JPS58147502A - Manufacture of ferromagnetic metallic powder - Google Patents

Manufacture of ferromagnetic metallic powder

Info

Publication number
JPS58147502A
JPS58147502A JP57030354A JP3035482A JPS58147502A JP S58147502 A JPS58147502 A JP S58147502A JP 57030354 A JP57030354 A JP 57030354A JP 3035482 A JP3035482 A JP 3035482A JP S58147502 A JPS58147502 A JP S58147502A
Authority
JP
Japan
Prior art keywords
metal powder
metallic powder
temperature
reducing
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57030354A
Other languages
Japanese (ja)
Inventor
Shizuo Umemura
梅村 鎮男
Tatsuji Kitamoto
北本 達治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP57030354A priority Critical patent/JPS58147502A/en
Publication of JPS58147502A publication Critical patent/JPS58147502A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture ferromagnetic metallic powder having increased saturation magnetizability while almost preventing the deterioration of the squareness ratio by reducing iron-base oxyhydroxide or oxide and heat treating it at a specified temp. in an inert gas. CONSTITUTION:Iron oxyhydroxide such as alpha-FeOOH or oxide prepared by heat treating the iron oxyhydroxide is used as a starting material. The starting material is reduced at about 200-500 deg.C in a flow of a reducing gas, and the resulting iron-base metallic powder is heat treated at the reducing temp. -1,000 deg.C, preferably 400-800 deg.C in an inert gaseous atmosphere. Thus, ferromagnetic metallic powder with increased saturation magnetizability and a superior squareness ratio is obtd.

Description

【発明の詳細な説明】 本発明は強磁性金属粉末の製造法、及びこれに1りて祷
7を強磁性金属粉末【用い喪磁気記鍮媒体に胸するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for producing ferromagnetic metal powder, and more particularly, to a method for producing ferromagnetic metal powder and a magnetic recording medium using the ferromagnetic metal powder.

最近の磁気記録媒体として、磁気記録!!駅の向上、再
生出力の向上を目的として、飽和磁化(σ味・抗磁力の
^い磁性体である*a性金金属粉末用い次磁気テープが
用いられるLうになつ九。一方、強磁性金属粉末の製造
法としては次の工うな方法か一般的である。
Magnetic recording as a recent magnetic recording medium! ! In order to improve the station and playback output, magnetic tape is used using gold metal powder, which is a magnetic material with high saturation magnetization (σ taste and coercive force). The following method is generally used to produce the powder.

(υ III磁1!!1金属のM砿酸塩を澗熱分解し還
元性気体で還元する方法。
(υ III Magnetism 1!!1 A method of thermally decomposing a metal M balate and reducing it with a reducing gas.

(2)針状オキシ水酸化物あるいは、これ等に他金11
11を含有せしめ喪ものあるいねこれらOオキシ水酸化
物から得九針状酸化鉄を還元性気体で還元する方法。
(2) Acicular oxyhydroxide or other gold 11
A method of reducing nine-acicular iron oxide obtained from these O oxyhydroxides with a reducing gas.

(3)強磁性金ll4t−低圧の不活性ガス中で蒸発さ
せる方法。
(3) Ferromagnetic gold 114t - method of evaporation in low pressure inert gas.

(4)強磁性体をつくp得る金属の塩の水浴液中で還元
性智IjIL(水素化ホウ嵩す)リウム、次亜リン酸塩
など)を用いて還元する方法。
(4) A method in which a ferromagnetic material is produced by reducing a metal salt using a reducing agent (such as borohydride, hypophosphite, etc.) in a water bath solution.

(5)金属カルボニル化金物を熱分解する方法。(5) A method of thermally decomposing a metal carbonylated metal.

本発明は、このうち(2)の方法に係るものである。The present invention relates to method (2).

この方法に属する従来の方法についてに、いくつかの欠
点が指摘できる。
Several drawbacks can be pointed out regarding conventional methods belonging to this method.

