JPS58147813A - Magnetic recording and reproducing device - Google Patents

Magnetic recording and reproducing device

Info

Publication number
JPS58147813A
JPS58147813A JP3033182A JP3033182A JPS58147813A JP S58147813 A JPS58147813 A JP S58147813A JP 3033182 A JP3033182 A JP 3033182A JP 3033182 A JP3033182 A JP 3033182A JP S58147813 A JPS58147813 A JP S58147813A
Authority
JP
Japan
Prior art keywords
waveform
input terminal
signal
circuit
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3033182A
Other languages
Japanese (ja)
Inventor
Hideaki Uchikura
内蔵 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computer Basic Technology Research Association Corp
Original Assignee
Computer Basic Technology Research Association Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computer Basic Technology Research Association Corp filed Critical Computer Basic Technology Research Association Corp
Priority to JP3033182A priority Critical patent/JPS58147813A/en
Publication of JPS58147813A publication Critical patent/JPS58147813A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10212Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter compensation for data shift, e.g. pulse-crowding effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Digital Magnetic Recording (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

PURPOSE:To reduce both of a peak shift due to a demagnetizing field generated by a previous bit on a recording medium during recording and a peak shift due to the asymmetry of intervals of magnetism inversion. CONSTITUTION:A signal inputted to an input terminal 71 is supplied to the plus input terminal 77 of an adder 74 through a delay circuit 72 and also supplied to the input terminal of the 2nd delay circuit 73. The output signal of the delay circuit 73 is supplied to the 1st minus input terminal 78 of the adder 74. Further, the signal inputted to the input terminal 71 is supplied to the 2nd minus terminal 79 of the adder 74 through a voltage divider 75. The adder 74 performs arithmetic of (voltage at plus input terminal 77) - (voltage at 1st minus input terminal) - (voltage at 2nd minus input terminal) and sends out its output to an output terminal 80. The output reduces peak shifts due to waveform interference while reducing the influence of a demagnetizing field.

Description

【発明の詳細な説明】 本発明は磁気記録再生装置に関し1%に再生回路を有す
る磁気記録再生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording and reproducing device, and relates to a magnetic recording and reproducing device having a reproducing circuit in 1%.

磁気記録再生装置の一般的な記録再生回路は第1図に示
すように、書込みデータが書込みデータ入力端子3に入
力されると、変調器4によって所定のコード変換が成さ
れ、書込み回路5によって磁気ヘッドlのコイル6に第
2図に示す波形21の書込み電流が供給され、磁気記録
媒体2に磁化情報として書込みデータを記録する。
As shown in FIG. 1, in a general recording and reproducing circuit of a magnetic recording and reproducing device, when write data is input to a write data input terminal 3, a predetermined code conversion is performed by a modulator 4, and a predetermined code conversion is performed by a write circuit 5. A write current having a waveform 21 shown in FIG. 2 is supplied to the coil 6 of the magnetic head l, and write data is recorded on the magnetic recording medium 2 as magnetization information.

再生時は記録媒体2の磁化情報が、ta気ヘッド1によ
って検出され、コイル6に信号電圧を紡起し、第2図の
波形22のように読出し電圧22¥r読出し増幅器7で
増幅し、ピーク検出器8で、続出し波形のピークタイミ
ングに対応したピークパルス23を検出する。この際、
記録されたタイミングに対し、検出されたピークパルス
23のタイミングは時間差24.25のごとくずれて検
出される。これは、前後に記録された磁化情報の干渉に
よるものである。ピークパルス23は同期発撮器9およ
び、復調器10に供給され、同期発振器9では、ピーク
パルスの平均クロック周波数に同期したクロック信号を
発生し、そのクロックによってデータ弁別クイ/ドパル
ス26を発生し、復調器lOで、弁別ウィンド内にピー
クパルスが有るか無いかで読出し信号全論理弁別し、読
出しデータパルスとして出力端子11に出力する。
During reproduction, magnetization information of the recording medium 2 is detected by the magnetic head 1, a signal voltage is generated in the coil 6, and the read voltage 22\r is amplified by the read amplifier 7 as shown in the waveform 22 in FIG. A peak detector 8 detects a peak pulse 23 corresponding to the peak timing of the successive waveform. On this occasion,
The timing of the detected peak pulse 23 is detected with a time difference of 24.25 with respect to the recorded timing. This is due to interference between magnetization information recorded before and after. The peak pulse 23 is supplied to a synchronous oscillator 9 and a demodulator 10, and the synchronous oscillator 9 generates a clock signal synchronized with the average clock frequency of the peak pulse, and uses the clock to generate a data discrimination quid pulse 26. , a demodulator 10 performs full logic discrimination on the readout signal depending on whether there is a peak pulse within the discrimination window, and outputs it to the output terminal 11 as a readout data pulse.

