JPS58148652A - Cylinder motor - Google Patents

Cylinder motor

Info

Publication number
JPS58148652A
JPS58148652A JP57029005A JP2900582A JPS58148652A JP S58148652 A JPS58148652 A JP S58148652A JP 57029005 A JP57029005 A JP 57029005A JP 2900582 A JP2900582 A JP 2900582A JP S58148652 A JPS58148652 A JP S58148652A
Authority
JP
Japan
Prior art keywords
signal
motor
cylinder
rotor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57029005A
Other languages
Japanese (ja)
Inventor
Saburo Kazama
風間 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57029005A priority Critical patent/JPS58148652A/en
Publication of JPS58148652A publication Critical patent/JPS58148652A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To reduce the size and to increase the efficiency of a cylinder motor by forming electrodes of specific shape on the pole surfaces of a rotor and a stator and obtaining rotary position detection signals of a rotor magnet and a video head by utilizing the variation in static capacity between the poles. CONSTITUTION:A cylinder motor which records and reproduces a video signal via video heads 14, 14' by rotating an upper cylinder 12 is formed by mounting on an adapter 47 a stator having a stator yoke 3 and on a shaft 7 a rotor having a magnet 4. Thin-plate-shaped conductors 25, 25', 24 and 26, 26', 26'', 27, 28, 29 are respectively formed as specific shapes on the pole surfaces of the coil 10 and magnet 4 to be opposed at the ultrafine air gaps. Accordingly, the rotary position detection signal and rotary speed signal can be produced between the rotor magnet 4 and the video heads 14, 14' from the variations of the static capacity between them, thereby reducing the size of the motor.

Description

【発明の詳細な説明】 本発明は回転に伴なう#寛容を変化によりシ2゜リング
回転軸に直結した回転子マグネットの(2)転位置検出
哨号やビデオヘッドの回転位置検出信号等を得る構成の
シリンダモータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention detects (2) position detection signals of rotor magnets directly connected to the rotating shaft of the rotor, video head rotational position detection signals, etc. by changing the # tolerance accompanying rotation. The present invention relates to a cylinder motor configured to obtain the following.

第1図は従来のシリンダモータの構造例図で、141は
全体的縦断面図(alはモータ固定子部の平面図である
。本?11vX5相扁平ブラシレス直流モータを下シリ
ンダ内に内蔵した構造である。同図において、回転子マ
グネット4はその平面を扇形に等分割着磁した多極の磁
極を有し鉄等のE性材で構成した回転子ヨーク8で裏面
磁極を短絡し表面のtIi1+!IAを上向きにしてロ
ータボス5を介し回転軸7に取り付けである。ロータボ
ス5はl!l!1転軸7に圧入または接層しである。回
転軸7を支承する2個の軸受へ6’VCはころがり軸受
を用い下シリンダ9の上下部IC設けである。
Figure 1 shows an example of the structure of a conventional cylinder motor, where 141 is an overall vertical cross-sectional view (al is a plan view of the motor stator section).A structure in which a 11v x 5-phase flat brushless DC motor is built into the lower cylinder. In the figure, the rotor magnet 4 has multi-pole magnetic poles whose plane is magnetized equally divided into fan shapes, and the back magnetic poles are short-circuited by the rotor yoke 8 made of an E material such as iron, and the front magnetic poles are short-circuited. It is attached to the rotating shaft 7 via the rotor boss 5 with tIi1+!IA facing upward.The rotor boss 5 is press-fitted or in contact with the l!l!1 rotating shaft 7.To the two bearings that support the rotating shaft 7 6'VC is provided with upper and lower ICs of the lower cylinder 9 using rolling bearings.

モータ固定子は、固定子コイル10を下図きにして回転
子マグネット4の磁極に対向させ、回転。
The motor stator is rotated with the stator coil 10 facing downward and facing the magnetic poles of the rotor magnet 4.

子マグネット4の上部に配列し下シリンダ9の側壁の上
部周縁Nに固定しである。固定子コイル10ハその1相
あたりのコイル極数がマグネット磁極数と同一な扁平構
造の巻線型コイルで、扁平円環状の固定子ヨーク3の上
に積層固定しである。この固定子コイル10の外周縁部
には、3債の磁界検出素子1.1’、1 “を所定の角
度間隔(50”3をもって配線基板2とともに固定して
あり、回転子マグネット4の側面方向の漏洩磁界を検知
してその回転位Itを検出する。配耐基板2は下シリン
ダ9のモータ内蔵部の側壁の一部の切欠き部に設けであ
る。側壁部の内面に゛41&fi性体より成るシールド
リング11をはめ込んである。回転トランスの二次側コ
ア16は固定子の上[fiK固定しである。下シリンダ
9の下部にはフライホイール17を回転軸7に固定しで
ある。
They are arranged on the upper part of the child magnet 4 and fixed to the upper peripheral edge N of the side wall of the lower cylinder 9. The stator coil 10 is a wire-wound coil with a flat structure in which the number of coil poles per phase is the same as the number of magnet magnetic poles, and is stacked and fixed on the flat annular stator yoke 3. On the outer periphery of the stator coil 10, three magnetic field detection elements 1.1', 1" are fixed together with the wiring board 2 at a predetermined angular interval (50"3), and the side surface of the rotor magnet 4 The leakage magnetic field in the direction is detected and its rotational position It is detected.The distribution board 2 is provided in a cutout part of a part of the side wall of the motor built-in part of the lower cylinder 9. The secondary core 16 of the rotating transformer is fixed above the stator.A flywheel 17 is fixed to the rotating shaft 7 at the bottom of the lower cylinder 9. .