脅に、還元が通常高温水素気流中で行なわれる為、焼結
が生じ島く、望ましい磁気特性を得る事がむづかしい。
Unfortunately, reduction is usually carried out in a high-temperature hydrogen stream, which causes sintering and makes it difficult to obtain desirable magnetic properties.

fi雷はこの焼結を抑制する為、還元の温j[に低めに
設廷されるが、その場合生成される強磁性金Jlll)
末は多孔買で、比表面積の大きなものとなる。金属物禾
は9気中では、極めて酸化し中すい為、安だ化する為に
粒子表1ioに酸化物のmat形成せしめる必豐がある
。一方、出発物質のオキシ水酸化物、酸化物の粒子サイ
ズが小さい場合、上述の1うに多孔質な粉末を生成する
と、その比表面積が非常に大きくなる。従って、安定化
錫層て形成される酸化物の割合が増加し、全体の飽和磁
化が着しく減少すると云う好ましくない結果ta<。
In order to suppress this sintering, the fi lightning is set at a lower temperature of reduction, but the ferromagnetic gold produced in that case.
The final layer is porous and has a large specific surface area. Metallic materials are extremely susceptible to oxidation in the atmosphere, so it is necessary to form an oxide mat on the particle surface 1io in order to make it cheaper. On the other hand, when the particle size of the starting material oxyhydroxide or oxide is small, the specific surface area becomes very large when a porous powder is produced as described above. Therefore, the proportion of oxide formed in the stabilizing tin layer increases, and the overall saturation magnetization decreases, which is an undesirable result.

他方、この1うにして生成される強磁性金属粉末の抗磁
力は上述のボアの量中形骸粒子内に形成される結晶子の
大きさによって変化する。従って、ある矢筒つ走出@原
料から望みの抗磁力をもつ強磁性金属粉末t−倚るには
、熱処理の過程でボアのサイズ中量、あるいは結晶の成
長度などを制御する必要がある。しかるに従来の方法の
ように1還元性カス流中でボアの抑制や結晶の成長を促
すと、lWj時に焼結が生じ形骸が崩れる結果、抗磁力
の制#aできても、lWI#に角型比(残留磁化/飽和
磁化)が低下してしまい、好ましい磁気物性が得られな
い。
On the other hand, the coercive force of the ferromagnetic metal powder produced in this way varies depending on the size of the crystallites formed in the hollow particles described above. Therefore, in order to obtain a ferromagnetic metal powder having a desired coercive force from a certain raw material, it is necessary to control the bore size or the degree of crystal growth during the heat treatment process. However, if the bore is suppressed or the crystal growth is promoted in a 1-reducing waste flow as in the conventional method, sintering occurs at lWj and the structure collapses, resulting in an angular effect on lWI# even if the coercive force #a can be controlled. The type ratio (residual magnetization/saturation magnetization) decreases, making it impossible to obtain desirable magnetic properties.

本発明a上記欠点を解決するtのである。即ち、本尭−
の目的は、tiE/に、飽和磁化が大きく、シかも角型
比に優れ九強磁性金属粉末を提供する仁とKあp菖コに
、角型比を劣化させる事なく望みの抗磁力をもつ九強磁
性金属揚末を提供することにある。
The present invention solves the above-mentioned drawbacks. That is, Motoya-
The purpose of this is to provide TiE/ with a ferromagnetic metal powder with large saturation magnetization and excellent squareness ratio, and to provide the desired coercive force without deteriorating the squareness ratio. The purpose is to provide nine ferromagnetic metal powders.

本発明者勢は上記目的を連成する為に研究全型ねえ結果
、鉄を生成分とするオキシ水−化物もしくは鹸化物tj
1元倣、′l!に不活性ガス中で加熱見場する拳Kl)
角型比が殆んど劣化する事なく、飽和磁化が増加する事
を見出し本宛−に−1遍し良。
In order to combine the above objects, the inventors of the present invention conducted research on all types of products, and as a result, produced oxyhydrides or saponified products containing iron as a product.
One-dimensional imitation, 'l! The fist is heated in an inert gas (kl)
It was found that the saturation magnetization increased with almost no deterioration in the squareness ratio, and the book was rated good by -1.