この一連の復調動作の時、記録された磁化情報の干渉の
ため検出されたピークパルスは、記録タイミングに対し
、相対的にずれて検出される場合がある。このことを一
般的にピークシフトと呼んでいるが、このピークシフト
が大きくなると、所定の弁別ウィンドから飛び出したり
、余分に混入したりして、データエラーを引き起す。第
3図に記録電流の一例と、それに対応するピークシフト
の一例管示す。一般にピークシフトは、磁化反転間隔が
1前後で非対称の場合、その磁化情報の干渉が非対称に
なるため発生するが、第3図の区間32および区間33
のそれぞれの中心磁化反転部は前後の磁化反転間隔が対
称であっても、そのピークシフトは37.38のように
違った値を持ってしまう。これは記録時に、既に記録さ
れた前の磁化パターンから発生する減磁界が重畳して記
録されるためで、全て記録したいタイミングよりも前に
7フトして記録されてしまう。この77トは減磁界が大
きい程大きくなるので、磁化反転間隔の小さい区間33
の方が磁化反転間隔の大きい区間32より大きくなって
しまう。ピークシフト39および40は、減磁界による
効果と既に説明した磁化反転間隔の非対称による効果の
重畳して発生したものである。
During this series of demodulation operations, the detected peak pulse may be detected with a relative shift with respect to the recording timing due to interference of recorded magnetization information. This is generally called a peak shift, and if this peak shift becomes large, the signal may jump out of a predetermined discrimination window or may be mixed in excessively, causing data errors. FIG. 3 shows an example of a recording current and an example of a corresponding peak shift. In general, a peak shift occurs when the magnetization reversal interval is around 1 and is asymmetric, because the interference of the magnetization information becomes asymmetric.
Even if the magnetization reversal intervals before and after the central magnetization reversal portions are symmetrical, the peak shifts will have different values such as 37.38. This is because during recording, the demagnetizing field generated from the previous magnetization pattern that has already been recorded is superimposed on the recording, and all data is recorded 7 feet before the desired recording timing. This 77g becomes larger as the demagnetizing field becomes larger, so the area 33 where the magnetization reversal interval is small
is larger than the section 32 where the magnetization reversal interval is large. The peak shifts 39 and 40 are caused by the superposition of the effect due to the demagnetizing field and the effect due to the asymmetry of the magnetization reversal interval described above.

従来実施されているピーク7フトヲ低減させる再生回路
の一部であるピークシフト補償回路會第4図に示す。こ
のピークシフト補償回路は一般的に第1図の読出し増幅
器7とピーク検出器8の間に挿入される。このピークシ
フト補償回路について、孤立磁化反転波形を例にとって
説明する@磁気ヘッドコイル6に誘起した信号電圧は、
読出し増幅器7で増幅され、第4図の入力端子41に入
力する。入力波形は遅延回路42で遅延し、加算器43
のプラス入力端子46に供給されると共に分圧器44で
分圧され、加算器43のマイナス入力端子47に供給さ
れる。一方遅延回路42の出力端は開放なので入力信号
は全反射し、入力端子41に現われる。この入力端子4
1に現われた波形は分圧器44+分圧され、同様に加算
器43のマイナス入力端子j7に供給される。この回路
による動作波形は第5図に示される。すなわち波形51
.53は入力端子41に現われた波形を分圧器44で分
圧したi形で、加算回路のマイナス入力端子に入力する
ので便宜上極性を逆にしである。
FIG. 4 shows a peak shift compensation circuit, which is part of a conventional regeneration circuit that reduces the peak by 7 feet. This peak shift compensation circuit is generally inserted between readout amplifier 7 and peak detector 8 in FIG. This peak shift compensation circuit will be explained using an isolated magnetization reversal waveform as an example.@The signal voltage induced in the magnetic head coil 6 is as follows.
The signal is amplified by the read amplifier 7 and input to the input terminal 41 in FIG. The input waveform is delayed by a delay circuit 42 and then sent to an adder 43.
The voltage is supplied to the plus input terminal 46 of the adder 43, divided by the voltage divider 44, and supplied to the minus input terminal 47 of the adder 43. On the other hand, since the output terminal of the delay circuit 42 is open, the input signal is totally reflected and appears at the input terminal 41. This input terminal 4
The waveform appearing at 1 is voltage-divided by the voltage divider 44+, and is similarly supplied to the negative input terminal j7 of the adder 43. The operating waveforms of this circuit are shown in FIG. That is, waveform 51
.. Reference numeral 53 is an i-type waveform obtained by dividing the waveform appearing at the input terminal 41 by the voltage divider 44, and the polarity is reversed for convenience since it is input to the minus input terminal of the adder circuit.

