JPS5814841B2 - Manufacturing method of fine zinc particles - Google Patents

Manufacturing method of fine zinc particles

Info

Publication number
JPS5814841B2
JPS5814841B2 JP54018480A JP1848079A JPS5814841B2 JP S5814841 B2 JPS5814841 B2 JP S5814841B2 JP 54018480 A JP54018480 A JP 54018480A JP 1848079 A JP1848079 A JP 1848079A JP S5814841 B2 JPS5814841 B2 JP S5814841B2
Authority
JP
Japan
Prior art keywords
zinc
salts
water
chloride
zinc particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54018480A
Other languages
Japanese (ja)
Other versions
JPS55113801A (en
Inventor
阿部秀来
中山実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority claimed from JP18480A external-priority patent/JPS5594969A/en
Publication of JPS55113801A publication Critical patent/JPS55113801A/en
Publication of JPS5814841B2 publication Critical patent/JPS5814841B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は通常の亜鉛末から微細な球形の亜鉛粒を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fine spherical zinc particles from ordinary zinc dust.

微細な亜鉛粒は一般に銀電池やアルカリ電池等に使用さ
れているが、これらの電池に使用する亜鉛粒としては数
十メッシュの微細なもので尖鋭な突起がなく、球状のも
のでかつ充填嵩密度の大きいものが要求される。
Fine zinc particles are generally used in silver batteries, alkaline batteries, etc., but the zinc particles used in these batteries are fine particles of several tens of meshes, do not have sharp protrusions, are spherical, and have a low filling volume. High density is required.

溶融亜鉛を噴射流によって粉砕し製造されるいわゆる噴
射法による亜鉛末はそのサイズや製造コストの点で優れ
た方法であるが、溶融亜鉛の粉砕時に噴射流によって冷
却され固形化するため、製造された亜鉛末は針状あるい
は尖鋭な突起を持つ無定形なものとなっている。
Zinc powder produced by the so-called injection method, which is produced by pulverizing molten zinc with a jet stream, is an excellent method in terms of its size and production cost, but it is difficult to manufacture because it is cooled and solidified by the jet stream when molten zinc is pulverized. Zinc powder is amorphous with needle-like or sharp protrusions.

これをそのまま乾電池に使用すると、使用中にさらに亜
鉛末の微細化が起り、電池に隔膜を使用していると隔膜
を破る危険があり、また水銀でアマルガムを作って使用
する電池であるとアマルガムの不均一化が起るなど、電
池の特性あるいは寿命の劣化を惹起することとなる。
If this is used as is in a dry battery, the zinc dust will become finer during use, and if the battery uses a diaphragm, there is a risk of breaking the diaphragm.Also, if the battery uses an amalgam made from mercury, the amalgam This may cause deterioration of battery characteristics or lifespan, such as non-uniformity of the battery.

そこで、球状の微粒亜鉛を製造する方法が種々提案され
ているが、いずれも操作が面倒で価格的に問題がある。
Therefore, various methods for producing spherical fine zinc particles have been proposed, but all of them are troublesome to operate and have problems in terms of cost.

本発明は従来法とは全く異なり、極めて簡単な操作で球
状の微粒亜鉛を製造する方法を提供するものである。
The present invention is completely different from conventional methods and provides a method for producing spherical fine zinc particles using extremely simple operations.

即ち、本発明は無定形の亜鉛末を融点が500゜C以下
で水に可溶な塩類とさらに必要により融点が500℃以
上の水に可溶な塩類とを混合して金属亜鉛の融点以上に
加熱し、該塩類によって亜鉛末の酸化を防止すると共に
、該塩類の溶融による粘性を利用して亜鉛末の凝集を防
止し、溶融亜鉛の表面張力を利用して球形化させて球形
の微粒亜鉛を製造する方法に関するものである。
That is, in the present invention, amorphous zinc powder is mixed with water-soluble salts having a melting point of 500°C or lower and, if necessary, water-soluble salts having a melting point of 500°C or higher, to form a powder with a melting point higher than the melting point of metal zinc. The salts prevent the zinc dust from oxidizing, the viscosity of the melted salts is used to prevent the zinc dust from agglomerating, and the surface tension of the molten zinc is used to make it spherical, forming fine spherical particles. The present invention relates to a method for producing zinc.