本発明の出発物質としてはα−FeOOH。The starting material for the present invention is α-FeOOH.

β−F*OOH,r−Fe00HIkとのオキシ水酸化
鉄及びこれ等にNi 、Go 、Mn 、Zn 、Cu
 、Al。
β-F*OOH, iron oxyhydroxide with r-Fe00HIk and these with Ni, Go, Mn, Zn, Cu
, Al.

Cr 、Tiなどの金属の一つ又は二つ以上が添加され
丸もの、もしくはこれ尋を加熱処壊して祷られ、る酸化
鉄などが使用で禽る。これ等の出発物質tRyc性気1
を中テa o o @C−j o o @Ce)@ML
、好fi シ(l;2J j O@C−j 00 ”C
011j[rl1元される0本発明でに、ζうして得ら
れえ、鉄【生成分とする!41m粉末を更に不活性ガス
宴囲気中で加熱処理する。
One or more of metals such as Cr and Ti are added, and iron oxides, etc., which are made by heating and destroying round or thick pieces, are used. These starting materials tRyc 1
In the middle of the day ao o @C-j o o @Ce) @ML
, lovable し(l;2J j O@C−j 00 ”C
011j[rl1 element 0 In the present invention, ζ can be obtained, and iron is the generated component! The 41m powder is further heat treated in an inert gas atmosphere.

加熱処珈温IL0低すぎると熱処理の効果がなくなシ、
一方為すぎると不活性ガス中でも焼結が生じ好オしくな
い0本発明に用いられる強磁性金属粉末はH2気流中で
加熱還元して得られるものである。しかるに、既述の1
うに、不活性ガス中での加熱過程ては還元性ガス中での
加熱過@に比べて、原子の拡散、移動が1しく遅い。
If the heat treatment temperature IL0 is too low, the heat treatment will not be effective.
On the other hand, if the temperature is too high, sintering will occur even in an inert gas, which is undesirable. The ferromagnetic metal powder used in the present invention is obtained by heating reduction in an H2 stream. However, the already mentioned 1
In fact, in the heating process in an inert gas, the diffusion and movement of atoms is much slower than in the heating process in a reducing gas.

従って、不活性ガス中加熱処履温度が還元中に経験し九
温t↓9も低いと、実用的な時間内で熱処理効果U殆ん
ど見られない。一方、加熱熟理中に焼結が生じる温[に
錫塩前の強磁性金属粉末の性質に依存する。
Therefore, if the heat treatment temperature in an inert gas is as low as 9 temperature t↓9 experienced during reduction, the heat treatment effect U will hardly be observed within a practical time. On the other hand, the temperature at which sintering occurs during heating depends on the nature of the ferromagnetic metal powder before the tin salt.

それは出発物質のオキシ水酸化鉄の性質−にLつても変
わると同時に、陶じ出発物質から得九金楓粉末でも、還
元の道行か充分である程低温で、焼結が開始する。以上
の考察に轟づ睡実験を1ねた11!l果、加熱処塩温直
は還元温度〜1ooo”c。
It also depends on the nature of the iron oxyhydroxide starting material, and at the same time, sintering begins at a sufficiently low temperature for reduction even in the case of powder obtained from the same starting material. Based on the above considerations, I performed a roaring sleep experiment.11! The temperature of the fruit and heat treated salt is between the reducing temperature and 1ooo"c.

好ましくは*oo’C〜too °Cの温度で行なうの
が良い拳が判明し次。
It turns out that it is best to perform the test at a temperature of preferably between *oo'C and too much °C.

この工うな方法で得九強磁性金属物末は、徐績化処場に
19安定化し友盪、空気中にと9出す事がて虐る。徐酸
化の方法としては、偽えは11機溶剤に浸漬し丸後、そ
れt!2気中で乾燥する方法、空気と窒素の混合ガスで
空気の分圧tわづかづつ増してゆく方法などいづれの方
法て奄適用町総で参る。
The ferromagnetic metal powder obtained by this method is stabilized in the heat exchanger, and then released into the air. As a method of slow oxidation, it is immersed in 11 organic solvents, then it is t! The town will apply either method, such as drying in two atmospheres or increasing the partial pressure of air little by little with a mixed gas of air and nitrogen.