波形53は入力波iの反射波で、遅延回路42の遅延時
間Tの2倍遅れる。波形52は遅延回路42の出力で入
力波形より遅延時間Tだけ遅れる。加算器43の出力4
5には、波形52から波形51および波形53f:減じ
た波形54を出力する。波形54は1元の波形52に比
ベパルス巾が小さくなり前後の波形への干渉量が小さく
なるので、ピークシフトが小さくなる。しかしながら、
第5図の波形は時間的な中心軸55に対して対称な波形
を想定したが、実際には、前述したように孤立磁化反転
波形が対称に近くても、記録時に、既に記録された前の
磁化部から発生する減磁界が重畳して記録されるため、
第3図の36のようなピークシフトを発生させる孤立磁
化反転波形を演算により求めると第6図の波形62のよ
うに前縁が後縁に比べ広がった形となるのでその出力は
波形64のように非対称罠なってしまう。従ってこの種
の従来回路では記録時の減磁界の影響によるピークシフ
トの改善効果は期待できない。
A waveform 53 is a reflected wave of the input wave i, and is delayed by twice the delay time T of the delay circuit 42. The waveform 52 is the output of the delay circuit 42 and is delayed by the delay time T from the input waveform. Output 4 of adder 43
5, a waveform 54 obtained by subtracting the waveform 51 and the waveform 53f from the waveform 52 is output. The waveform 54 has a smaller pulse width than the one-element waveform 52, and the amount of interference with the previous and subsequent waveforms becomes smaller, resulting in a smaller peak shift. however,
Although the waveform in FIG. 5 is assumed to be symmetrical with respect to the temporal central axis 55, in reality, as described above, even if the isolated magnetization reversal waveform is nearly symmetrical, when recording, Since the demagnetizing field generated from the magnetized part of the magnet is recorded in a superimposed manner,
When the isolated magnetization reversal waveform that causes a peak shift such as 36 in FIG. 3 is calculated, the leading edge becomes wider than the trailing edge as shown in waveform 62 in FIG. It becomes an asymmetrical trap. Therefore, in this type of conventional circuit, no improvement in peak shift due to the influence of a demagnetizing field during recording can be expected.

本発明は記録時に既に記録された記録媒体上の前ピッ)
Kより発生する減磁界の影響により発生するピークシフ
トと、VB磁化反転間隔非対称性に起因するピークシフ
トの両方のピークシフトを低減するのに有効な再生回路
を提供し、さらに続出しデータの信頼度を向上させた磁
気記録再生装置を提供するものである。
The present invention is capable of recording the previous pixel on the recording medium that has already been recorded during recording.
The present invention provides a reproducing circuit that is effective in reducing both the peak shift caused by the demagnetizing field generated by K and the peak shift caused by the asymmetry of the VB magnetization reversal interval, and further improves the reliability of continuous data. The present invention provides a magnetic recording and reproducing device with improved performance.

本発明によれば磁気記録再生装置の再生回路において、
磁気ヘッドからの再生信号を入力し、その入力信号を第
1の遅延回路で遅延させた第1の信号と、前記入力信号
を第1の信号振幅より減衰させた第2の信号と、第1の
信号をさらに第2の遅延回路で遅延させかつ第1の信号
振幅よシ減衰させた第3の信号とを発生させ、@1の信
号から。
According to the present invention, in the reproducing circuit of a magnetic recording and reproducing device,
A first signal obtained by inputting a reproduction signal from a magnetic head and delaying the input signal in a first delay circuit, a second signal obtained by attenuating the input signal from the first signal amplitude, and a first signal. The signal is further delayed by a second delay circuit and a third signal whose amplitude is attenuated compared to the first signal is generated from the signal @1.