この方法によれば原料亜鉛末の粒度を限定することによ
り、塩あるいはアルカリ等との混合量、加熱温度等を選
択して所望の粒度分布を有する微粒亜鉛を得ることがで
きる。
According to this method, fine particulate zinc having a desired particle size distribution can be obtained by limiting the particle size of the raw material zinc powder and selecting the amount of salt or alkali to be mixed, heating temperature, etc.

次に、本発明について詳説する。Next, the present invention will be explained in detail.

無定形の亜鉛末に対して例えば約3割の塩化亜鉛を添加
し、充分に混合して容器に移し、これを300〜600
’C好ましくは450℃±50゜Cに加熱すると、まず
塩化亜鉛の溶融が始まる。
For example, add about 30% zinc chloride to amorphous zinc powder, mix thoroughly, transfer to a container, and add 300 to 600% zinc chloride.
When heated preferably to 450°C ± 50°C, zinc chloride first begins to melt.

しかも、このとき亜鉛末と溶融塩化亜鉛とが上下2組に
分離することはない。
Moreover, at this time, the zinc dust and molten zinc chloride are not separated into two sets, upper and lower.

更に加熱昇温しで行くと亜鉛末の球状化が起る。When the temperature is further increased, the zinc powder becomes spheroidized.

この場合、亜鉛末と塩類との混合比(例えば10〜50
%好ましくは25〜35%)、加熱温度あるいは滞留時
間(例えば10〜60分間好ましくは20〜40分間)
等の条件を一定にすることにより、原料亜鉛末の粒度分
布とほとんど差異のない球形の微粒亜鉛が得られる。
In this case, the mixing ratio of zinc powder and salts (for example, 10 to 50
% preferably 25-35%), heating temperature or residence time (e.g. 10-60 minutes, preferably 20-40 minutes)
By keeping these conditions constant, spherical fine zinc particles with almost no difference in particle size distribution from the raw material zinc powder can be obtained.

上記のようにして所定時間加熱して亜鉛末を球状化させ
た後、これを水又は温水中で洗浄すれば亜鉛粒に付着し
ている塩化亜鉛は容易に除去することができる。
After the zinc powder is spheroidized by heating for a predetermined time as described above, the zinc chloride adhering to the zinc particles can be easily removed by washing it in water or hot water.

このようにして得られた微粒亜鉛は水洗後乾燥させるこ
とにより、製品としての微細な球形亜鉛粒を得ることが
できるのである。
By washing the thus obtained fine zinc particles with water and drying them, fine spherical zinc particles can be obtained as a product.

なお、ここで使用する塩化亜鉛は水に対する溶解度が大
きいため洗浄水量を少量とすることができ、水分を蒸発
させれば簡単に濃縮再生され、繰り返し使用することが
できる。
Note that the zinc chloride used here has a high solubility in water, so the amount of washing water can be reduced to a small amount, and if the water is evaporated, it can be easily concentrated and regenerated, and can be used repeatedly.

また、この塩化亜鉛を生成する方法としては、原料亜鉛
末の一部に塩酸溶液を添加すればよく、上記の方法によ
って簡単に微粒亜鉛を得ることもできる。
Further, as a method for producing this zinc chloride, it is sufficient to add a hydrochloric acid solution to a part of the raw material zinc powder, and fine particles of zinc can also be easily obtained by the above method.

また、塩化亜鉛のほか、亜鉛末と混合するものとしては
塩化アンモニウム、苛性ソーダ、苛性カリ等水に可溶な
融点が500゜C以下の塩類ならいずれを使用してもよ
く、またこれら塩類の数種を混合したものを使用しても
よい。
In addition to zinc chloride, any water-soluble salts with a melting point of 500°C or less, such as ammonium chloride, caustic soda, and caustic potassium, may be used to mix with zinc powder, and several types of these salts may be used. A mixture of these may also be used.

さらに、500゜C付近では溶融しない炭酸ナトリウム
、塩化ナI− IJウム、硫酸ナトリウム等の水に可溶
な塩類を前記亜鉛末の凝集防止剤として前記塩類に混合
添加しておくと一層効果的である。
Furthermore, it is even more effective if water-soluble salts such as sodium carbonate, sodium chloride, and sodium sulfate, which do not melt at around 500°C, are mixed and added to the salts as an anti-agglomeration agent for the zinc dust. It is.

なお、条件によっては融点500’C以上の塩類と亜鉛
末との混合だけでも微粒亜鉛の生成は可能である。
Note that, depending on the conditions, it is possible to produce fine zinc particles simply by mixing salts with a melting point of 500'C or higher and zinc powder.