この結果得られる強磁性金属粉末のm和磁化は、熱処理
前に比べて高いが、熱処理温度に依存しておル、熱処理
温度が高い程、飽和磁化に大暑くなる。同時に熱感m温
度が鳥いとボアが減少し、結晶子サイズは増加する。抗
磁力が粒子サイズに依存すゐ畢は知られている。それに
Lれは、ある造画な粒子サイズの時に抗磁力は最大とな
)、粒子サイズがその値J−9大龜くなっても小さくな
っても抗磁力は減少する0本発明で得られるsaa釡属
粉末の抗磁力は、上記の傾向に従い結晶子サイズに依存
して変化する。−万、角型比は抗磁力が大きいもO根太
きい見向でめるか一看な劣化0兇られない。
The sum magnetization of the resulting ferromagnetic metal powder is higher than before the heat treatment, but it depends on the heat treatment temperature; the higher the heat treatment temperature, the hotter the saturation magnetization becomes. At the same time, the thermal sensitivity temperature decreases and the crystallite size increases. It is known that coercive force depends on particle size. In addition, the coercive force is maximum when the particle size is a certain size (J-9), and the coercive force decreases even if the particle size becomes large or small (obtained with the present invention). The coercive force of saa powder varies depending on the crystallite size according to the above trend. - Although the squareness ratio has a large coercive force, there is no noticeable deterioration due to the large diameter.

本発明の方法に1って飽和磁化が^く、シかも角型比の
良い強磁性金属粉末が得られる壇由α以下の1うに考え
る事ができる。
The method of the present invention can be considered to have the following reasons for obtaining a ferromagnetic metal powder with a high saturation magnetization and a good squareness ratio.

水素気流中で加熱処理する工程で框、還元反応と反応に
よって生じた金属結晶部分の結晶成長とが生じていると
考える事ができる。還元反応が殆んど終了していても、
結晶成長が不充分であると、生成される金属粉末はボア
が多く、結晶子の小さなものとなる結果上述した工うに
空気中で安定とする為に生成せしめる一化物の割合が多
くなる為、飽和磁化は小さくなってしまう。
It can be considered that the process of heat treatment in a hydrogen stream causes a reduction reaction and crystal growth of the metal crystal part generated by the reaction. Even if the reduction reaction is almost completed,
If crystal growth is insufficient, the metal powder produced will have many bores and small crystallites, resulting in an increase in the proportion of monoxide that is produced to make it stable in air as described above. Saturation magnetization becomes small.

しかるに、結晶IIN、長を還元雰囲気で行なうと、同
時に焼結の進行が生じ易く、侍られる強磁性金属粉末の
磁気時性を損う。本発明の方法では、その結晶成長を不
活性ガス中で行なう為、焼結の透性を透けながら結晶成
長のみを促すと云う事がciJ能となる。その結果磁″
A時性を損うことなくボアか少なく結昂子サイズがある
程度大きな粒子が得られ、飽和磁化がjw珈する。一方
、抗磁力は結晶量イズに伴って変化する為、不活性ガス
中の島処塩温度、特開を適当に選ぶ参に1シ焼結を抑制
しながら抗磁力の制御が可能となる。なお、一般に出発
原料の粒子サイズが小さいと焼結しやすいので、本発明
の効果は微粒子はと幽看となシ、飽和磁化が大きくしか
t角型比の優れ九強磁性金Mが得られる。
However, if crystallization is carried out in a reducing atmosphere, sintering tends to proceed at the same time, impairing the magnetic properties of the ferromagnetic metal powder. In the method of the present invention, since the crystal growth is performed in an inert gas, the ciJ ability is to promote only the crystal growth while being transparent to the sintered material. The result is magnetic''
It is possible to obtain particles with a small bore size and a somewhat large condensate size without impairing A-temperature, and the saturation magnetization increases. On the other hand, since the coercive force changes with the amount of crystals, it is possible to control the coercive force while suppressing sintering by appropriately selecting the salt temperature in an inert gas and the JP-A. In general, if the particle size of the starting material is small, it is easy to sinter, so the effect of the present invention is not so great for fine particles, and a ferromagnetic gold M with a large saturation magnetization and an excellent t-square ratio can be obtained. .