フライホイ→し17には2個のタックマグネット18゜
18′を互に極性を逆にして取り付けである。タックマ
グネット118′はそnぞれビデオへ各ド14.14’
に対応した位置になっている。タックマグネット18.
18’が回転通過する半径位v11には別個に1個の磁
界検出素子19を下シリンダ9の下1“で検出した回転
子マグネット4の磁極位置信号を駆動電子回路(図示せ
ず)で増幅し、通・1パルス信号を形成しこnにより1
ml定子コイル’royこ制御4fftを給鑞し回転子
マグネット4を回転駆動し上シリンダ12を回転させる
。上シリンダ12の回転によりこnに取り付けであるビ
デオヘッド14.14’はこれに接して走行するビデオ
テープ(図示せず)の表面を走査しテープ上のビデオ信
号を記録・再生する。フライホイール1ノ上のタックマ
グネット18.18’と磁界検出素子19はビデオヘッ
ド14.14’の位置検出部を構成しビデオヘッド14
.14’の識別と同時にその回転位相を制御するための
正負1対のタック信号を発生する0上シリンダ120回
転速度は固定子コイル10中に組込んだ周波e信号発生
用コイルに発生する逆起酸圧の周波数をFVg侠し一子
回路でモータ入力を制御してこnを行なっている。
Two tack magnets 18° and 18' are attached to the flywheel 17 with their polarities reversed. Tack magnets 118' are attached to each video 14 and 14' respectively.
The position corresponds to Tack magnet 18.
At the radial position v11 through which the rotor magnet 18' rotates, a magnetic field detection element 19 is separately installed to amplify the magnetic pole position signal of the rotor magnet 4 detected at the bottom 1'' of the lower cylinder 9 by a drive electronic circuit (not shown). Then, 1 pulse signal is formed and 1 pulse signal is formed.
The rotor magnet 4 is driven to rotate by supplying the ml stator coil 'roy control 4fft, and the upper cylinder 12 is rotated. As the upper cylinder 12 rotates, a video head 14, 14' attached thereto scans the surface of a video tape (not shown) running in contact with it, thereby recording and reproducing video signals on the tape. The tack magnet 18.18' on the flywheel 1 and the magnetic field detection element 19 constitute a position detection section of the video head 14.14'.
.. The rotational speed of the 0-top cylinder 120, which generates a pair of positive and negative tack signals for controlling the rotational phase at the same time as identification of the 14', is determined by the back electromotive force generated in the frequency e signal generation coil built into the stator coil 10. This is done by adjusting the frequency of the acid pressure to FVg and controlling the motor input using a one-child circuit.

かかる従来構造のシリンダモータI’lfいては、山 
磁界検出素子を固定子コイルの外周締部に設け(2)転
子マグネットの側面磁界で位電横出をする構成のためあ
る一定量以上の側面漏洩磁束が必臂でありこのためモー
タ周辺のtIB気ノイズが増大するとともにモータ効率
が低下する。
A cylinder motor I'lf with such a conventional structure has a mountain
A magnetic field detection element is installed on the outer circumference of the stator coil. (2) Since the configuration uses the lateral magnetic field of the trochanter magnet to cause the potential to lateralize, a certain amount or more of lateral leakage magnetic flux is required. tIB noise increases and motor efficiency decreases.

(21磁界横出素子中にフェライト等の磁性材を用いた
構造の場合は回転子マグネット磁束との間にコギングト
ルクを発生し回転むら増大の原因となる。
(21) In the case of a structure in which a magnetic material such as ferrite is used in the magnetic field transverse element, cogging torque is generated between the magnetic flux of the rotor magnet and rotational unevenness.

(勾 回転速度信号周波数が低いため制御回路のループ
ゲインがそnだけ低(外乱に対する安定性が低い。
(Since the rotational speed signal frequency is low, the loop gain of the control circuit is correspondingly low (stability against disturbances is low).

t47  固定子コイルを巻紛型コイルで構成しである
ためコイル厚が厚(、コイル極形状・寸法を一様にしに
く(極配列稍度が低い。さらにコイル他面積も狭く巻線
係数が小さい。従ってモータ寸法が大きくトルク変動も
大きい。
t47 Since the stator coil is composed of a powder-wound coil, the coil thickness is thick (and it is difficult to make the coil pole shape and dimensions uniform) (the degree of pole arrangement is low. Furthermore, the coil area is small and the winding coefficient is low. Small. Therefore, the motor size is large and the torque fluctuation is also large.

(51タンク検出部もシリンダに外付けしであるためシ
リンダ寸法が大きくなり易くかつビデオヘッド位置に対
するタンク検出部の位置決めをしにくい。
(Since the tank detection section 51 is also externally attached to the cylinder, the cylinder size tends to become large and it is difficult to position the tank detection section with respect to the video head position.

(6)  固定子コイル、回転位置検出センサ、タック
センサをそnぞれ別個にそnぞれの製作技術で製作しこ
れらを組合せてモータ固定子を構成するために組立精度
も低く組込工数も多くてコスト高である。
(6) The stator coil, rotational position detection sensor, and tack sensor are manufactured separately using their own manufacturing technology, and then combined to form the motor stator, resulting in low assembly accuracy and low assembly man-hours. There are many, and the cost is high.

等の欠点がある。There are drawbacks such as.

本発明の目的は上記従来技術の欠点をなくし製作し易く
低コストで小型高体積効率・高円滑回転かつ高制御性を
有するシリンダ直結駆動型モータを提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide a cylinder direct drive motor that is easy to manufacture, small in size, has high volumetric efficiency, high smooth rotation, and high controllability.

前記目的を実現するために本発明のシリンダモータでは
、 (1)上シリンダ回転軸に固定した回転子側と下シリン
ダ側に固定した固定子側の両方に導体電極を設は両′鴫
極間に形成される静電容量から軸直結製ブラシレスモー
タの回転子マグネットの回転位置検出信号やビデオヘッ
ドの回転位置検出1百号(タック信号)等を、得る構成
としていること。
In order to achieve the above object, the cylinder motor of the present invention has the following features: (1) Conductor electrodes are provided on both the rotor side fixed to the upper cylinder rotating shaft and the stator side fixed to the lower cylinder side, and conductive electrodes are provided between the two electrodes. The configuration is such that the rotational position detection signal of the rotor magnet of the shaft-directly coupled brushless motor, the rotational position detection No. 100 (tack signal) of the video head, etc. is obtained from the capacitance formed in the shaft-directly connected brushless motor.

(27回転子側の靜祇電極導体は回転子マグネットの磁
極表面に、また固定子側の静電電極導体は固定子コイル
の上部にそnぞn設ける構造とすることにより構成部品
点数−組立工数の削減、小型化を図ったこと。
(27 The static electrode conductor on the rotor side is provided on the magnetic pole surface of the rotor magnet, and the electrostatic electrode conductor on the stator side is provided on the top of the stator coil. Reduced man-hours and made it more compact.

(3)  少くとも固定子コイル及び固定子側静電電極
をエツチング等の製作手段によりパターン状に形成し容
易にかつ高精度に製作・組立できるようにしたこと が主な特徴である。
(3) The main feature is that at least the stator coil and the stator-side electrostatic electrode are formed into a pattern by manufacturing means such as etching so that they can be manufactured and assembled easily and with high precision.

以下本発明を実施例に基づき説明する。The present invention will be explained below based on examples.

