JPS58147542A - Wear resistant alloy cast iron - Google Patents

Wear resistant alloy cast iron

Info

Publication number
JPS58147542A
JPS58147542A JP3014782A JP3014782A JPS58147542A JP S58147542 A JPS58147542 A JP S58147542A JP 3014782 A JP3014782 A JP 3014782A JP 3014782 A JP3014782 A JP 3014782A JP S58147542 A JPS58147542 A JP S58147542A
Authority
JP
Japan
Prior art keywords
vanadium
cast iron
carbide
casting
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3014782A
Other languages
Japanese (ja)
Other versions
JPS6051548B2 (en
Inventor
Tadao Matsumoto
松元 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3014782A priority Critical patent/JPS6051548B2/en
Priority to DE19823237985 priority patent/DE3237985C2/en
Publication of JPS58147542A publication Critical patent/JPS58147542A/en
Publication of JPS6051548B2 publication Critical patent/JPS6051548B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To obtain the titled cast iron preventing effectively the gravity segregation of VC and giving a large-sized casting or a centrifugally cast product having a homogeneous structure, by restricting the V content of a wear resistant cast iron alloy contg. a large amount of V and by adding Nb. CONSTITUTION:This wear resistant alloy cast iron consists of, by weight, 2.4- 3.6% C, 0.5-1.5% Si, 0.3-1.0% Mn, 3-8% Cr, <=9% Mo, <=8% W, 2-8% V, 2-8% Nb and the balance Fe with inevitable impurities or further contains <=3% Ni and/or 0.5-3% Co. Since Nb crystallizes as fine lump carbide in the presence of V after casting, Nb is substituted for part of V in crystallized VC with very low specific gravity, so the gravity segregation of high hardness VC can be prevented.

Description

【発明の詳細な説明】 本発明は耐摩耗鋳造合金、特に耐摩耗性に優れかつ鋳造
組織むらの少ない耐摩耗部材用鋳鉄合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wear-resistant cast alloy, particularly a cast iron alloy for use in wear-resistant members, which has excellent wear resistance and less unevenness in casting structure.

従来耐摩耗鋳鉄合金として、バナジウムを多量に含むも
のが知られている。バナジウムは炭素と化合して炭化バ
ナジウム(V C)を形成させるために添加される。炭
化バナジウムはりUム炭化物の約2倍の硬さを持ち、し
かもバナジウム量が炭素量に対して非常に多いので鋳造
凝固時に小塊状に晶出し、それを取巻くように、オース
テナイトが晶出するためにバナジウム炭化物そのものが
持つ耐摩耗性と共に、−靭性を良好にする効果がある。
Conventionally, wear-resistant cast iron alloys containing a large amount of vanadium are known. Vanadium is added to combine with carbon to form vanadium carbide (VC). Vanadium carbide is about twice as hard as Umu carbide, and since the amount of vanadium is very large compared to the amount of carbon, it crystallizes in small lumps during casting and solidification, and austenite crystallizes surrounding it. In addition to the wear resistance that vanadium carbide itself has, it also has the effect of improving toughness.

しかしながら、一般に鋳鉄溶湯の比重は、約7.0であ
るのに対し、晶出するバナジウム炭化物の比重は約4.
5と極めて小さい。このために、バナジウムを多量に含
む合金鋳鉄は、優れた耐摩耗性と靭性を併せ持つ反面、
大型鋳物あるいは、遠心鋳造鋳物においては、バナジウ
ム炭化物の重量偏析が起り、健全な鋳物が得られないと
い・)欠貞がある。すなわち、大型鋳物においては、晶
出したバナジウム炭化物は、上方に浮上して、鋳物り部
では第1図(al顕微鏡写真に見られるとおり、白い塊
状バナジウム炭化物は、全面に分布しているのに対し、
1hにおいては、第1図fblに見られると4Jす、ル
−ク状のM6C炭化物が多く見られ、バナジウム炭化物
の少ない鋳造組織となる。また、遠心鋳造では、この晶
出したバナジウム炭化物は、回転軸の君側に集中分布す
ることになり、これが、鋳物そのものの耐摩耗性と靭性
において、部分的な不均一をもたらすという欠点があっ
た。
However, while the specific gravity of molten cast iron is generally about 7.0, the specific gravity of crystallized vanadium carbide is about 4.0.
5, which is extremely small. For this reason, alloyed cast iron containing a large amount of vanadium has both excellent wear resistance and toughness, but on the other hand,
In large castings or centrifugal castings, weight segregation of vanadium carbides occurs, making it impossible to obtain sound castings. In other words, in large castings, the crystallized vanadium carbide floats upward, and in the casting area, as seen in the micrograph shown in Fig. On the other hand,
At 1h, as shown in Fig. 1fbl, at 4J, there are many rook-shaped M6C carbides and a cast structure with few vanadium carbides. In addition, in centrifugal casting, the crystallized vanadium carbide is concentrated and distributed on the side of the rotating shaft, which has the disadvantage of causing local unevenness in the wear resistance and toughness of the casting itself. Ta.

本発明の目的は、かかる高バナジウム鋳鉄合金に才)け
るバナジウム炭化物の重力偏析を効果的に防1にし、均
質な組織を持った大型鋳物あるいは、遠心鋳造鋳物に適
した耐摩耗鋳造用合金を提供することにある。
The purpose of the present invention is to effectively prevent gravity segregation of vanadium carbides in such high vanadium cast iron alloys, and to create a wear-resistant casting alloy suitable for large castings with a homogeneous structure or centrifugal casting castings. It is about providing.

すなわち、本発明は、バナジウム炭化物中のバナジウム
の一部をニオブによって置換することによりバナジウム
炭化物の重力偏析の発生を防止するものであり、これに
よって、バナジウム炭化物が鋳物の全面に均一に分布し
た大型鋳物、遠心鋳造鋳物が得られるという知見にもと
づいて完成されたものである。
That is, the present invention prevents the occurrence of gravitational segregation of vanadium carbide by substituting a part of the vanadium in the vanadium carbide with niobium. It was completed based on the knowledge that castings and centrifugal castings can be obtained.

この場合、ニオブはバナジウムと同様MC型炭化物を形
成する元素である。このMC型炭化物Cある炭化ニオブ
(N b C”)の比重は炭化バナジウムの比重が約4
.5であるのに対し、約7.7と^く、これは鉄の比重
に近いので鋳造凝固時、浮上して偏析を起しにくい特徴
がある。しかし硬さは炭化バナジウムがfly2800
であるのに比べ1Iv2400と低い。また原子量もバ
ナジウムが50.92であるのに対しニオブは92.9
1と大きいため、同−分7−1のMC型炭化物を形成す
るためにはバナジウムの約倍量のニオブが必要となる。
In this case, niobium is an element that forms MC type carbide like vanadium. The specific gravity of this MC type carbide C, niobium carbide (N b C''), is about 4, while the specific gravity of vanadium carbide is about 4.
.. 5, whereas it is about 7.7, which is close to the specific gravity of iron, so it is less likely to float and cause segregation during casting and solidification. However, the hardness of vanadium carbide is fly2800.
It is low at 1Iv2400 compared to . Also, vanadium has an atomic weight of 50.92, while niobium has an atomic weight of 92.9.
Since the amount of niobium is as large as 1, approximately twice the amount of niobium as vanadium is required to form a MC type carbide with a ratio of 7-1.

本発明はこれを所定のタングステン(又はモリブデン)
その他の合金元素併用により補い完成し。
The present invention uses a predetermined tungsten (or molybdenum)
Completed by supplementing with other alloying elements.

たものであり、一般に鋳造後、焼入、焼もどし処理を行
って基地を強化して使用に供するものである。
After casting, the base is generally hardened and tempered to strengthen it before use.

そして、本発明の耐摩耗合金鋳鉄は、重量a分率テ炭素
2.4〜3.6、ケイs0.5〜1.5、マンカン0.
3〜1.0、クロム3〜8、モリブデン9以F、タング
ステン8にl下、バナジウム2〜B、ニオブ2〜8およ
び残部鉄および不可避不純物よりなるごとを特徴とし、
さらに、これに、二・ノケル3以Fおよびコバルト0.
5〜3の1種以上を含有させたものである。
The wear-resistant alloy cast iron of the present invention has a weight a fraction of carbon of 2.4 to 3.6, a s of of 0.5 to 1.5, and a mankan of 0.
3 to 1.0, chromium 3 to 8, molybdenum 9 to F, tungsten 8 to 1, vanadium 2 to B, niobium 2 to 8 and the balance iron and inevitable impurities,
Furthermore, to this, 2. Nokel 3 or more F and cobalt 0.
It contains one or more of 5 to 3.

本発明の耐摩耗鋳鉄合金を構成する各合金元素の技術的
な意義と添加量の限定根拠は以下のとおりである。
The technical significance of each alloying element constituting the wear-resistant cast iron alloy of the present invention and the basis for limiting the amount added are as follows.

炭素:炭素は添加バナジウムおよびニオブと結合し、M
C型炭化物を形成する他、クロム、タングステン、モリ
ブデン、鉄、マンガン等と結合して複合炭化物を形成さ
せるとともに基地中に固溶して基地に強度を与えるため
に添加する。炭素量が低いと炭化物の量が不足して耐摩
耗性が劣化し、また、鋳造性も悪くなって、健全な鋳物
を製造芝るごとかできず、その下限は2.4fl置%で
ある。
Carbon: Carbon is combined with added vanadium and niobium, M
In addition to forming C-type carbide, it is added to form a composite carbide by combining with chromium, tungsten, molybdenum, iron, manganese, etc., and to form a solid solution in the base to give strength to the base. If the carbon content is low, the amount of carbides will be insufficient and the wear resistance will deteriorate, and the castability will also deteriorate, making it impossible to produce sound castings, and the lower limit is 2.4 fl%. .

また、[iの量を増大すると形成した炭化物によって耐
摩耗性は向上するが、添加バナジウムとニオブとの結合
量を大幅に超えると、それぞれの共晶炭化物が、オース
テナイト粒界に晶出し、鋳物の強度を看しく低下させる
恐れがあり、その、ヒ限は、3.6重量%である。
In addition, when the amount of [i is increased, the wear resistance is improved by the carbides formed, but if the amount of bonding between added vanadium and niobium is significantly exceeded, each eutectic carbide crystallizes at the austenite grain boundaries, resulting in casting There is a risk that the strength of the material may be decreased unduly, and the limit is 3.6% by weight.

けい素:溶湯の酸化防止と鋳造性付与のために添加サレ
、コ(7) ?、、 メ4.:、t!、0.5〜1.5
11(@ o/6 )RL)素の含有が必要である。
Silicon: Added to prevent oxidation of molten metal and give castability (7) ? ,, Me4. :,t! , 0.5-1.5
11(@o/6)RL) element is required.

マンガン:けい素と同様溶渦中の合金元素の酸化防止の
ためと、不純物として鉱右原料、鰹料等から混入する硫
黄をMnSとして固定するために通常の鋳鉄と同様に0
.3〜t、oii置%添加する。
Manganese: Like silicon, it is used to prevent the oxidation of alloying elements in the melt, and to fix sulfur that comes in as impurities from mineral raw materials, bonito flakes, etc. as MnS.
.. 3~t, oii setting% is added.

クロムニクロムは、タングステン、モリブデン等の存在
の下で、基地に焼入れ性を与え、また、^湿強度を維持
するために添加する。そのためには、3重量%の添加が
必要であり、また、8111置%を超えると飽和する。
Chromium dichrome is added in the presence of tungsten, molybdenum, etc. to provide hardenability to the matrix and also to maintain wet strength. For this purpose, it is necessary to add 3% by weight, and if it exceeds 8111%, it will become saturated.

モリブデン:モリブデンは後述のタングステンと同様の
効果を持たせるために添加する。そして、タングステン
よりも焼入性をさらに助級するものであり、モリブデン
の添加により、焼入性、V%間耐摩耗性等は向上するが
、高価な元素であることと、タングステンと同様に九呂
炭化物の形成を促Jことからその上限は91!!m1%
とする。
Molybdenum: Molybdenum is added to provide the same effect as tungsten, which will be described later. It further improves hardenability than tungsten, and the addition of molybdenum improves hardenability, V% wear resistance, etc., but it is an expensive element and is similar to tungsten. Since it promotes the formation of Kuro carbide, the upper limit is 91! ! m1%
shall be.

タングステン:添加タングステンと炭素との結合による
タングステン炭化物は、バナジウム炭化物の一部を置換
して、その比重を増大させ、その重力偏析を防止する効
果とともに、共晶炭化物中や、基地中に固溶し、合金の
耐摩耗性や基地の高温軟化抵抗を増大させる。しかし、
タングステンの添加量の増大は、共晶炭化物の形成量を
増大して鋳物の靭性を低下させるので、バナジウムの最
高添加量との関連でその上限は8重量%とする。また、
タングステンは、モリブデンと殆ど同様の作用効果があ
り、モリブデンと相芽置換が可能である。
Tungsten: Tungsten carbide created by the combination of added tungsten and carbon replaces a part of vanadium carbide, increases its specific gravity, and has the effect of preventing its gravitational segregation, as well as solid solution in eutectic carbide and matrix. This increases the wear resistance of the alloy and the high temperature softening resistance of the matrix. but,
An increase in the amount of tungsten added increases the amount of eutectic carbide formed and reduces the toughness of the casting, so the upper limit is set at 8% by weight in relation to the maximum amount of vanadium added. Also,
Tungsten has almost the same effects as molybdenum, and can be substituted with molybdenum.

バナジウム:炭素との結合によって^硬度の炭化物を形
成させるために添加する。鋳物の強度を損うことなく、
晶出炭化物を均一に分布せしめた鋳物を得るためには、
2〜8重量%のIIIWB内にする必要がある知見に基
づ(ものである。
Vanadium: Added to form a hard carbide by combining with carbon. Without compromising the strength of the casting,
In order to obtain a casting with uniformly distributed crystallized carbides,
Based on the knowledge that IIIWB should be within 2-8% by weight.

ニオブ:鋳造後、バナジウムとバ存し−C1小塊状の炭
化物(MC)とし°C晶出す乙効果がある。この量が不
足すると晶出する炭化物(MC)中に、−オブが不足し
、比重が小さく、重力偏析を防止する効果はなく、その
下限は21!I置%である。また、ニオブは、その融点
が高いために、多量に添加4ることは、溶融温度の上昇
の必要性をもたらずので、その上限は8重量%である。
Niobium: After casting, Niobium remains with vanadium and crystallizes as small block-like carbide (MC) at °C, which has an effect. If this amount is insufficient, there will be a lack of -ob in the crystallized carbide (MC), the specific gravity will be small, and there will be no effect of preventing gravitational segregation, and the lower limit is 21! It is I setting%. Furthermore, since niobium has a high melting point, adding a large amount does not require an increase in the melting temperature, so the upper limit is 8% by weight.

なお本発明の炭素含有量の範囲においてMC炭化物を溶
湯から直接晶出させるのに必要なニオブは6重量%くバ
ナジウム重置%→0.5×ニオブ重量%の関係において
、添加する必要がある。
In addition, within the carbon content range of the present invention, the niobium required to directly crystallize the MC carbide from the molten metal needs to be added in the relationship of 6% by weight and % vanadium weight → 0.5 x niobium% by weight. .

本発明合金はさらに用途によ>7は上述した元素以外の
元素としてニッケル、コバル]等も併用使用することも
有効である。すなわち下達した元素のほかにニッケルを
3fI置%思ド、コバルトを0.5〜3重量%の@囲に
おいC少くともいずれが1種をさらに添加するものであ
る。なおこれらの元素の含有量を特定したのは次の理由
による。
Depending on the purpose of the present invention, it is also effective to use elements other than the above-mentioned elements such as nickel and cobal. That is, in addition to the elements mentioned above, nickel is added at 3fI%, cobalt is added at 0.5 to 3% by weight, and at least one of the following is added. The content of these elements was determined for the following reasons.

ニッケルは焼入れ性を著しく向上させる元素である。か
つ曲述した範囲で含有1されるタングステン(又はモリ
ブデン)、クロムの存在下では、ニッケルの3重量%添
加までは基地の高温軟化抵抗を低下させない。また鋳物
の形状、大きさによっ°ζは、通常の焼入れ時、3%以
下の適量添加により低い焼入速度で硬度を得ることがで
きる。またコバルトは0.5〜3重量%の添加で、50
0℃以上の高温と適当な水蒸気の交互接触を受ける状態
では、基地の表面にいわゆる黒皮スケールと称される耐
摩耗性が高く、かつ基地と強固に付着したスケールを生
じやすく、耐摩耗性に有利である。かかる用途に本発明
合金を用いる時、コバルトの添加は有効となる。
Nickel is an element that significantly improves hardenability. In the presence of tungsten (or molybdenum) and chromium contained within the above-mentioned range, the high temperature softening resistance of the matrix does not decrease until 3% by weight of nickel is added. Depending on the shape and size of the casting, hardness can be obtained at a low quenching rate by adding an appropriate amount of 3% or less during normal quenching. In addition, when cobalt is added at 0.5 to 3% by weight, 50%
When subjected to alternating contact with high temperatures of 0°C or higher and appropriate water vapor, the surface of the base has high abrasion resistance called so-called black scale, and scale that is firmly attached to the base is likely to occur. It is advantageous for When the alloy of the present invention is used for such purposes, the addition of cobalt becomes effective.

以トの知見に基づい°C本発明合金の特性を調べるべく
実験を行ったので、以下その実験内容及び結果を示す。
Based on the above knowledge, an experiment was conducted to investigate the properties of the alloy of the present invention at °C, and the contents and results of the experiment will be shown below.

本発明合金の鋳造組織例(X200)を第2図(a)。FIG. 2(a) shows an example of the casting structure (X200) of the alloy of the present invention.

(′b)に、また従来の高バナジウム合金の組織例(X
200)を第1図(al、 (blに示す。これらの組
織はいずれも耐摩耗部材として使用された圧延用ロール
における実施例であって、外径370mφ、内径250
mφ、長さ500tsのco2鋳型に鋳造し、800〜
850℃で焼なました鋳物の鋳造下面より400日上部
の断面で外径面から300位置の組織をそれぞれial
にまた鋳造下面より50鶴1部の断面で外径表面から3
0fi内部の組織をそれぞれfb)に示したものである
。   ゛ なお鋳造した鋳物の化学成分を第1表に示4゜第1表 ニオブが含有されない従来の^バナジウム合金の鋳物に
おいては、その上部組織は第1図(a)に示すとおり、
白い小塊状のバナジウム炭化物が高密度に分布している
のに対し、第1図1b)に示す下部組織ではバナジウム
炭化物の分布は殆ど見られない。これに対し、本発明合
金による鋳物の組織を示す第2図(at、 (b)に示
されるいずれの組織においCも、バナジウム炭化物の分
布状態には殆ど差異はなく、ニオブ−の添加によりバナ
ジウ炭化物の重力偏析は防止されたことを知ることがで
きる。
('b) also shows an example of the structure of a conventional high vanadium alloy (X
200) are shown in Figure 1 (al and bl). These structures are examples of rolling rolls used as wear-resistant members, and have an outer diameter of 370 mφ and an inner diameter of 250 mφ.
Cast in a CO2 mold with mφ and length of 500 ts, 800 ~
The structure at 300 positions from the outer diameter surface in a cross section 400 days above the bottom surface of the casting annealed at 850°C was ialized.
Also, from the bottom surface of the casting, the cross section of 1 part of 50 cranes is 3 mm from the outer diameter surface.
The internal organization of Ofi is shown in fb).゛The chemical composition of the cast castings is shown in Table 1. 4゜Table 1: Conventional vanadium alloy castings that do not contain niobium have the upper structure as shown in Figure 1 (a).
In contrast to the white nodular vanadium carbide distributed in a high density, the distribution of vanadium carbide is hardly seen in the substructure shown in FIG. 1b). On the other hand, there is almost no difference in the distribution of vanadium carbide in the structure of the castings made of the alloy of the present invention shown in FIGS. 2(at) and 2(b). It can be seen that gravitational segregation of carbides was prevented.

以トの如く、本発明合金は、MC型炭化物の重力偏析に
基づ<MC型炭化物の組織むらが少なく、大型鋳物や遠
心鋳造鋳物による耐摩耗鋳物の製造に適することが明ら
かである。
As described above, it is clear that the alloy of the present invention has less uneven structure of the MC type carbide due to the gravity segregation of the MC type carbide, and is suitable for manufacturing wear-resistant castings such as large castings and centrifugal castings.

【図面の簡単な説明】[Brief explanation of drawings]

添付図顕鏡写真(X200)は、鋳造組織を示し、第1
図(Iklおよび(blは、従来の鋳鉄鋳物の上部およ
び1部検繞組織を示し、第2図(alおよび(b)は本
発明合金鋳鉄による鋳物のそれぞれ第1図に対応する上
部及び下部検鏡組織を示す。 第1 (a) (a) (b) (b)
The attached microscopic photograph (X200) shows the casting structure, and the first
Figures (Ikl and (bl) show the upper and partial inspection structures of the conventional cast iron casting, and Figures 2 (al and (b)) respectively correspond to the upper and lower parts of the casting made of the alloy cast iron of the present invention in Figure 1. Showing microscopic tissue. 1st (a) (a) (b) (b)

Claims (1)

【特許請求の範囲】[Claims] 1.11量百分率で、炭素2.4〜3.6、けい素0.
5〜1.5、マンガン0.3〜1.0、クロム3〜8、
モリブデン9以下、タングステン8以下、バナジウム2
〜8、ニオブ2〜B、残部鉄および不可避不純物よりな
ることを特徴とする耐摩耗合金鋳鉄。 2、重量百分率で炭s2.4〜3.6、けい素0.5〜
1.5、−ンンガン0.3〜1.0、クロム3〜8、モ
リブデン9以下、タングステン8以下、バナジウム2〜
8、ニオブ2〜8、ニッケル3以下ならびにコバルト0
.5〜3の1種または2種、および、残部鉄ならびに不
可避不純物よりなることを特徴とする耐摩耗合金鋳鉄。
1.11% by weight, carbon 2.4-3.6, silicon 0.
5-1.5, manganese 0.3-1.0, chromium 3-8,
Molybdenum 9 or less, tungsten 8 or less, vanadium 2
-8. A wear-resistant cast iron alloy characterized by comprising niobium 2-B, the balance iron and inevitable impurities. 2.Charcoal s2.4~3.6, silicon 0.5~
1.5, -Nungan 0.3 to 1.0, Chromium 3 to 8, Molybdenum 9 or less, Tungsten 8 or less, Vanadium 2 to
8, Niobium 2-8, Nickel 3 or less and Cobalt 0
.. A wear-resistant alloy cast iron characterized by comprising one or two of Nos. 5 to 3, and the remainder iron and unavoidable impurities.
JP3014782A 1982-02-26 1982-02-26 Wear-resistant alloy cast iron Expired JPS6051548B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3014782A JPS6051548B2 (en) 1982-02-26 1982-02-26 Wear-resistant alloy cast iron
DE19823237985 DE3237985C2 (en) 1982-02-26 1982-10-13 Wear-resistant cast iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3014782A JPS6051548B2 (en) 1982-02-26 1982-02-26 Wear-resistant alloy cast iron

Publications (2)

Publication Number Publication Date
JPS58147542A true JPS58147542A (en) 1983-09-02
JPS6051548B2 JPS6051548B2 (en) 1985-11-14

Family

ID=12295647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3014782A Expired JPS6051548B2 (en) 1982-02-26 1982-02-26 Wear-resistant alloy cast iron

Country Status (2)

Country Link
JP (1) JPS6051548B2 (en)
DE (1) DE3237985C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162749A (en) * 1984-01-31 1985-08-24 Mitsubishi Heavy Ind Ltd Wear resistant cast iron containng much vanadium
JPS6227553A (en) * 1985-07-30 1987-02-05 Hitachi Ltd High-carbon-high-chromium steel and its production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9404786D0 (en) * 1994-03-11 1994-04-27 Davy Roll Company The Limited Rolling mill rolls
JP2841276B2 (en) * 1994-06-29 1998-12-24 川崎製鉄株式会社 Hot rolling roll outer layer material and method for manufacturing hot rolling roll
AT407646B (en) * 1997-07-10 2001-05-25 Weinberger Eisenwerk COMPONENT MADE FROM A WEAR-RESISTANT, MELT METALLICALLY PRODUCED MATERIAL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162749A (en) * 1984-01-31 1985-08-24 Mitsubishi Heavy Ind Ltd Wear resistant cast iron containng much vanadium
JPH0456102B2 (en) * 1984-01-31 1992-09-07 Mitsubishi Heavy Ind Ltd
JPS6227553A (en) * 1985-07-30 1987-02-05 Hitachi Ltd High-carbon-high-chromium steel and its production
JPH0456106B2 (en) * 1985-07-30 1992-09-07 Hitachi Ltd

Also Published As

Publication number Publication date
DE3237985A1 (en) 1983-09-22
JPS6051548B2 (en) 1985-11-14
DE3237985C2 (en) 1984-09-13

Similar Documents

Publication Publication Date Title
US4433032A (en) High chrome work roll
JP2778765B2 (en) Wear resistant composite roll
JP4787640B2 (en) Composite roll for rolling
JPS6036644A (en) Composite cylinder liner
JP2007245217A5 (en)
US4165407A (en) Adamite roll material for a rolling mill
JPS58147542A (en) Wear resistant alloy cast iron
WO2018124101A1 (en) Composite roll for rolling
JPH04141553A (en) Composite roll for hot rolling
TW390910B (en) High strength spheroidal graphite cast iron
JPS6014095B2 (en) Alloy chilled roll material with excellent crack resistance and wear resistance
JP4354718B2 (en) Composite roll for hot rolling made by centrifugal casting
JP5041938B2 (en) Composite roll for rolling
JPH0121862B2 (en)
JPS60124407A (en) High vanadium composite cast iron roll
JPS6126758A (en) Material for composite roll having superior seizing resistance
JPS58116911A (en) Composite roll and roller
JPS61133361A (en) Spheroidal graphite cast iron and its manufacture
JPS63266043A (en) Roll for hot rolling
JPH0768304A (en) Rolling roll for bar steel
JPS59130667A (en) Production of composite spherioidal graphite cast iron roll
JPS6160857A (en) Wear resistant casting
JPH0468378B2 (en)
JPS63303608A (en) Tough high chrome cast iron roll
JPH0364591B2 (en)