以下に実施例に従って本晃k14t*に具体的に説明す
る。
The present invention will be specifically explained below according to examples.

実施狗凰 兼40.Is、針状比コ0”t’5iiQ、jatm鴨
含有する針状α−F e 00Hf N s気流中10
0oCで加熱脱水してs+@4α−FesO,@末を得
た。これtH,fi流中i*o ”c−c4*関m熱遺
元して極めて酸化しやすい黒色の強磁性金属粉末に得た
。これ倉史にN、気流中JOO”C′″Cコ時閣加熱I
IJI場t−施し丸後、トルエンに浸償し、空気中*o
 @Cでトルエンを乾燥して!!aA中で安定な強磁性
金属粉末(試料i>を得た。
Implementation Inuoukan 40. Is, acicular ratio 0"t'5iiQ, jatm duck-containing acicular α-F e 00Hf N s in air flow 10
The mixture was heated and dehydrated at 0oC to obtain s+@4α-FesO,@ powder. This was obtained as a black ferromagnetic metal powder that is extremely easy to oxidize due to the i * o ``c-c4 * sekim heat in the tH, fi flow. Tokikaku heating I
IJI place - After giving the pill, immerse it in toluene and release it in the air *o
Dry toluene with @C! ! A ferromagnetic metal powder (sample i>) stable in aA was obtained.

実施例3 還元後のN、中加熱処塩温lLが*oo’cであること
以外実施例1と全く同一手順で9気中で安定な弥磁性餐
II4粉禾(試料λ)を倚た。
Example 3 A magnetic starch II4 powder (sample λ) stable in 9 atmospheres was swallowed in exactly the same manner as in Example 1 except that the N after reduction and medium heating salt temperature 1L were *oo'c. .

実施ガ易 還元恢ON、中加熱処ff1ll&が6oo°Cである
こと以外実施例1と全く同一手順で空気中で安定なmm
性金属粉末(試料J)を傅た。
The procedure was exactly the same as in Example 1, except that the reduction was ON and the medium heating temperature was 60°C.
A metal powder (sample J) was prepared.

実施例4 還元後のN8中加熱処理温匿がroo @cである◆以
外爽m?l11と全く同−手順で空気中で安定な!la
性金属粉末(試料参)を得た。
Example 4 The heat treatment in N8 after reduction is roo@c except for ◆? Exactly the same procedure as l11 - stable in air! la
A metal powder (sample reference) was obtained.

実施例5 逝元恢のN 中加熱処m温&が1ooo@cでめる事態
外実施4/lf 1と全く岡−手順で空気中で安定な強
磁性金属粉末(試料j)k倚た。
Example 5 A ferromagnetic metal powder (sample j) stable in air was produced using the following procedure: .

比&elil 還元後のN 中加熱処埴温kが1xoo”cである参り
外実施例1と全く10」−手順で空気中で安定な強団性
会勇粉*(試料4)k倚た。
Comparative Example 1 and N after reduction of N medium heat treatment temperature k was 1xoo"c.

比較例2 還元恢ON、中加熱処理を行わなかった事態外は実施例
1と食〈同−手順で空気中て安定tkg!!I[磁性金
属看末(試料?)を得え。
Comparative Example 2 Except for the case where reduction was ON and medium heat treatment was not performed, the food was the same as Example 1. (Stable tkg in air using the same procedure!) ! I [Obtain a sample of magnetic metal.

