入玉衛星用
として自由に変換すると六ができる。なお、地球センサ
は、最低4チヤンネルの赤外検出系を必要とするが、精
度の向上、信頼性向上のための冗長系として、6チヤン
ネル、8チヤンネル、又はそれ以上のチャノネル数の赤
外検出器で構成することがあるが、その場合でも、本発
明による構造を構成することが可能であり、かつその効
果は、なんらの低減をきたすものではない。
In addition, if you prepare multiple reflectors with different angles for low-altitude satellites, you can freely convert them to use for low-altitude incoming satellites at various altitudes. Note that the earth sensor requires an infrared detection system with at least 4 channels, but infrared detection with 6 channels, 8 channels, or more channels can be used as a redundant system to improve accuracy and reliability. In this case, the structure according to the present invention can be constructed, and the effect thereof will not be reduced in any way.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは、静1ト高度及び低高度(8ooicm
)の人り衛星と地球の関係を示す図、第2図a、bは、
人工衛星から見た地球と赤外線検出器視野の一例を示す
図、第3図a、bは1本発明の−実施例における地球セ
ンサを静+ト、 A% If人[衛星用地球センサとし
て使用したときの断面図および平面図、第4図a、bi
d、同地法センサを低高度入玉衛星用地球セッサとして
使用したときの断面図および平面図である。 31・ ・赤外線検出素子、32・・赤外線レンズ、3
3・ ・・筐体、34・・・電子機器部及び電源部、3
6・・・・・、IX射鏡取付ビス孔、36・・・・アラ
イノシト鏡、37・・・・・微調整用薄根、38・・・
・JX肘鏡、39・ ・四部、40   ビス。 代理人の氏名 弁理ト 中 尾 赦 男 ほか1名第1
図 fθ)(b) Ca2(b) 第3図
Figures 1a and b show static altitude and low altitude (8ooicm).
Figure 2 a and b are diagrams showing the relationship between the human satellite and the earth in ).
Figures 3a and 3b are diagrams showing an example of the earth as seen from an artificial satellite and an infrared detector field of view. Cross-sectional view and plan view when
d is a cross-sectional view and a plan view when the geosensor is used as an earth sensor for a low-altitude incoming satellite. 31.・Infrared detection element, 32.・Infrared lens, 3
3... Housing, 34... Electronic equipment section and power supply section, 3
6..., IX mirror mounting screw hole, 36... Alinocytoscope, 37... Thin root for fine adjustment, 38...
・JX elbow mirror, 39・・4 parts, 40 screws. Name of agent: Patent attorney Masao Nakao and 1 other person 1st
Figure fθ) (b) Ca2 (b) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)霞軸が中心線に対して所定角度傾いて配された4
個以上の赤外検出器を備え、低高変人り衛星の高度に応
じた角度の反射面を有する反射鏡を着脱自在にとりつけ
たことを特徴とする人丁衛星姿勢制(財)用地球センサ
(1) 4 with the haze axis tilted at a predetermined angle with respect to the center line
Earth sensor for manned satellite attitude control (incorporated) characterized by being equipped with more than one infrared detector and detachably attached to a reflector having a reflecting surface with an angle corresponding to the altitude of the low-height oddball satellite. .
(2)赤外検出器の受光部が中心線に向って内向きに傾
いていることを特徴とする特許請求の範囲第1項記載の
人り衛星姿勢制御用地球センサ。
(2) The earth sensor for attitude control of a man-made satellite according to claim 1, wherein the light receiving part of the infrared detector is inclined inward toward the center line.
JP3270182A 1982-03-01 1982-03-01 Earth sensor for artificial satellite attitude control Pending JPS58148927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270182A JPS58148927A (en) 1982-03-01 1982-03-01 Earth sensor for artificial satellite attitude control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270182A JPS58148927A (en) 1982-03-01 1982-03-01 Earth sensor for artificial satellite attitude control

Publications (1)

Publication Number Publication Date
JPS58148927A true JPS58148927A (en) 1983-09-05

Family

ID=12366148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270182A Pending JPS58148927A (en) 1982-03-01 1982-03-01 Earth sensor for artificial satellite attitude control

Country Status (1)

Country Link
JP (1) JPS58148927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079128U (en) * 1983-11-08 1985-06-01 株式会社チノー Optical system of radiant energy collection device
US4910409A (en) * 1988-11-07 1990-03-20 James W. Hoffman Earth radiation array sensing system
KR100431543B1 (en) * 2001-05-04 2004-05-14 한국항공우주연구원 a

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079128U (en) * 1983-11-08 1985-06-01 株式会社チノー Optical system of radiant energy collection device
JPH0236098Y2 (en) * 1983-11-08 1990-10-02
US4910409A (en) * 1988-11-07 1990-03-20 James W. Hoffman Earth radiation array sensing system
KR100431543B1 (en) * 2001-05-04 2004-05-14 한국항공우주연구원 a

Similar Documents

Publication Publication Date Title
US4225781A (en) Solar tracking apparatus
US4647967A (en) Head-up display independent test site
US4628206A (en) Visible-UV horizon sensor
US4519674A (en) Retro-reflective prism assembly
US4827422A (en) Fan scan horizon sensor for a spin stabilized satellite
JPS58148927A (en) Earth sensor for artificial satellite attitude control
US3448272A (en) Optical reference apparatus utilizing a cluster of telescopes aimed at a selected group of stars
US4791297A (en) Yaw sensing conical scanner horizon sensor
US4702449A (en) Cardan ball suspension for motion sensor
US4674715A (en) Measuring arrangement for determining the attitude of an earth satellite
ES2856897T3 (en) Elevation Angle Estimation Device and User Terminal Placement Method
US4159419A (en) Three axis stellar sensor
US5055689A (en) Horizon sensor apparatus and method therefor
US4914291A (en) Gimbal angle detector
JP2018119882A (en) Photogrammetric camera
JPH05172562A (en) Attitude sensor apparatus
US5347397A (en) Diopter cell assembly for a binocular viewing system
JPH0457208B2 (en)
US5311022A (en) Tri-scan horizon sensor
JPH04109317U (en) sun sensor
JPH056338U (en) Infrared transmitter / receiver
JPS6363908A (en) Solar sensor
JPS6047800A (en) Detector for attitude of artificial satellite
JP3124590B2 (en) Detection area display device of light receiving type detector
JP2597466Y2 (en) Passive sensor