!12図は本発明のシリンダモータの構造例でその縦断
面図、第3図は同モータの回転子マグネット4の磁極表
面部及び固定子コイル10の表面部の平面構造図、#I
4図は第3図の回転子側−1を電極20及び固定子側静
電電極21の円周方向展開図である。本シリンダモータ
は扁平型直流3相ブラシレスモータを下シリンダ下部に
直結した構造である。アダプタ47の面上にモータの固
定子ヨーク5と固定子コイル10と固定しこれをシール
ドケース11で覆って固定子部を形成し下シリンダ下部
に開口部を下向きにして固定しである。また該固定子コ
イル10の極面に対向し回転子マグネット4を軸7に直
結しである。本シリンダモータは回転子マグネ゛ノド4
の磁極面と固定子コイル10の極面にはさまnた部分に
薄板状導体により回転子マグネット側4の回転位置検出
部、回転速度検出部及びビデオへ゛ノド14゜14′の
回転位置検出部を設けた例である。固定子コイル10の
極面上と回転子マグネ゛ノド4の磁極面上のそれぞれに
薄板状導体25.25’ 、24  及び26、26’
 、26“、27,29.28を薄い絶縁体2λ23の
面に固定して設は互に微少空隙を隔てて対向させである
。回転子マグネットm極面上の導体2翫25と固定子コ
イル極面上の導体2426’ 、26’、27との間に
形成される静電容量からは回転子マグネット4の回転位
置検出信号とビデオヘッド1414’の回転位d構出信
号(以下タック信号と呼ぶ)を形成する。また回転子マ
グネット磁極面上の導体24と固定子コイル他面上の導
体2a、 29との間に形成さnる静電容量からは1g
1転子の回転位置信号を形成する。上記静電容量は回転
子マグネット40回転に伴ない対向導体面積が変化する
ためこれに比例して変化する。マグネット側の導体25
は回転子マグネットの着磁極性に対応した平面形状にな
っており本例ではN極部が広い面積、S極部が狭い面積
になっている。本例は8極マグネツトのため大小面積部
は45°ピツチで配列しである。また導体25′は導体
25の一部を半径方向に突出して一体化した形状でビデ
オヘッド14に対応した位置に設ける。固定子側の導体
2426’、26’も固定子コイル10の極位置に対応
した位t11に設け3相位置信号を発生できるようにな
っている。本例では上記3個導体部を120°ピツチで
配列しである。タック信号は回転位置信号に重畳させて
得る。導体26は導体25′に対応して他の2導体26
’、26“よりも半径方向に長い形状にしてありここで
回転位11m号とタック信号とを同時に得る。導体25
の内縁は円環状導体27に対面する位置にありどの回転
位置においても常に靜゛1容量を形成できるようになっ
ている。
! FIG. 12 is a longitudinal cross-sectional view of an example of the structure of the cylinder motor of the present invention, and FIG. 3 is a plan structural view of the magnetic pole surface portion of the rotor magnet 4 and the surface portion of the stator coil 10 of the same motor, #I
FIG. 4 is a circumferential development view of the rotor side-1 of FIG. 3 of the electrode 20 and the stator side electrostatic electrode 21. This cylinder motor has a structure in which a flat DC three-phase brushless motor is directly connected to the bottom of the lower cylinder. The stator yoke 5 and stator coil 10 of the motor are fixed on the surface of the adapter 47, covered with a shield case 11 to form a stator part, and fixed to the lower part of the lower cylinder with the opening facing downward. Further, the rotor magnet 4 is directly connected to the shaft 7, facing the pole face of the stator coil 10. This cylinder motor has rotor magnet nod 4
A thin plate-shaped conductor is sandwiched between the magnetic pole surface of the rotor magnet and the pole surface of the stator coil 10 to detect the rotational position detection section of the rotor magnet side 4, the rotational speed detection section, and the rotational position detection section of the video nozzle 14° 14'. This is an example where . Thin plate conductors 25, 25', 24 and 26, 26' are provided on the pole face of the stator coil 10 and the magnetic pole face of the rotor magneto 4, respectively.
, 26'', 27, 29, and 28 are fixed to the surface of a thin insulator 2λ23 and are arranged to face each other with a small gap between them.The conductor 2 on the rotor magnet m-pole surface and the stator coil From the capacitance formed between the conductors 2426', 26', and 27 on the pole surfaces, a rotational position detection signal of the rotor magnet 4 and a rotational position d configuration signal of the video head 1414' (hereinafter referred to as a tack signal) are generated. Also, from the electrostatic capacitance formed between the conductor 24 on the rotor magnet pole surface and the conductors 2a and 29 on the other surface of the stator coil, 1 g is formed.
A rotational position signal of the first trochanter is generated. The above-mentioned capacitance changes in proportion to the 40 rotations of the rotor magnet as the area of the opposing conductor changes. Conductor 25 on the magnet side
has a planar shape corresponding to the magnetization polarity of the rotor magnet, and in this example, the north pole part has a wide area and the south pole part has a narrow area. Since this example is an 8-pole magnet, the large and small area parts are arranged at a 45° pitch. Further, the conductor 25' has a shape in which a part of the conductor 25 is integrally protruded in the radial direction, and is provided at a position corresponding to the video head 14. The stator side conductors 2426', 26' are also provided at positions t11 corresponding to the pole positions of the stator coil 10, so that three-phase position signals can be generated. In this example, the three conductor portions are arranged at a pitch of 120°. The tack signal is obtained by being superimposed on the rotational position signal. The conductor 26 is connected to the other two conductors 26 corresponding to the conductor 25'.
The conductor 25 has a shape that is longer in the radial direction than the conductor 25.
The inner edge of the conductor 27 is located at a position facing the annular conductor 27, so that a constant capacitance can always be formed at any rotational position.

導体26.26’ 、26“と導体27から静電容量変
化出力を取り出す。また回転子マグネット側の導体24
は最外周縁に沿って等分割角ピッチで設けてあり固定子
コイル側の導体2&29と対向して回転に伴ない周期的
に変化する静電容量を形成し回転子マグネットの回転速
度に比例した周波数信号(FG倍信号を発生する。本構
造例の場合には1回転当たり18回の繰り返し数のFG
倍信号発生できる。容量変化のFG倍信号導体28.2
9の端末から取り出す。
The capacitance change output is taken out from the conductors 26, 26', 26" and the conductor 27. Also, the conductor 24 on the rotor magnet side
are provided at equal angular pitches along the outermost periphery, facing conductors 2 & 29 on the stator coil side to form a capacitance that changes periodically with rotation, and is proportional to the rotation speed of the rotor magnet. Frequency signal (FG multiplied signal is generated. In the case of this structure example, the FG repeats 18 times per rotation.
Can generate double signal. FG times the capacitance change signal conductor 28.2
Take it out from the terminal number 9.