本発明は以上のように、純度の高い球形の微粒亜鉛を高
収率で簡単安価に製造することができ、原料亜鉛末と混
合する塩類も簡単に再生使用することができる。
As described above, according to the present invention, highly pure spherical fine zinc particles can be produced easily and inexpensively with high yield, and the salts mixed with the raw material zinc powder can also be easily recycled and used.

さらに、本発明法によれば、微粒亜鉛の製造に際して従
来のように原料亜鉛を溶融物として取扱わないため、使
用する装置・器具の材質等に格別考慮を払う必要もなく
、また従来のように固形亜鉛の粉砕を行なうものでもな
いから粉砕器からの夾雑物の混入の問題もないなど種々
の利点を有する。
Furthermore, according to the method of the present invention, raw material zinc is not handled as a molten material as in the past when producing fine zinc particles, so there is no need to pay special consideration to the materials of the equipment and instruments used, and unlike in the past, Since solid zinc is not ground, there are various advantages such as there is no problem of contamination from the grinder.

実施例 1 亜鉛末(−80〜+100メッシュ)1kgを塩化亜鉛
250gと混合し530゜Cで30分間加熱したときの
生成亜鉛粒の粒度分布は第1の通りである。
Example 1 When 1 kg of zinc powder (-80 to +100 mesh) was mixed with 250 g of zinc chloride and heated at 530°C for 30 minutes, the particle size distribution of zinc particles produced was as shown in the first example.

実施例 2 亜鉛末(−150〜+200メッシュ)1kgを塩化ア
ンモニウム50g、苛性ソーダ200gと混合して50
0゜Cで30分間加熱したときの生成亜鉛粒の粒度分布
は第2表の通りである。
Example 2 1 kg of zinc powder (-150 to +200 mesh) was mixed with 50 g of ammonium chloride and 200 g of caustic soda to
Table 2 shows the particle size distribution of zinc particles produced when heated at 0°C for 30 minutes.

。実施例 3 亜鉛末(−48〜+100メッシュ)1kgを塩化アン
モニウム50g、炭酸ナトリウム200gと混合して5
30゜Cで30分間加熱したときの生成亜鉛粒の粒度分
布は第3表の通りである。
. Example 3 1 kg of zinc powder (-48 to +100 mesh) was mixed with 50 g of ammonium chloride and 200 g of sodium carbonate to prepare 5
Table 3 shows the particle size distribution of zinc particles produced when heated at 30°C for 30 minutes.

実施例 4 亜鉛末(−100〜+150メッシュ)1kgを塩酸水
溶液200mgと混合し500゜Cで30分間加熱した
ときの生成亜鉛粒の粒度分布は第4表の通りである。
Example 4 Table 4 shows the particle size distribution of zinc particles produced when 1 kg of zinc powder (-100 to +150 mesh) was mixed with 200 mg of an aqueous hydrochloric acid solution and heated at 500°C for 30 minutes.

実施例 5 亜鉛末(−48〜+80メッシュ)1kgを苛性カリ2
00gと混合し530゜Cで30分間加熱したときの生
成亜鉛粒の粒度分布は第5表の通りである。
Example 5 1 kg of zinc powder (-48 to +80 mesh) was mixed with 2 ml of caustic potassium
Table 5 shows the particle size distribution of zinc particles produced when the zinc particles were mixed with 00g and heated at 530°C for 30 minutes.

Claims (1)

【特許請求の範囲】 1 無定形の亜鉛末と水に可溶な塩類とを混合して金属
亜鉛の融点以上に加熱した後、該塩類を分離することを
特徴とする微粒亜鉛の製造法。 2 前記塩類と前記微粒亜鉛との分離は水又は温水で洗
浄することにより行なわれ、洗浄水中に溶解した該塩類
は濃縮・再生して繰り返し使用する特許請求の範囲第1
項記載の微粒亜鉛の製造法。 3 前記亜鉛末と混合する塩類は塩化亜鉛、塩化アンモ
ニウム、苛性ソーダ、苛性カリ等の融点が500゜C以
下で水に可溶な塩類の1種又は数種を混合したものであ
る特許請求の範囲第1項又は第2項記載の微粒亜鉛の製
造法。 4 前記亜鉛末と塩類との混合物にはさらに塩化ナトリ
ウム、硫酸ナトリウム、炭酸ナトリウム等の融点が50
0゜C以上で水に可溶な塩類を添加してなる特許請求の
範囲第3項記載の微粒亜鉛の製造法。 5 前記塩化亜鉛は前記亜鉛末の一部に塩酸を混合して
生成したものである特許請求の範囲第3項又は第4項記
載の微粒亜鉛の製造法。
[Claims] 1. A method for producing fine zinc particles, which comprises mixing amorphous zinc powder and water-soluble salts, heating the mixture above the melting point of metal zinc, and then separating the salts. 2. Separation of the salts and the fine zinc particles is carried out by washing with water or hot water, and the salts dissolved in the washing water are concentrated and regenerated for repeated use.
A method for producing fine particulate zinc as described in . 3. The salt to be mixed with the zinc powder is one or a mixture of water-soluble salts having a melting point of 500°C or less, such as zinc chloride, ammonium chloride, caustic soda, and caustic potash. A method for producing fine zinc particles according to item 1 or 2. 4 The mixture of zinc powder and salts further contains sodium chloride, sodium sulfate, sodium carbonate, etc. with a melting point of 50
The method for producing fine zinc particles according to claim 3, which comprises adding salts that are soluble in water at temperatures above 0°C. 5. The method for producing fine zinc particles according to claim 3 or 4, wherein the zinc chloride is produced by mixing a portion of the zinc powder with hydrochloric acid.
JP54018480A 1980-01-07 1979-02-21 Manufacturing method of fine zinc particles Expired JPS5814841B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18480A JPS5594969A (en) 1979-01-09 1980-01-07 Mixture made from polyamideimide resin and epoxide compound

Publications (2)

Publication Number Publication Date
JPS55113801A JPS55113801A (en) 1980-09-02
JPS5814841B2 true JPS5814841B2 (en) 1983-03-22

Family

ID=11466903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54018480A Expired JPS5814841B2 (en) 1980-01-07 1979-02-21 Manufacturing method of fine zinc particles

Country Status (1)

Country Link
JP (1) JPS5814841B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398155U (en) * 1986-12-18 1988-06-25
JPH0965991A (en) * 1995-06-13 1997-03-11 Mousho O Disposable type cutting board cover

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338699B1 (en) * 2007-02-08 2013-12-06 서울시립대학교 산학협력단 Method for manufacturing metal ball
EP2581430B9 (en) * 2011-10-14 2017-12-13 Hitam France Anticorrosive composition based on chloride ions
FR2981342B1 (en) 2011-10-14 2016-01-08 Hitam France ANTI-CORROSIVE CHLORIDE ION-BASED COMPOSITION

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398155U (en) * 1986-12-18 1988-06-25
JPH0965991A (en) * 1995-06-13 1997-03-11 Mousho O Disposable type cutting board cover

Also Published As

Publication number Publication date
JPS55113801A (en) 1980-09-02

Similar Documents

Publication Publication Date Title
US4430241A (en) Mixed nitrate salt heat transfer medium and process for providing the same
JPS59146920A (en) Manufacture of pure metal silicon
JP3429985B2 (en) Method for producing silver powder composed of hexagonal plate-like crystal silver particles
JPS5814841B2 (en) Manufacturing method of fine zinc particles
US4238467A (en) Method of producing yttrium oxide with particularly big particles
US2465989A (en) Process for producing elemental boron
JPS6016370B2 (en) Production of low density granular sodium tripolyphosphate
EP0742175B1 (en) Process for production of dense soda ash from soda ash fines
WO1993017963A1 (en) Preparation of granular alkali metal borate compositions
US2860033A (en) Method of making granular sodium metasilicate
JP2003095780A (en) Granular magnesia fertilizer and method of manufacturing the same
JP3508554B2 (en) Method for producing high-purity thallium iodide and spherical high-purity thallium iodide
JPH09241698A (en) Production of high-bulk density granular detergent composition
FI93942B (en) Process for making titanium dioxide powder not used as pigment
JPH07188193A (en) Production of melamine cyanurate
US2092054A (en) Process for granulating materials
US1855676A (en) Compositions containing alkali metal peroxides
US2182613A (en) Granular calcium phosphate and manufacture thereof
US2762686A (en) Purification of calcium carbonate in molten bath of alkali metal carbonates and hydroxides
JPS6230540A (en) Preparation of powdery electrolyte compound mixture for dialysis of artificial kidney
JPS5845181A (en) Manufacture of magnesia-containing granular composite fertilizer
US1890875A (en) Preparations which give off oxygen and manufacture of same
JPS59116155A (en) Granular slag softening agent and manufacture
JPS63130720A (en) Production of pellet for fine powder raw material
JPS5997527A (en) Manufacture of high purity alumina particle