第2の信号と第3の信号を減じるように構成された減算
回路で構成され、第1の遅延回路の遅延時間を第2の遅
延回路の遅延時間より大とする第1の手段かまたは、第
3の信号振幅を第2の信号振幅より小とする第2の手段
、または前記第1の手段と第2の手段との組合せによる
手段を用いる磁気記録再生回路全盲することを特徴とす
る磁気記録再生装置が得られる。
A first means comprising a subtraction circuit configured to subtract the second signal and the third signal, and making the delay time of the first delay circuit larger than the delay time of the second delay circuit, or A magnetic recording and reproducing circuit using a second means for making the third signal amplitude smaller than the second signal amplitude, or a combination of the first means and the second means, completely blinding the magnetic recording and reproducing circuit. A recording and reproducing device is obtained.

記録磁界に、既に記録されている直紡の磁化パターンの
減磁界が重畳するため、記録された磁化パターンが歪ん
でしまう。この歪は記録された磁化パターン列を孤立磁
化反転再生信号の重ね合さったものとして個々の孤立磁
化反転再生信号に分離してみると、ちょうど孤立磁化反
転再生信号の前縁の立上り時間が大きく1幅の広がった
波形となるので、再生時の波形修正の時、#縁の修正量
を後縁の修正量より大きくして、減磁界の影q#を補償
するものである。
Since the demagnetizing field of the direct-spun magnetization pattern that has already been recorded is superimposed on the recording magnetic field, the recorded magnetization pattern is distorted. This distortion is caused by the fact that when the recorded magnetization pattern sequence is separated into individual isolated magnetization reversal reproduction signals as a superposition of isolated magnetization reversal reproduction signals, the rise time of the leading edge of the isolated magnetization reversal reproduction signal is exactly 1 Since the waveform is widened, when modifying the waveform during reproduction, the amount of modification for the # edge is made larger than the amount of modification for the trailing edge to compensate for the influence of the demagnetizing field q#.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第7図は本発明の一実施例に用いられるピークシフトを
補償する回路を示す。この回路は一般的な磁気記録再生
回路の読出し増巾器7とピーク検出器8の間に挿入され
る。なお、磁気記録再生回路の全般については第1図に
示す従来回路と同じであるので、省略する。
FIG. 7 shows a circuit for compensating for peak shift used in one embodiment of the present invention. This circuit is inserted between the readout amplifier 7 and the peak detector 8 of a general magnetic recording/reproducing circuit. The general structure of the magnetic recording/reproducing circuit is the same as the conventional circuit shown in FIG. 1, so a description thereof will be omitted.

第7図において、入力端子71は磁気ヘッドの再生出力
電圧を増巾した続出し増巾器7からの信号が入力される
。入力端子71に入力した信号は遅延回路72を経て加
算器74のプラス入力端子77に供給されると共に第2
の遅延回路730入力端子に供給される。遅延回路73
の出力信号は分圧器76を経て加算器74の第1のマイ
ナス入力端子78に供給される。また入力端子71に入
力した信号は分圧器75を経て加算器74の第2のマイ
ナス端子79に供給される。加算器74#i(プラス入
力端子77の電圧)−(第1のマイナス入力端子の電圧
)−(第2のマイナス入力端子の電圧)を演算し、出力
端子80にその出力を送出する。第8図は第7図の動作
を説明する各部の波形であって、以下に述べる特徴的な
動作を説明する。
In FIG. 7, an input terminal 71 receives a signal from a continuous amplifier 7 which amplifies the reproduction output voltage of the magnetic head. The signal input to the input terminal 71 is supplied to the plus input terminal 77 of the adder 74 via the delay circuit 72, and the second
is supplied to the delay circuit 730 input terminal of. Delay circuit 73
The output signal of is applied to a first negative input terminal 78 of adder 74 via voltage divider 76 . Further, the signal input to the input terminal 71 is supplied to the second negative terminal 79 of the adder 74 via the voltage divider 75. Adder 74 #i calculates (voltage at positive input terminal 77) - (voltage at first negative input terminal) - (voltage at second negative input terminal), and sends the output to output terminal 80. FIG. 8 shows waveforms of various parts for explaining the operation of FIG. 7, and the characteristic operation described below will be explained.