第5図は本発明のシリンダモータの回転情報信号として
の静電容量変化を電圧信号に変換するための基本的回路
禰成例図%Ilj図及び纂7図は変換原理及び各部出力
波形の説明図である。。
Figure 5 is a basic circuit diagram for converting capacitance changes as rotation information signals of the cylinder motor of the present invention into voltage signals. Figure 5 and Figure 7 are explanations of the conversion principle and output waveforms of each part It is a diagram. .

第5図の検出部@goは内部に検波器40を含む。The detection unit @go in FIG. 5 includes a detector 40 inside.

回転・固定両電極間に形成され回転に伴ない変化する静
電容量Cを端子5t52で検出回路l5OK接続する。
The capacitance C formed between the rotating and fixed electrodes and changing with rotation is connected to the detection circuit 15OK through the terminal 5t52.

検出回路50中には抵抗RとインダクタンスLとを直列
に接続してあり容量Cを接続することによりR,L、C
の直列共Is@路を形成する。キャリア発振器41は端
子55.56で検出回路30に接続しである。キャリア
発振器41から出力されるキャリア信号の角周波数を鴫
、振幅を4とすると容量Cの両端端子5152間には次
式の信号電圧ECが発生する。
In the detection circuit 50, a resistor R and an inductance L are connected in series, and by connecting a capacitor C, R, L, C
The series together form an Is@ path. Carrier oscillator 41 is connected to detection circuit 30 at terminals 55,56. Assuming that the angular frequency of the carrier signal output from the carrier oscillator 41 is 0 and the amplitude is 4, a signal voltage EC of the following formula is generated between both terminals 5152 of the capacitor C.

O キャリア発振器410発生角周波数を上記直列共低い値
に設定すれば1146図に示すごとく容量CのCIから
C2の変化に応じて電圧ECをEclからEcsに振幅
変調させることができる。従ってこの共振回路の共振特
性が急峻であるほど振幅変調&’)大きくでき増幅率を
増大できる。得られた変aIII(w帯電圧Ecをダイ
オード37.抵抗38及びコンデンサ39から成る検波
器40にインプットして包絡−検波すれば出力端子34
54に容量変化に対応した信号電圧Eoμtを得るこ七
ができる。
If the generation angular frequency of the O carrier oscillator 410 is set to a low value in the above-mentioned series, it is possible to amplitude-modulate the voltage EC from Ecl to Ecs in accordance with the change from CI to C2 of the capacitance C, as shown in Fig. 1146. Therefore, the steeper the resonance characteristic of this resonant circuit, the greater the amplitude modulation and the greater the amplification factor. If the obtained variable aIII (w band voltage Ec is input to a detector 40 consisting of a diode 37, a resistor 38, and a capacitor 39 and envelope-detected, the output terminal 34
54, it is possible to obtain a signal voltage Eoμt corresponding to the capacitance change.

第8図は前記第2図〜第4図の第1実施例のシリンダモ
ータの回転情報信号検出回路構成例図である。上記第5
図の検出回路を4系統用いて5相の給電制御用回転位1
1信号EeutμEast wEautwと回転速度制
御用FG倍信号a u t F G を得る構成である
FIG. 8 is a diagram showing an example of the configuration of a rotation information signal detection circuit for a cylinder motor according to the first embodiment shown in FIGS. 2 to 4. FIG. 5th above
Rotation position 1 for 5-phase power supply control using 4 systems of detection circuits shown in the figure
1 signal EutμEast wEautw and an FG multiplied signal autFG for rotational speed control are obtained.

wJ9図は上記第1実施例のシリンダモータの駆動回路
の構成例である。静電容量変化信号としてモータ本体部
で発生した回転位置信号、回転速度信号及びタック信号
をそnぞれ検出回路30で電圧信号に変換し増幅器6へ
60’、60“、doセ増幅する。U相信号は増幅器6
0で、V相信号は増幅器60′で、W相信号は増幅器6
0′で、速度信号は増幅器60#で増幅する。さらにこ
の後各信号をそれぞれの目的に従って処理する。回転位
置信号は通電信号形成回路51にインプットしここで駆
動回路52を作動するパルスを作る。駆1g11回路5
2は通′WL信号形成回路51の出力パルス及び制御系
の信号に従ってモータの固定子コイル10に電源からの
・電流を制御給電しモータの回転子マグネットに回転駆
動力を与える。増幅器60で増幅したU相の回転位置信
号中にはタック信号が重畳されているためこnを信号処
理電子回路にもインプットしタック傷号分を分離する。
Figure wJ9 shows an example of the configuration of the cylinder motor drive circuit of the first embodiment. A rotational position signal, a rotational speed signal, and a tack signal generated in the motor body as capacitance change signals are each converted into voltage signals by a detection circuit 30 and amplified by an amplifier 6 by 60', 60''. U-phase signal is sent to amplifier 6
0, the V phase signal is sent to the amplifier 60', and the W phase signal is sent to the amplifier 60'.
0', the speed signal is amplified by amplifier 60#. Further, each signal is then processed according to its purpose. The rotational position signal is input to an energization signal forming circuit 51, which generates a pulse for operating a drive circuit 52. Kaku1g11 circuit 5
2 controls the current from the power source to the stator coil 10 of the motor in accordance with the output pulses of the WL signal forming circuit 51 and the signals of the control system to provide rotational driving force to the rotor magnet of the motor. Since the tack signal is superimposed on the U-phase rotational position signal amplified by the amplifier 60, this signal is also input to a signal processing electronic circuit to separate the tack signal.

信号処理電子回路は比較器61、位相調整回路62パル
ス形成回路6B及び位相比較回路64より成っており電
圧信号をそれぞn分離・遅延・パルス形成及び基準信号
との位相比較を行ない位相誤差信号をモータ駆動回路5
2にインプットする。
The signal processing electronic circuit consists of a comparator 61, a phase adjustment circuit 62, a pulse forming circuit 6B, and a phase comparison circuit 64, each of which separates, delays, and pulses the voltage signal and compares the phase with a reference signal to generate a phase error signal. The motor drive circuit 5
Input to 2.

パルス形成回路6sでは論理回路により2個のビデオヘ
ッドの位置に対応したパルス信号を形成する。駆動回路
52は上記位相誤差信号を零にするようにモータコイル
10への入力を制御するように作動しモータの回転位相
を制御する。回転速度信号は増幅後FV変換器53で回
転速度に比例した電圧信号に変換し比較器55にインプ
ットする。ここで所定の速度に対応する基準電圧と比較
しその誤差信号を出力として駆動回路52にインプット
し回転速度を制御して所定値に保つ。
The pulse forming circuit 6s uses a logic circuit to form pulse signals corresponding to the positions of the two video heads. The drive circuit 52 operates to control the input to the motor coil 10 so as to make the phase error signal zero, thereby controlling the rotational phase of the motor. After the rotational speed signal is amplified, it is converted into a voltage signal proportional to the rotational speed by an FV converter 53 and input to a comparator 55. Here, it is compared with a reference voltage corresponding to a predetermined speed, and the error signal is inputted as an output to the drive circuit 52 to control the rotational speed and maintain it at a predetermined value.

第10図は上記第9図の信号処理電子回路内で位置信号
中からタック信号分を分離しビデオヘッドの回転位置信
号を形成する過程の説明図である。U相の増幅信号−U
を比較器61で基準電EVptと比較しタックパルスP
、を得る(分離)。次に位相調整回路62ではタックパ
ルスP1を所定量(ビデオヘッドがテープを走査開始す
る時点まで)遅延させパルス八を作る。パルス形成回路
65ではパルスへの立上り時点(tl)を起点に高周波
クロック信号CPで所定値だけ計数しデユーティ50チ
の位相検出信号へを形成する。位相検出信号P1の高レ
ベルから低レベルに変化する時点(t、)で第1のビデ
オヘッドが磁気テープ上を走査開始し低レベルから高レ
ベルに変化する時点(tl)でm2のビデオヘッドが磁
気テープ上を走査開始する。かかる方法によりデユーテ
ィsobの位相検出信号1.を形成することにより2個
のビデオヘッドの回転位置(位相)を検出することがで
きる。上記第2図〜第410図に示す1d41実逓例の
シリンダモータでは導体電極で回転位置検出センサ部、
タック信号発生部、回転速度(1!号発生部(FG)を
モータ電磁部内の同一平面上に設けかつ回転位置検出セ
ンサ部をタック信号発生部に共用している。かかる構成
によりシリンダモータを小型で簡易な構造にできる上セ
ンサ等に基づくコギング力がないため低回転むらにでき
る。また高精度の導体配列及び配列導体の細分化も容易
に可能なため正確な位置検出とこnに伴なう正確な給電
制御及び高レートΦ高精度の回転速度信号の発生が可能
でこの点からも高円滑回転性のものにできる。また静置
容量変化を利用して信号を得る構成であるため温度変化
の影響を受けず常に安定した特性の信号を得ることがで
きる。信号レベル・波形も靜11L1を極導体の形状・
面積及び対向空隙寸法をI14整することにより容易に
選択できる。マーグネットの回転磁界及びコイルの通電
磁界の影響もない。回転11@固定側の靜電電極用各導
体及びその下に設ける絶縁体は薄い材料で構成できるた
めモータ電磁部内における磁気回路能率及びコイル能率
を向上しモータ効I4を向上し易いグやメッキ等により
パターン状導体として形成する構造とすると低コストに
でき力)つ高精度争薄型にできる。
FIG. 10 is an explanatory diagram of the process of separating the tack signal from the position signal to form a video head rotational position signal in the signal processing electronic circuit of FIG. 9. U-phase amplified signal-U
is compared with the reference voltage EVpt by the comparator 61 and the tack pulse P
, obtain (separation). Next, the phase adjustment circuit 62 delays the tack pulse P1 by a predetermined amount (until the time when the video head starts scanning the tape) to produce pulse 8. The pulse forming circuit 65 counts a predetermined value using the high frequency clock signal CP starting from the rising time (tl) of the pulse to form a phase detection signal with a duty of 50. At the time (t,) when the phase detection signal P1 changes from a high level to a low level, the first video head starts scanning the magnetic tape, and at the time (tl) when the phase detection signal P1 changes from a low level to a high level, the video head m2 starts scanning the magnetic tape. Start scanning the magnetic tape. By this method, the phase detection signal 1 of the duty sob is obtained. By forming the two video heads, the rotational positions (phases) of the two video heads can be detected. In the cylinder motor of the 1d41 practical example shown in FIGS. 2 to 410 above, the rotational position detection sensor section is
The tack signal generation section and the rotational speed (number 1! generation section (FG)) are provided on the same plane in the motor electromagnetic section, and the rotational position detection sensor section is also used as the tack signal generation section.With this configuration, the cylinder motor can be made smaller. It can be made into a simple structure, and there is no cogging force based on sensors, etc., so low rotational unevenness can be achieved.Also, it is possible to easily arrange conductors with high accuracy and subdivide the arranged conductors, so accurate position detection is possible. Accurate power supply control and high-rate Φhigh-precision rotational speed signal generation are possible, which also allows for highly smooth rotation.Also, since the configuration uses static capacitance changes to obtain signals, it is possible to generate high-precision rotational speed signals. It is possible to always obtain a signal with stable characteristics without being affected by the noise.The signal level and waveform are also quiet.
It can be easily selected by adjusting the area and opposing gap size to I14. There is no influence of the magnet's rotating magnetic field or the coil's passing electromagnetic field. Rotation 11 @ Each conductor for the Seiden electrode on the fixed side and the insulator provided under it can be made of thin material, so they can be made of a thin material, so they can be made of a thin material, so it is possible to improve the magnetic circuit efficiency and coil efficiency in the electromagnetic part of the motor. If the structure is formed as a patterned conductor, it can be made at low cost and high precision.

上記第1実施例では回転位置検出センサ部の導体電極を
1相当たり1個設ける構造としたが、こnを複数個設け
る構造とすると検出誤差を平均化して緩和できるため一
層検出精度を向上できる。回転位置検出センサ導体等の
導体電極を絶縁体の表裏両面に設けその個数j)増す構
造としてもよい。また、本実施例では扁平状モータを下
シリンダ下部に固定子そ上側、回転子マグネットを下側
にして配置した構造にしであるがこれ以外の配り1m造
であってもよい。
In the first embodiment described above, one conductor electrode is provided for each rotational position detection sensor section, but if a plurality of conductor electrodes are provided, detection errors can be averaged and alleviated, and detection accuracy can be further improved. . It is also possible to have a structure in which conductive electrodes such as rotational position detection sensor conductors are provided on both the front and back surfaces of the insulator to increase the number of conductive electrodes. Further, in this embodiment, the flat motor is disposed at the bottom of the lower cylinder with the stator above and the rotor magnet below, but other arrangements may be used.

5@11図は固定子コイル10をもエツチングやメッキ
等によりパターン状導体で形成した場合の説明図で44
3はコイル他平面図、(町はその断面部分図である。本
例はシートの表裏面にコイル極を有する構造である。薄
い絶縁性シート75の面上にエツチングやメッキ等によ
り渦巻状にコイル極面積70及び70′を形成しさらに
各表面に絶縁材76を塗布しである。かかる構成により
固定子コイル10を薄産で平面度の高い形状にできる。
Figure 5 @ 11 is an explanatory diagram when the stator coil 10 is also formed with a patterned conductor by etching, plating, etc.
3 is a plan view of the coil, and 3 is a partial cross-sectional view of the coil. This example has a structure with coil poles on the front and back surfaces of the sheet. The coil pole areas 70 and 70' are formed, and an insulating material 76 is applied to each surface.With this structure, the stator coil 10 can be made thin and have a highly flat shape.

またコイル極面積を広くしてコイル能率を向上できモー
タ効率を向上できる。離形状の均一化や極配列の高精度
化も可能となりトルク変動も低減できる。
Moreover, the coil efficiency can be improved by increasing the coil pole area, and the motor efficiency can be improved. It is possible to make the release shape uniform and to improve the precision of the pole arrangement, and also to reduce torque fluctuations.

第12図は上記パターン状導体による8個のコイル極を
表裏の各平面に等間隔1c8個づつ形成し表裏極8谷コ
イル極中心部に設けたスルーホール80で直列接続した
シート状コイルの構造例で(alは平面図、(hlはこ
れを積層して5相コイルとした場合の積層断面図である
。(α1のシート状コイルを電気角で丁πづつ回転方向
にずらし積層固定し蛾上部に前記第1実施例で述べた靜
電電#Aを上記固定子コイルと同様パターン状導体で形
成したシート21を設けである。本例のように固定子コ
イル及び靜−電mをエツチングやメッキ等によりパター
ン状導体で形成することにより全体を薄灘・高平面度・
高精度配列にできる。またかかる固定子部を同一製法で
製作できるため低コストに製作できる。
FIG. 12 shows the structure of a sheet-like coil in which eight coil poles made of the patterned conductor described above are formed on each of the front and back planes at equal intervals of 1c, and are connected in series through a through hole 80 provided at the center of the coil pole with 8 valleys on the front and back poles. In the example, (al is a plan view, (hl is a laminated cross-sectional view when laminating these to form a 5-phase coil. On the upper part, there is provided a sheet 21 formed of the conductor #A described in the first embodiment with a pattern like the stator coil.As in this example, the stator coil and the conductor #A are etched or etched. By forming a patterned conductor through plating, etc., the entire structure can be made thin, highly flat, and
Can be made into a high-precision array. Furthermore, since such a stator section can be manufactured using the same manufacturing method, it can be manufactured at low cost.

、@15図は本発明のシリンダモータの第2実施例図で
(α)は回転子側静電電極平面図、(h)は固定子貴靜
電電極平面図である。本例も3相8極24コイル極祷成
である。回転子側・固定子側の靜gig極は本例では回
転情報として回転子マグネットの回転位置信号とタック
信号を発生する構成である。本例も回転子側電極パター
ン(1回転子マグネット磁極面上に、固定子11411
電極パターンは固定子コイル上に固定する。固定子コイ
ル10及び静電Ill極はパターン状導体で構成しであ
る。本実施例の特徴は固定子側静電電極21の出力痛子
を1対のみとし単相出力として容11変化信号を得る構
成としている点にある。回転子側の゛成極パターン25
はマグネット磁極N、Sの1対から成る′嘔気的1周期
の領域中で円周方間に6等分して電億面積を階段状に順
次変化させである。このうちビデオヘッド位11に対応
した位置のパターンはさらlc1段増したパターン形状
である。 固定子a電極パターン26ハマグネツト磁極
N及びSの1対の中に1個の半径方向に伸びたパターン
を有する形状である。この広面積パターン部の位置は固
定子コイル極位置に対応した所定の位aIKなるように
固定子側電極21を固定子コイル10の面上に固定しで
ある。4つの広面積パターン部のうちの1つには回転子
側のタック信号発生用パターン25′と1回転当たり1
回対向しタック信号を発生するためのパターン部46を
設けである。固定子#*極パターン2427の出力端子
からは回転子マグネット4の回転位置によって6段階ま
たは7段階のレベルの靜蝋谷itz化が傅らnる。こn
を第5図に示したごとき谷瀘〜電圧変換電子回路にイン
プットして1圧偏号に変換しさらに3相モ一タ用信号に
変換してモータを駆動する。
, @15 is a second embodiment of the cylinder motor of the present invention, (α) is a plan view of the rotor-side electrostatic electrode, and (h) is a plan view of the stator electrostatic electrode. This example also has a three-phase, eight-pole, and twenty-four-coil configuration. In this example, the silent gig poles on the rotor side and stator side are configured to generate a rotation position signal and a tack signal of the rotor magnet as rotation information. This example also has a rotor side electrode pattern (on the 1st rotor magnet magnetic pole surface, the stator 11411
The electrode pattern is fixed on the stator coil. The stator coil 10 and the electrostatic Ill pole are constructed of patterned conductors. The feature of this embodiment is that the stator-side electrostatic electrode 21 has only one pair of output pins, and a capacitance 11 change signal is obtained as a single-phase output. Rotor side polarization pattern 25
In this case, the area of one period consisting of the pair of magnet magnetic poles N and S is divided into six equal parts in the circumferential direction, and the electric area is sequentially changed in a stepwise manner. Among these, the pattern at the position corresponding to the video head position 11 has a pattern shape with an additional step of lc. The stator a electrode pattern 26 has a shape in which one pattern extends in the radial direction within a pair of magnet magnetic poles N and S. The position of this wide area pattern portion is such that the stator side electrode 21 is fixed on the surface of the stator coil 10 at a predetermined position aIK corresponding to the stator coil pole position. One of the four wide-area pattern sections includes a tack signal generation pattern 25' on the rotor side and a tack signal generation pattern 25' per rotation.
A pattern section 46 for generating a tack signal is provided opposite to each other. From the output terminal of the stator #* pole pattern 2427, a 6- or 7-step level shift is produced depending on the rotational position of the rotor magnet 4. This
is input to a voltage converting electronic circuit as shown in FIG. 5, converted to a single voltage deviation signal, and further converted to a three-phase motor signal to drive the motor.

514図は上記第2実施例のシリンダモータの駆動回路
別図1.415図を1その回路信号波形図である。固定
子コイルパターン2へ4へ27  間に得られる6段階
及び7段階の靜鴫容盪変化偏号を検出回路30にインプ
ットしここで増幅した電圧信号に変換した後さらにバッ
ファ110で増幅する。バッファ110の出力端子には
IJ4Jの6段及び7段階の出力が得られる。この信号
出力;4をさらに次段の比較器E11−64の一端にイ
ンプットし比較器81〜86の他端を各所定の基準電圧
レベルとすることにより比較器81〜86の出力波形!
Ii1〜(Gを得る。5相コイル通電制御用信号は内〜
C)を論理回路で組合せて形成しタック信号は白より形
成する。回転速度制御用FG傷信号固定子コイルの逆起
電圧から得る。増幅後のタック信号及びFG傷信号処理
方法は前記第1実施例におけるシリンダモータの場合と
同じである。上記第2実施例のシリンダモータは単相容
量センサ構造であるため固定子側゛−極の構造が簡単で
あり相関の位置出しの必要もないため′Wt極配列n度
を高楕IfVr−できる上モータと回路間の配−を減ら
せるという利点がある。
Figure 514 is a circuit signal waveform diagram of the cylinder motor drive circuit of the second embodiment. The 6-step and 7-step change polarization signals obtained during stator coil pattern 2 to 4 to 27 are input to the detection circuit 30, where they are converted into amplified voltage signals, and then further amplified by the buffer 110. At the output terminal of the buffer 110, 6-stage and 7-stage outputs of IJ4J are obtained. This signal output; 4 is further inputted to one end of the next-stage comparator E11-64, and the other end of the comparators 81-86 is set to each predetermined reference voltage level, so that the output waveforms of the comparators 81-86!
Ii1~(G is obtained. The 5-phase coil energization control signal is within~
C) is formed by combining them with a logic circuit, and the tack signal is formed from white. FG flaw signal for rotational speed control is obtained from the back electromotive force of the stator coil. The tack signal and FG flaw signal processing method after amplification is the same as in the case of the cylinder motor in the first embodiment. Since the cylinder motor of the second embodiment has a single-phase capacitive sensor structure, the structure of the poles on the stator side is simple and there is no need to locate the correlation, so that the 'Wt pole arrangement n degrees can be highly elliptical IfVr- This has the advantage that the wiring between the upper motor and the circuit can be reduced.

以上の実施例では静電電極導体をパターン導体前で製作
しこnを回転子#If1他面上や固定子らイル面上に固
定する構造としているが、回転子側の電極部をマグネッ
ト磁極面上に直接的にパターン状に形成したり固定子側
の電極部をパターン状固定子コイルと一体化する構造と
するのも本発明の範囲内である。またモータは円筒モー
タや5相以外の相数のものであってもよい。
In the above embodiment, the electrostatic electrode conductor is manufactured in front of the pattern conductor and is fixed on the other surface of the rotor #If1 or on the stator rail surface. It is also within the scope of the present invention to form a pattern directly on the surface or to have a structure in which the stator side electrode portion is integrated with the patterned stator coil. Further, the motor may be a cylindrical motor or one having a phase number other than five phases.

また実施例では静電容量変化を得るのに電極面積を変化
させた構造としているがこの他対向電極間空隙寸法を変
化させる方法もありこれも本特許の範囲内である。タッ
ク傷号発生用靜電電極は回転位置検出信号発生用#電電
極とは別個に設けたりFG用電極と一体化兼用する構造
としてもよい。さらVc笑施例では静電電極導体をモー
タの′#tM1空隙内に設ける構造としているがこれ以
外の場所に設けてもよい。
In addition, although the embodiment uses a structure in which the electrode area is changed to obtain a change in capacitance, there is also a method of changing the gap size between opposing electrodes, which is also within the scope of this patent. The static electrode for tack signal generation may be provided separately from the #electrode for rotational position detection signal generation, or may be integrated with the FG electrode. Further, in the embodiment, the electrostatic electrode conductor is provided in the gap '#tM1 of the motor, but it may be provided in a location other than this.

本発明によればシリンダモータをして、(1)  回転
子マグネットの回転位置センサ、ビデオヘッドの回転位
置検出部及び回転速度検出部をパターン状導体等薄型導
体で構成できる  4ため部品点数・組立工数の低減、
薄型化が可能である。特に固定子コイルをもシートコイ
ルとした場合には固定子ヨークを除くモータ固定子部全
部をエツチング等の同一技術で製作できるため著しい低
コスト化、薄型構造化及び高効率化が可能である。
According to the present invention, when using a cylinder motor, (1) the rotational position sensor of the rotor magnet, the rotational position detection section and the rotational speed detection section of the video head can be constructed of thin conductors such as patterned conductors. Reduction of man-hours,
It is possible to make it thinner. In particular, when the stator coil is also a sheet coil, the entire motor stator section except the stator yoke can be manufactured using the same technique such as etching, making it possible to significantly reduce costs, create a thinner structure, and improve efficiency.

(21センサ・各検出部及び固定子コイルの配列精度や
形状・寸法を高精度かつ均一にできる上、センサ及び検
出部の導体を細分化して多段レベル信号・複数信号・高
周波信号にできるため高精度の制御が可能となる。特に
ディジタル制御に適したシリンダモータを構成できる。
(21 sensors, each detection part, and the stator coil can be arranged with high accuracy and uniform in shape and size, and the conductors of the sensor and detection part can be subdivided into multi-level signals, multiple signals, and high-frequency signals, so high Accurate control is possible.A cylinder motor particularly suitable for digital control can be configured.

(3)  センサや各検出部にコギングトルクがないた
めこの点からも低回転むらにできる。また温tL%性も
ないために温度変化に無関係に正確な回転情報が得られ
常に安定した^制御性のシリンダモータを構成できる。
(3) Since there is no cogging torque in the sensor or each detection section, low rotational unevenness can also be achieved from this point of view. In addition, since there is no temperature tL% characteristic, accurate rotation information can be obtained regardless of temperature changes, and a cylinder motor with always stable controllability can be constructed.

号の効果が得られる。You can get the effect of the number.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリンダモータの構造別図、第2図は本
発明のシリンダモータの第1実施例図の縦断面図、第3
図は第2図のシリンダモータのモータ部の回転子マグネ
ットの磁極表面部と固定子コイルの表面部の平面構造図
、第4図は#13図の靜鴫電極の円周方向展開図、第5
図は静電容量変化を電圧変化に変換する検出回路図、第
6図及び第7図は変換原理及び各部出力波形の説明図、
第8図はm1実施例のシリンダモータの回転情報信号検
出回路図、第9図はシリンダモータの全体駆動回路図1
.i@1o図はm9図の信号処理電子回路部の信号波形
図、第11図はパターン状導体コイルの基本構造図、第
12図はパターン状導体コイルによる8極3相コイルの
構造図、第13図は本発明のシリンダモータの第2実施
例図、wJ14図はその駆動回路図、第15図41M1
4図の回路の各部信号波形図である。 4・・・回転子マグネット、10−・・固定子コイル、
20・・・回転子側静電電極、21・・・固定子側静電
電極、24、25.25’・・・回転子側静電電極導体
、26.26’。 26“、27.28.29.46・・・固定子側靜′W
L電極導体。 第 j 圀 (a−) 第2図 jl  4 図 7 e QcO)G:D G:D e GOD (I:
D GRID 、 IQWO)σ:Dσ:Dσ=℃σ=
Dσ=℃σ:フσ:Dσ=DCコ第5図 第6目          y″I 1図y 図 竿fj記 (a−) りO 葉Iz目 ′lJI511 (b)
Fig. 1 is a structural diagram of a conventional cylinder motor, Fig. 2 is a longitudinal sectional view of a first embodiment of the cylinder motor of the present invention, and Fig. 3 is a longitudinal cross-sectional view of a first embodiment of the cylinder motor of the present invention.
The figure is a plan view of the magnetic pole surface of the rotor magnet and the surface of the stator coil in the motor section of the cylinder motor in figure 2. 5
The figure is a detection circuit diagram that converts capacitance changes into voltage changes, Figures 6 and 7 are explanatory diagrams of the conversion principle and output waveforms of each part,
Fig. 8 is a rotation information signal detection circuit diagram of the cylinder motor of the m1 embodiment, and Fig. 9 is an overall drive circuit diagram of the cylinder motor 1.
.. The i@1o diagram is a signal waveform diagram of the signal processing electronic circuit section of the m9 diagram, Figure 11 is a basic structural diagram of a patterned conductor coil, Figure 12 is a structural diagram of an 8-pole 3-phase coil using a patterned conductor coil, Figure 13 is a diagram of the second embodiment of the cylinder motor of the present invention, Figure wJ14 is its drive circuit diagram, and Figure 15 is 41M1.
4 is a signal waveform diagram of each part of the circuit of FIG. 4. FIG. 4... Rotor magnet, 10-... Stator coil,
20... Rotor side electrostatic electrode, 21... Stator side electrostatic electrode, 24, 25.25'... Rotor side electrostatic electrode conductor, 26.26'. 26", 27.28.29.46...Stator side 'W
L electrode conductor. No. j (a-) Fig. 2 jl 4 Fig. 7 e QcO) G:D G:De GOD (I:
DGRID, IQWO)σ:Dσ:Dσ=℃σ=
Dσ=℃σ: Fuσ: Dσ=DC Fig. 5 No. 6 y"I Fig. 1 y Fig. rod fj (a-) ri O Leaf Iz eye 'lJI511 (b)

Claims (1)

【特許請求の範囲】 t ビデオヘッドを固定した上シリンダを回転させ該ビ
デオヘッドにビデオテープ面上をヘリカルスキャンさせ
てビデオ信号を記録再生するVTR用シリンダモータに
おいて、 上シリンダ回転軸に回転子マグネットを、下シリンダ側
にコイルを含むモータ固定子を固定した直流ブラシレス
モータにょる軸直結駆動−造で、上シリンダ及び回転子
マグネットヲ含む回転子側と、下シリンダを含む固定側
に導体電極部を備え、該両導体龜極間に回転子側の回転
に伴ない変化する靜−容tを形成し該−一谷着変化によ
り少くとも回転子マグネットの回転位1[を検出信号及
びビデオヘッドの戸転位置検出信号を侍るように構成し
たことを特徴とTるシリンダモータ。
[Scope of Claims] t. A cylinder motor for a VTR that records and reproduces video signals by rotating an upper cylinder to which a video head is fixed and causing the video head to helically scan the video tape surface, comprising: a rotor magnet on the rotation axis of the upper cylinder; It is a direct-coupled shaft drive structure using a DC brushless motor with a motor stator including a coil fixed to the lower cylinder side, and conductor electrode parts are installed on the rotor side including the upper cylinder and rotor magnet, and on the fixed side including the lower cylinder. , and forms a dampness between the two conductor poles that changes as the rotor side rotates, and detects at least one rotational position of the rotor magnet by the one-step change, and generates a detection signal and a video head. A cylinder motor characterized in that it is configured to receive a door rotation position detection signal.
JP57029005A 1982-02-26 1982-02-26 Cylinder motor Pending JPS58148652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57029005A JPS58148652A (en) 1982-02-26 1982-02-26 Cylinder motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57029005A JPS58148652A (en) 1982-02-26 1982-02-26 Cylinder motor

Publications (1)

Publication Number Publication Date
JPS58148652A true JPS58148652A (en) 1983-09-03

Family

ID=12264281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57029005A Pending JPS58148652A (en) 1982-02-26 1982-02-26 Cylinder motor

Country Status (1)

Country Link
JP (1) JPS58148652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224689A (en) * 1987-03-11 1988-09-19 Nec Corp Brushless dc motor
JPS6445844U (en) * 1987-09-14 1989-03-20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224689A (en) * 1987-03-11 1988-09-19 Nec Corp Brushless dc motor
JPS6445844U (en) * 1987-09-14 1989-03-20

Similar Documents

Publication Publication Date Title
US8183733B2 (en) Two-phase brushless DC motor
JP2625409B2 (en) Brushless motor
US4405885A (en) Brushless dc motor
EP0189675A1 (en) Brushless DC motor
EP0234587A2 (en) Two-phase brushless motor
JPH04289759A (en) Brushless motor
JPS58148652A (en) Cylinder motor
EP0200537A2 (en) Electrical motor with improved tachometer generator
JPS6158462A (en) Brushless speedometer generator and synchro
JPH0769333B2 (en) Pulse generator for motor
JPS58119762A (en) Dc brushless motor
JPS60107720A (en) Cylinder motor
JPH0350458Y2 (en)
JPS60113646A (en) Disc type brushless motor with one position detector
JPS605736Y2 (en) Electronic commutator motor
CA1256152A (en) Three-phase brushless motor
JP2639521B2 (en) No-collection three-phase DC motor
WO1982001073A1 (en) D.c.generator type non-contact speed sensing device
JPS6152631B2 (en)
SU1480047A1 (en) Thyratron motor
JPH0416613Y2 (en)
JPS59191123A (en) Cylinder motor for vtr
JPS5932352A (en) Dc brushless motor
JPH0793834B2 (en) Brushless DC motor
JPH0937535A (en) Frequency generator