実施例− 実施例1で使用し曳α−F・OOHをN、気流中zoo
 @cで加熱脱水して81會庸α−k e x Ost
得九。これ會H3気流中ito@cで4#閾加熱遺元し
て極めて酸化しやすい黒色O強aS金属聯末1*た。
Example - The drag α-F・OOH used in Example 1 was exposed to N in an air stream.
Heat and dehydrate at @c to give 81 degrees α-k e
Nine points. This was a black O strong aS metal composite which is extremely easy to oxidize due to 4# threshold heating in ITO@C in H3 air flow.

これtlKNsfi流中xoo@cでJ時間加熱処理を
施し九のち炉温をgo’C迄冷却し、炉内にo、@Hi
%の空気/N、混合ガスを送p込んだ。そ(Q910分
毎にO8濃度會倍に層中してゆ自、最終的に空気のみを
流す事に1p徐緻化して9気中で安定な黒色粉末(試料
l)を得九。
This was heat-treated for J hours at
% air/N mixed gas was pumped. Then, the O8 concentration was doubled every 10 minutes in the layer, and finally, by passing only air, it was gradually densified by 1p to obtain a black powder (sample 1) that was stable in air.

実施例1 犀元後ON、中加熱鵠塩温fが参oo’cでめる◆を除
いて*mガーと全く同−手順て空気中で安定な強磁性金
属粉末(試料Fat−傅九。
Example 1 A ferromagnetic metal powder stable in air (sample Fat-Fu Jiu) was prepared using exactly the same procedure as *M-Gar, except for ◆ where the temperature of the medium-heated salt was turned on after the rhinoceros was turned on. .

実施ガ魯 還元後ON、中加熱処履温fが4oo”cであ1事を除
いてam例−と全く同一手順で空気中で安定な強磁性金
属驕車(試料10)を得え。
In the implementation process, a ferromagnetic metal cart (sample 10) stable in air was obtained by following the same procedure as in Example 1, except for one thing: ON after reduction, medium heat treatment temperature f was 40''c.

実施例・ 還元後のN、中加熱鵡思温度がtoo@cである事を除
いて実施例・と倉〈同一手順で空気中で安定1に強iI
性金属験末(試料//)f得え。
Example: Example: N after reduction, medium heating temperature was too@c.
Obtain the metal test material (sample //).

実施例1・ 、還元1tON、中加熱処理温度が1ooo@cである
事を除いて実施例−と全く同−手順で9気中て安定な惣
S性金属看末(試料lコ)を得喪。
Example 1: A stable metal powder (sample 1) in 9 atmospheres was obtained using the same procedure as in Example except that the reduction was 1 tON and the medium heat treatment temperature was 1 ooo@c. .

地組1 還元後のN、中加熱m、iiiを行なわなかつ九事以外
は実施例・と金〈同−手順て空気中で安定な強磁性金属
場末(試料/J)會4え。
Ground assembly 1 After reduction, N, medium heating m and iii were not performed, and except for 9, the same procedure was used as in Example 4.

比較例4 夷′mf11・と同一手順で脱水・還元進行なつ九後j
!!KH,気流中参J#@CでJ時間加熱還元全行なつ
友、そのilは実施例−と岡−の徐酸化処HILt−施
して空気中で安定な9IA磁性金属物末(試料l参)會
得九。
Comparative Example 4 Dehydration and reduction proceeded in the same procedure as 夷'mf11.
! ! KH, J#@C in an air stream for J hours of thermal reduction, the IL was subjected to slow oxidation treatment HILt of Example- and Oka- to produce 9IA magnetic metal powder stable in air (see Sample I). ) Meeting nine.