既に述べたように孤立磁化反転再生波形は波形のピーク
から降した中心4IKはぼ対称な波形であっても、記録
時に既に記録された前ビットの減磁界が重畳して記録さ
れた場合のピークシフトは第3図のような傾向にな#)
、入力信号波形をこのようなピークシフトを発生させる
孤立磁化反転波形に演算により分離すると、第8図の波
形82のよ−うに前縁に比べ後絶が広がった波形になる
。したがって孤立磁化反転波形前縁の補償量を後縁の補
償量より大きくしておけば、減磁界の影響を減少させる
と共に、波形干渉量を小さくする補償を実施することが
できる。第8図の波形81は入力端子71に入力する波
形を分圧器75で分圧した波形で。
As mentioned above, even though the isolated magnetization reversal reproduction waveform has a nearly symmetrical waveform, the center 4IK that descends from the peak of the waveform is the peak when the demagnetizing field of the previous bit that has already been recorded is recorded at the time of recording. The shift tends to be as shown in Figure 3.
When the input signal waveform is separated by calculation into an isolated magnetization reversal waveform that causes such a peak shift, a waveform with a trailing edge wider than a leading edge, as shown in waveform 82 in FIG. 8, is obtained. Therefore, by making the amount of compensation for the leading edge of the isolated magnetization reversal waveform larger than the amount of compensation for the trailing edge, it is possible to reduce the influence of the demagnetizing field and to perform compensation that reduces the amount of waveform interference. A waveform 81 in FIG. 8 is a waveform obtained by dividing the waveform input to the input terminal 71 by the voltage divider 75.

加算@74のマイナス入力端子に入力するため。To input to the minus input terminal of addition @74.

・ 便宜上極性を逆にしである。波形82け入力波形を
遅延回路72で時間T1だけ遅延した波形である。
- For convenience, the polarity is reversed. This waveform is obtained by delaying the 82 input waveforms by the delay circuit 72 by a time T1.

波形83は波形82t−さらに遅延回路73で時間T2
だけ遅延し1分圧器76で分圧した波形で、加算器74
のVイナス入力端子忙入力するため1便宜上極性を逆に
示しである。加算器74の出力端子80の波形は、各入
力波形81,82.83の合成で得られ、波形84が得
られる。仁の時、減磁界の効果を受けた波形は等価的に
前縁が広がった波形になるので、前縁を補償する波形8
1の振巾E1を後縁を補償する波形83の振巾E2より
大きくシ。
The waveform 83 is the waveform 82t--and is further processed by the delay circuit 73 for time T2.
The waveform is delayed by 1 and divided by the voltage divider 76, and the adder 74
For convenience, the polarity is shown reversed because the V-input terminal is used for input. The waveform at the output terminal 80 of the adder 74 is obtained by combining the respective input waveforms 81, 82, and 83, and a waveform 84 is obtained. When the waveform is affected by the demagnetizing field, it becomes a waveform whose leading edge is equivalently widened, so the waveform 8 that compensates for the leading edge is created.
1 is made larger than the amplitude E2 of the waveform 83 that compensates for the trailing edge.

かつ波形81から波形82までの時間TIを波形82か
ら波形83までの時間T2より大きくすることによって
、波形82の前縁の補償量を後縁の補償量より大きくす
ることができ、波形84が得られる。これらの波形82
.84は実際の記録再生波形を演算分離した波形である
ので、演算合成すれば元の波形に戻る。従って、記録時
に前ビットの減磁界の影響を受けて記録された磁化情報
の再生波形を第7図に示す回路に入力すれはその出力は
、減磁界の影vを減じつつ、波形干渉によるピークシフ
トを減じることができる。
In addition, by making the time TI from waveform 81 to waveform 82 larger than the time T2 from waveform 82 to waveform 83, the amount of compensation for the leading edge of waveform 82 can be made larger than the amount of compensation for the trailing edge. can get. These waveforms 82
.. Since 84 is a waveform obtained by computationally separating the actual recording/reproducing waveform, the original waveform can be restored by computationally synthesizing the waveform. Therefore, if the reproduced waveform of the magnetization information recorded under the influence of the demagnetizing field of the previous bit during recording is input to the circuit shown in FIG. Shifts can be reduced.

以上の動作主旨は、孤立磁化反転波形の前縁の補償量を
後縁の補償量を大きくすることにあるので、前述のTl
> T2およびw、>w2の条件は。
The purpose of the above operation is to increase the amount of compensation for the leading edge of the isolated magnetization reversal waveform compared to the amount of compensation for the trailing edge.
>T2 and w, the conditions for >w2 are.

単独に、T1> T2の条件のみまたはE、)E2の条
件のみを採用しても最良値までは改善されないKしても
いくらかの改善効果はあげられる。
Even if only the condition T1>T2 or only the condition E, )E2 is adopted, the improvement to the best value cannot be achieved. Even if K is used, some improvement effect can be achieved.

本発明は以上説明し九ように、記録時に前ピットから発
生する減磁界が影I#を受けて記録された磁化情報の再
生波形の持つピークシフトを再生時の干渉によるピーク
シフトと併せて補償することができ、磁汽記録装置の動
作余裕を大きくすることができる。
As explained above, the present invention compensates for the peak shift of the reproduced waveform of magnetization information recorded due to the shadow I# of the demagnetizing field generated from the previous pit during recording, together with the peak shift due to interference during reproduction. Therefore, the operating margin of the magnetoresistive recording device can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な磁気記録再生回路の実施例を示し九図
、#12図は第1図の動作を説明するための図、第3図
は記録電流波形とそれKよって生じるピークシフトの大
きさの一例を示した図、第4図はピークシフトを補償す
る従来回路を示す図。 第5図、第6図は第4図の動作を説明するための図、第
7図は本発明の実施例を示す図、および第8図は第7図
・の動作を説明するための各部の波形の図である。 l・・・・・・磁気ヘッド、2・・・・・・記録媒体、
3・・・・・・薔込みデータ入力端子、4・・・・・・
変調器、5・・・・・・書込み回路、6・・・・・・磁
気ヘッドのフィル、7・・・・・・読出し増巾器、8・
・・・・・ピーク検出器、9・・・・・・同期発振器。 10・・・・・・OI調器、11・・・・・・耽出しデ
ータ出力端子。 21・・・・・・誓込み電流波形、22・・・・・・読
出し電圧波形、23・・・・・・ピークパルス、26・
・・・・・弁別ウィンドパルス、27・・・・・・読出
しデータパルス、31・・・・・・書込み電流波形、3
6・・・・・・ピークシフト量の一例、41・・・・・
・入力端子、42・・・・・・遅延回路、43・・・・
・・加算器、44・・・・・・分圧器、45・・・・・
・加:JII器出力出力端子1・・・・・・入力端子、
72・・・・・・!1のSa回路、73・・・・・・第
2の遅延回路、74・・・・・・加算器。 75・・・・・・第1の分圧器、76・・・・・・第2
の分圧器。 80・・・・・・出力端子。 榮1図 拵2図
Figure 1 shows an example of a general magnetic recording/reproducing circuit. Figure #12 is a diagram for explaining the operation of Figure 1. Figure 3 shows the recording current waveform and the peak shift caused by it A diagram showing an example of the size, and FIG. 4 is a diagram showing a conventional circuit for compensating for peak shift. Figures 5 and 6 are diagrams for explaining the operation of Figure 4, Figure 7 is a diagram showing an embodiment of the present invention, and Figure 8 is a diagram for explaining the operation of Figure 7. FIG. 1...magnetic head, 2...recording medium,
3... Data input terminal, 4...
Modulator, 5...Writing circuit, 6...Magnetic head fill, 7...Reading amplifier, 8.
...Peak detector, 9...Synchronous oscillator. 10...OI adjustment device, 11...Enjoyment data output terminal. 21... Pledge current waveform, 22... Read voltage waveform, 23... Peak pulse, 26...
...Discrimination wind pulse, 27...Read data pulse, 31...Write current waveform, 3
6...Example of peak shift amount, 41...
・Input terminal, 42...Delay circuit, 43...
...Adder, 44...Voltage divider, 45...
・Additional: JII device output output terminal 1...Input terminal,
72...! 1 Sa circuit, 73... second delay circuit, 74... adder. 75...First voltage divider, 76...Second voltage divider
voltage divider. 80... Output terminal. Ei 1 drawing Koshirae 2 drawing

Claims (1)

【特許請求の範囲】 入力信号を第1の遅延回路で遅延させた第1の信号と、
前記入力信号を第1の信号振幅より減衰させた第2の信
号と、第1の信号をさらに第2の遅延回路で遅延させか
つ第1の信号振幅よp減衰させた第3の信号とを発生さ
せ、第1の信号から第2の信号と第3の信号を減じるよ
うに構成された減算回路からなる磁気記録再生回路にお
いて。 菖1の遅延回路の遅延時間を第2の遅延回路の遅延時間
よシ大とすることを特徴とする再生回路と第3の信号振
幅を第2の信号振幅よシ小とすることt411F黴とす
る再生回路との少なくとも一方の有する再生回路を具備
したことを特徴とする磁気記録再生装置。
[Claims] A first signal obtained by delaying an input signal in a first delay circuit;
a second signal obtained by attenuating the input signal from the first signal amplitude; and a third signal by further delaying the first signal by a second delay circuit and attenuating the first signal amplitude by p. In a magnetic recording/reproducing circuit comprising a subtraction circuit configured to generate a signal and subtract a second signal and a third signal from a first signal. A reproduction circuit characterized in that the delay time of the first delay circuit is larger than the delay time of the second delay circuit, and the third signal amplitude is smaller than the second signal amplitude. 1. A magnetic recording and reproducing device comprising: a reproducing circuit having at least one of a reproducing circuit and a reproducing circuit.
JP3033182A 1982-02-26 1982-02-26 Magnetic recording and reproducing device Pending JPS58147813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033182A JPS58147813A (en) 1982-02-26 1982-02-26 Magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033182A JPS58147813A (en) 1982-02-26 1982-02-26 Magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS58147813A true JPS58147813A (en) 1983-09-02

Family

ID=12300824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033182A Pending JPS58147813A (en) 1982-02-26 1982-02-26 Magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS58147813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182115A (en) * 1982-04-16 1983-10-25 Hitachi Ltd Waveform equalizing circuit
JPS61114611A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Waveform equalizing circuit
JPS61130074U (en) * 1985-01-31 1986-08-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182115A (en) * 1982-04-16 1983-10-25 Hitachi Ltd Waveform equalizing circuit
JPH0526242B2 (en) * 1982-04-16 1993-04-15 Hitachi Ltd
JPS61114611A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Waveform equalizing circuit
JPS61130074U (en) * 1985-01-31 1986-08-14

Similar Documents

Publication Publication Date Title
US4202017A (en) Magnetic recording signal equalization apparatus
KR960016898B1 (en) Dc restoration circuit for restoring and compensating a low frequency component lost in a digital signal
JPH09213007A (en) Data reproducing device
EP0385867A2 (en) Digital signal reproducing apparatus
JPS58147813A (en) Magnetic recording and reproducing device
US4521816A (en) Magnetic recording method for digital signal
KR940003663B1 (en) Digital signal reproducing circuit
JPS583117A (en) Magnetic recorder and reproducer
JP2615539B2 (en) Data shaping circuit
JPS6285513A (en) Automatic setting circuit for slice level
JP2638219B2 (en) Magnetic recording / reproducing circuit
JP2675018B2 (en) Magnetic recording method for digital signals
Graham Data detection methods vs head resolution in digital magnetic recording
JP3064549B2 (en) Magnetic recording device
JPS62149006A (en) Magnetic recording and reproducing device
KR100711684B1 (en) Digital data recording apparatus
JP2760329B2 (en) Signal reproducing circuit and magnetic disk device using the same
JPH02302905A (en) Data reproducing device for floppy disk device
JP3666215B2 (en) Tracking error detection circuit
WO1997017697A1 (en) Method and apparatus for recording a binary signal onto a record carrier
JPH01137473A (en) Recording and reproducing method for digital synchronizing signal
KR19990077909A (en) Data recording apparatus
JPH06349010A (en) Magnetic recording/reproducing device
JPH05325512A (en) Magnetic recording device and magnetic recording medium
JPH0581606A (en) Magnetic recording and reproducing device