表/に示しえ結果から分かる1うに、本発明の方法で得
られるgII−性金R’lll末でに従来法にLるもO
K比べて角履比會劣化させる事なく飽和磁化が大きくな
っている。島鵡塩は1000C以下だと効果が与られず
、1000@Ct−超えると角型比の劣化が大曹くな9
1に用的てなくなる。更に表/C)結果に示す通p熱処
塩温直に依存してHcが変化しており1本発明の方法に
Lp角型比を劣化させる事なく、6る穐囲で79iIa
の抗磁力をもつ強磁性金ms車を得る事がで虐る。
As can be seen from the results shown in Table 1, the gII-containing gold R'llll powder obtained by the method of the present invention is lower than that of the conventional method.
Compared to K, the saturation magnetization is increased without deteriorating the square shoe ratio. Shimazu salt has no effect if it is below 1000C, and if it exceeds 1000C, the squareness ratio will deteriorate.9
It becomes useless after 1. Furthermore, Hc changes depending on the temperature of the p-heat treatment shown in Table C).
It is possible to obtain a ferromagnetic gold MS wheel with a coercive force of .

Claims (1)

【特許請求の範囲】[Claims] 鉄を主成分とするオキシ水酸化物もしくに酸化物を還元
性ガス中で加#、117cして得た鉄を生成分とする強
磁性金属粉末を、不活性ガス中前記遺元温直以上1oo
o・C以下の温度で加熱処堰すること1**とする強磁
性金属粉末の製造法。
A ferromagnetic metal powder containing iron as a product obtained by adding an oxyhydroxide or oxide containing iron as a main component in a reducing gas is heated at the same temperature as above in an inert gas. More than 1oo
A method for producing ferromagnetic metal powder, which involves heat treatment at a temperature below o.C.
JP57030354A 1982-02-26 1982-02-26 Manufacture of ferromagnetic metallic powder Pending JPS58147502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030354A JPS58147502A (en) 1982-02-26 1982-02-26 Manufacture of ferromagnetic metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030354A JPS58147502A (en) 1982-02-26 1982-02-26 Manufacture of ferromagnetic metallic powder

Publications (1)

Publication Number Publication Date
JPS58147502A true JPS58147502A (en) 1983-09-02

Family

ID=12301510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030354A Pending JPS58147502A (en) 1982-02-26 1982-02-26 Manufacture of ferromagnetic metallic powder

Country Status (1)

Country Link
JP (1) JPS58147502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865873A (en) * 1996-01-10 1999-02-02 Sawasaki Teitoku Co., Ltd. Method of preparing raw material powder for permanent magnets superior in moldability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865873A (en) * 1996-01-10 1999-02-02 Sawasaki Teitoku Co., Ltd. Method of preparing raw material powder for permanent magnets superior in moldability
US6103021A (en) * 1996-01-10 2000-08-15 Kawasaki Teitoku Co., Ltd. Method of preparing raw material powder for permanent magnets superior in moldability

Similar Documents

Publication Publication Date Title
US4274865A (en) Production of magnetic powder
US4404024A (en) Production of magnetic powder
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε'iron carbide and method for producing the same
JPH0544162B2 (en)
US2463413A (en) Manufacture of permanent oxide magnets
US2799570A (en) Process of making parts by powder metallurgy and preparing a powder for use therein
JPS58147502A (en) Manufacture of ferromagnetic metallic powder
EP1784842A2 (en) Nanocrystallite glass-ceramic and method for making same
US2689167A (en) Production of gamma ferric oxide
JPS61154112A (en) Stabilization method of ferromagnetic metallic particulate
US3873461A (en) Method of producing solid solutions of magnetic oxides
NL8002990A (en) METHOD FOR MANUFACTURING AN ANISOTROPIC PERMANENT OXIDE BASED MAGNET
US4371567A (en) High coercivity, cobalt-doped ferrimagnetic iron oxide particulates
GB2058845A (en) Method of producing fine metal particles
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JPS5852522B2 (en) Production method of metallic iron or alloy magnetic powder mainly composed of iron
JPS6242858B2 (en)
US5199998A (en) Stabilization of acicular, ferromagnetic metal powders essentially consisting of iron
JPS6120601B2 (en)
JPH0310682B2 (en)
Zhou et al. Effects of Y-doping on the formation, structure and properties of iron oxide
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JPS585241B2 (en) Method for manufacturing metallic iron or alloy magnetic powder mainly composed of iron
Chang et al. Dynamics of bimetallic Ni–Cu catalysts
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder