JPS58147332A - Devolatilization extruding method and device thereof - Google Patents

Devolatilization extruding method and device thereof

Info

Publication number
JPS58147332A
JPS58147332A JP57030917A JP3091782A JPS58147332A JP S58147332 A JPS58147332 A JP S58147332A JP 57030917 A JP57030917 A JP 57030917A JP 3091782 A JP3091782 A JP 3091782A JP S58147332 A JPS58147332 A JP S58147332A
Authority
JP
Japan
Prior art keywords
rotor
polymer composition
stator
volatile components
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57030917A
Other languages
Japanese (ja)
Other versions
JPH0153682B2 (en
Inventor
Teizo Hanamura
花村 禎三
Masahiro Yuyama
湯山 正宏
Akira Sakuramoto
桜本 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP57030917A priority Critical patent/JPS58147332A/en
Publication of JPS58147332A publication Critical patent/JPS58147332A/en
Publication of JPH0153682B2 publication Critical patent/JPH0153682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/535Screws with thread pitch varying along the longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Abstract

PURPOSE:To efficiently separate and remove a volatile component from a polymerization reaction product, by using a devolatilization extruder which is constituted such that a rotor is built in a stator, and a gap formed with the two parts is brought to a vacuum or a pressurized condition. CONSTITUTION:A polymer composition containing a volatile component, such as unreacted monomers, solvents, is introduced in a gap part 6, which is formed by an inner surface 3 of a stator and an outer surface 7 of a rotor 8 and is held under a vacuum state of about 5 Torr or a pressurizing state of about 2 atmosphere, in a devolatilization extruder through an inlet 1 and a pore 5 (a numeral 4 is a needle valve, and 2 is a stator). A volatile matter separated by a gap part 6 is led out for collection through an outlet 12 for volatile matter formed in an outer peripheral direction of a rotation surface, meanwhile, a polymer composition is conveyed to the right upper of a drawing by a discharge force produced as a result of the rotation of the rotor 8, and is removed from an outlet 14 of an extruder die 13.

Description

【発明の詳細な説明】 本発明は未反応単量体、溶剤、副生成物あるいは不純物
等の揮発成分を含有する熱可塑性重合体組成物からこれ
らの揮発成分を連続的に分離する方法番ζ関する。揮発
成分を25重量−以上もの多量に含有する重合体組成物
から連続的に脱揮して重合体組成物を押出すと共に揮発
成分を回収する技術は、塊状重金法あるいは一液重合法
によって樹脂状あるいはゴム状の熱可塑性重合体組成物
を製造する場合や揮発成分の回収自体を目的とする場合
に共に極めて重要な技術である。       − 塊状重合法あるいは溶液重合法によって熱可塑性重合体
組成物を製造する場合には、液状重合体組成物中の重合
体含有率を高くしようとすると重合系の粘度が非常に高
くなり、また重合反応による発熱量が増大するため、通
常の連続重合反応装置、と(に攪拌槽型反応器では重合
体の重合度および重合反応温度条件にもよるが一般には
重合体含有率を70重量−以上番こすることは困難であ
る。そこで重合体含有率を70重量−以上番ζするKは
特殊な攪拌機能を持ち、かつ伝熱面積の大きな反応装置
が必要となるが、これらの装置は高価になり、またたと
えこれを使用しても重合体含有率が75重量−以上にな
ると攪拌動力および攪拌による剪断発熱量が大きくなり
実用的でない。すなわち重合体組成物中の未反応単量体
、溶剤、副生成物等の揮発酸。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for continuously separating volatile components such as unreacted monomers, solvents, by-products, or impurities from a thermoplastic polymer composition containing these volatile components. related. The technique of continuously devolatilizing a polymer composition containing a large amount of volatile components (25% by weight or more), extruding the polymer composition, and recovering the volatile components is based on the lump heavy metal method or the one-component polymerization method. This technique is extremely important both in the production of thermoplastic polymer compositions in the form of thermoplastic or rubber-like substances, and in the case where the purpose is to recover volatile components themselves. - When producing a thermoplastic polymer composition by a bulk polymerization method or a solution polymerization method, if the polymer content in the liquid polymer composition is increased, the viscosity of the polymerization system becomes very high, and the polymerization Because the amount of heat generated by the reaction increases, in a regular continuous polymerization reactor and (in a stirred tank reactor), the polymer content is generally 70% by weight or more, although it depends on the polymerization degree of the polymer and the polymerization reaction temperature conditions. Therefore, K, which has a polymer content of 70% by weight or more, requires a reaction device with a special stirring function and a large heat transfer area, but these devices are expensive. Even if this is used, if the polymer content exceeds 75% by weight, the stirring power and shear calorific value due to stirring will increase, making it impractical.In other words, unreacted monomers in the polymer composition, Volatile acids such as solvents and by-products.

分合量を25重量−以下にすることは困難である。一方
、重合体含有率を10重量−未満にすることは重合系が
低粘度であり反応の制御が容易である点は有利であるが
、未反応−量体、溶剤、副生成物等を揮発させるための
条件が苛酷になると同時に循環量が多くなるため大型の
装置を必要とし、エネルギー消費も増大するなど工業的
に不利であるので通常は行われない。しかしながら高い
重合体含有率まで重合したときに架橋構造を生じてゲル
化し易いジエン系重合体または共重合体等を製造する場
合や、溶剤等の回収自体を目的とする場合には0.1〜
10重量−の低重合体含有率の重合体組成物の脱揮もま
た大きい工業的価値を有するものである。
It is difficult to reduce the combined amount to 25% by weight or less. On the other hand, setting the polymer content to less than 10% by weight is advantageous in that the polymerization system has a low viscosity and the reaction can be easily controlled, but it also volatilizes unreacted polymers, solvents, by-products, etc. It is not normally carried out because the conditions for this process are harsh and at the same time the amount of circulation increases, requiring large equipment and increasing energy consumption, which is industrially disadvantageous. However, when producing diene polymers or copolymers that tend to form crosslinked structures and gel when polymerized to a high polymer content, or when the purpose is to recover solvents, etc.
The devolatilization of polymer compositions with a low polymer content of 10% by weight is also of great industrial value.

重合体組成物から揮発成分を除去するための基本的な方
法として重合体組成物を高温に加熱した後、真空雰囲気
下に導いて揮発分離させる方法が公知である。揮発成分
が10重量−未満程度の場合には、いわゆるペント押出
機によって分離可能である。
As a basic method for removing volatile components from a polymer composition, a method is known in which the polymer composition is heated to a high temperature and then introduced into a vacuum atmosphere to be volatilized and separated. If the volatile components are less than 10% by weight, they can be separated using a so-called pent extruder.

しかしながら25〜99.9重量−の多量の未反応単量
体、溶剤奢よび/または副生成物等の揮発成分を含有す
る重合体組成物からそれらの揮発成分を除去する場合に
は解決すべき問題点がいくつかある。第一は、重合体組
成物を加熱昇温して揮発に必要な熱量を与えることが難
しいことであり、第二は真空ないし大気圧中で揮発させ
たときの発泡による見掛体積の増加と粘度の上昇により
、重合体組成物の移送や加熱等の取扱いが困難になると
共に表面が冷却固化して揮発の進行が阻害されることで
ある。さらに第三は高温、高圧あるいは真空条件下にお
ける分解などの副反応番こより種々の副生成物が生成し
たり、着色を生じたりして得られる重合体組成物および
/または回収される揮発成分の品質低下を来たすことで
あり、これらは滞留時間の影響を直接的に受けるため、
特に高温下に詔ける局所的な停滞を避け、処理時間をで
きるだけ短かくする必要がある。
However, when removing volatile components from polymer compositions containing large amounts of unreacted monomer, solvent content, and/or by-products of 25 to 99.9 wt. There are some problems. The first is that it is difficult to heat the polymer composition to provide the necessary amount of heat for volatilization, and the second is that the apparent volume increases due to foaming when volatilized in a vacuum or atmospheric pressure. The increase in viscosity makes handling such as transfer and heating of the polymer composition difficult, and the surface solidifies upon cooling, inhibiting the progress of volatilization. Third, side reactions such as decomposition under high temperature, high pressure, or vacuum conditions may produce various by-products or color the resulting polymer composition and/or the volatile components recovered. This results in quality deterioration, which is directly affected by residence time.
It is necessary to avoid local stagnation, which can occur especially at high temperatures, and to shorten the processing time as much as possible.

本発明の目的は、これらの技術上の問題点を一挙に解決
する優れた方法を提供することにある。
An object of the present invention is to provide an excellent method for solving these technical problems all at once.

従来より揮発成分を含有する混合溶液から揮発成分を蒸
発分離させる方法として一般に用いられる攪拌槽、捏和
機あるいは液下式薄膜塔などは液状重合体組成物の脱揮
に用いた場合には重大な欠陥を有することが指摘されて
怠り、フラッジ具蒸発法を中心に検討が進められ種々の
改良法が提案されている。しかしながら、真空下の蒸発
槽内にストランド状で流下させる特公昭38−120号
公報、特公昭44−20097号公報、特公昭45−3
1678号公報などに記載の方法、あるいは脱揮後の重
合体組成物の移送を補助する回転体を用いる特開昭47
−27872号公報に記載の方法などは前述の加熱、移
送、表面更新あるいは停滞防止の問題点を部分的には改
良しているが、いずれも根本的な解決を与えるものとは
言い難い。これらの改良法である真空ないし大気圧下に
維持されたスクリエー押出機の供給部スフ’Ja−に加
圧昇温された重合体組成物を直接吹舎付ける時分111
52−17555号公報、時分1@ 51−29914
号公報に記載の方法は前記の問題点を概ね解決している
が、蒸発空間における表面更新番ζ離があり、十分低い
残存揮発成分含量を得るにはベント部での脱揮が必須で
ある点でな初十分満足すべきものではない。
Stirring tanks, kneading machines, and submerged thin film towers, which are commonly used as methods for evaporating and separating volatile components from mixed solutions containing volatile components, are critical when used for devolatilization of liquid polymer compositions. However, studies have focused on the fludge evaporation method, and various improved methods have been proposed. However, Japanese Patent Publications No. 38-120, Japanese Patent Publication No. 44-20097, and Japanese Patent Publication No. 45-3 show that the water is allowed to flow down in a strand shape into an evaporation tank under vacuum.
1678, etc., or JP-A-47 using a rotating body to assist in transferring the polymer composition after devolatilization.
Although the methods described in Japanese Patent No. 27872 partially improve the problems of heating, transfer, surface renewal, and prevention of stagnation, none of them can be said to provide a fundamental solution. In these improved methods, the polymer composition under pressure and temperature is directly fed into the blowing shed of the screier extruder maintained under vacuum or atmospheric pressure.
Publication No. 52-17555, Hour 1 @ 51-29914
Although the method described in the publication generally solves the above problems, there is a surface renewal rate in the evaporation space, and devolatilization in the vent section is essential to obtain a sufficiently low residual volatile component content. At first glance, I am not completely satisfied.

本発明は多量の揮発成分を含有する重合体組成物を所定
の圧力詔よび温度に昇圧加熱したのち細孔部を通じて固
定子内面と回転子外面とで構成される間隙に直接吹き込
んで脱揮を完結させ揮発成分と脱揮後の重合体組成物と
を細孔部位置に関し互いに反対方向より取り出す方法お
よびその装置であり、これによって前述の加熱、移送、
表面更新あるいは停退防止の問題点を一挙に解決し、更
に長期間の連続運転が可能な方法を提供することを特徴
とするものである。
In the present invention, a polymer composition containing a large amount of volatile components is heated to a predetermined pressure and temperature, and then devolatilized by directly blowing it into the gap between the inner surface of the stator and the outer surface of the rotor through the pores. This is a method and apparatus for removing the volatile components and the polymer composition after devolatilization from opposite directions with respect to the pore position, and thereby the above-mentioned heating, transfer,
The present invention is characterized by providing a method that solves the problems of surface renewal or stoppage prevention all at once, and also enables continuous operation for a long period of time.

即ち、本発明は未反応単量体、溶剤および/または副生
成物等の揮発成分を含有する熱可塑性重合体組成物4、
から揮発成分を分離するに当り、該組成物が実質的に液
相状態を保持するに十分な圧力と、該組成物中の揮発成
分の揮発に必要な熱量の全部ないし一部とを該組成物に
与えた後、これを回転子の駆動部側から先端側に向って
揮発成分出口、細孔部、および脱揮後の重合体組成物の
導出口の順に配列され内部が5 Torrの真空ないし
2気圧の圧力条件下にある脱揮押出機の固定子を貫通・
して設けられた該細孔部を通じて供給し、該脱揮押出機
の固定子内面と回転子外面とで構成される間隙に直接吹
込むことにより揮発成分の大部分を分離して該揮発成分
取出口より取り出して回収すると共に、回転子の回転に
より剪断力と吐出力を発生させて重合体組成物を回転子
の先端方向に急速に移送かつ加熱しつつ残余の揮発成分
の分離を完結させてこれを回転子先端側の固定子上に設
けられた導出口から取り出すことからなる脱揮押出方法
である。
That is, the present invention provides a thermoplastic polymer composition 4 containing volatile components such as unreacted monomers, solvents and/or by-products,
In separating volatile components from the composition, sufficient pressure is applied to maintain the composition in a substantially liquid phase state, and all or part of the amount of heat necessary to volatilize the volatile components in the composition is applied to the composition. After applying this to the rotor, it is arranged in the order of the volatile component outlet, the pore, and the outlet for the devolatilized polymer composition from the drive part side to the tip side of the rotor, and the inside is vacuumed at 5 Torr. Penetrating the stator of the devolatilizing extruder under pressure conditions of 2 to 2 atmospheres.
Most of the volatile components are separated by supplying the volatile components through the pores provided in the devolatilizing extruder and blowing directly into the gap formed by the inner surface of the stator and the outer surface of the rotor. The polymer composition is taken out from the outlet and collected, and the rotation of the rotor generates shearing force and discharge force to rapidly transfer and heat the polymer composition toward the tip of the rotor, while completing the separation of the remaining volatile components. This is a devolatilizing extrusion method that consists of taking out this from an outlet provided on the stator at the tip end of the rotor.

また、本発明は一定の間隙を構成するよう配置された回
転子と固定子、該固定子を貫通して回転子外面に対向し
て配置された重合体組成物を供給するための細孔部、供
給される重合体組成物の圧力を維持するための該細孔部
間隙の調節機構、該回転子を回転するための駆動機構、
該回転子に設けられた吐出力を発生するための機構、装
置内の空間を所定の圧力下に保持するための軸封機構、
揮発成分を取り出すための駆動部方向に配置された揮発
成分取出口、脱揮された重合体組成物を取り出すための
回転子先端部方向に配置された導出口、#よび吐出圧を
発生させるための該導出口の開口度を四節するための機
構からなる脱揮押出装置である。
The present invention also provides a rotor and a stator that are arranged to form a certain gap, and a pore portion that passes through the stator and is arranged to face the outer surface of the rotor for supplying a polymer composition. a mechanism for adjusting the pore gap to maintain the pressure of the supplied polymer composition; a drive mechanism for rotating the rotor;
a mechanism provided on the rotor for generating a discharge force; a shaft sealing mechanism for maintaining the space within the device under a predetermined pressure;
A volatile component extraction port placed in the direction of the drive unit to take out volatile components, an outlet placed in the direction of the rotor tip to take out the devolatilized polymer composition, and a discharge port placed in the direction of the rotor tip to generate # and discharge pressure. This is a devolatilization extrusion device consisting of a mechanism for adjusting the opening degree of the outlet port.

以下本発明について図面によって説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明方法を実施するに適する脱揮押出機の一
例の正面断面図を示したものである。
FIG. 1 shows a front sectional view of an example of a devolatilizing extruder suitable for carrying out the method of the present invention.

未反応単量体、溶剤および/または副生成物等の揮発成
分を25〜99.9重量−1好ましくは40〜99重量
%含有し、所定の圧力および温節用ニードル弁4を伴な
った細孔部5を通じて脱揮押出機内の間隙部6に吹き込
まれるように導入される0回転面7を有する回転子8は
軸封部9に支えられた回転軸10により回転させられる
。固定子内面3と回転子外面7とは所定の間隙を有して
対向し両者で形成される間隙部6は5 Torrの真空
ないし2気圧の圧力条件下に保持される。固定子2およ
び/または回転子8には間隙部6における重合体組成物
の加熱のための熱媒循環路11が設けられている。間隙
部6で分離された揮発成分は回転面外周方向に設けられ
た揮発成分出口12より導出され回収される。大部分の
揮発成分が分離された重合体組成物は回転子8の回転に
より発生する吐出力により回転子8の先端方向へ移送さ
れるが、この間も固定子内面3および/または回転子外
面からの伝熱加熱、剪断発熱および剪断による表面更新
によって脱揮が加速継続される。脱揮が完了した重合体
組成物は更番こ回転子8、好ましくはスクリユーの作用
によって稠密化せられて回転子先端部付近の押出ダイ1
3に設けられた重合体組成物の導出口14より取り出さ
れる。定常な運転状態に#いては脱揮押出機内の間隙部
6は回転子8の吐出力により押出ダイ13付近を除いて
実質的に空に維持されるから脱揮は数秒の短時間で完結
し、従って細孔部5から供給され導出口14から排出さ
れるまでの重合体組成物の機内での滞留時間は極めて短
かくすることができる。
It contains 25 to 99.9% by weight of volatile components such as unreacted monomers, solvents and/or by-products, preferably 40 to 99% by weight, and is equipped with a needle valve 4 for predetermined pressure and temperature control. A rotor 8 having a zero-rotation surface 7 introduced into a gap 6 in the devolatilizing extruder through a hole 5 is rotated by a rotating shaft 10 supported by a shaft seal 9 . The stator inner surface 3 and the rotor outer surface 7 face each other with a predetermined gap therebetween, and the gap 6 formed therebetween is maintained under a vacuum of 5 Torr or a pressure of 2 atmospheres. The stator 2 and/or the rotor 8 are provided with a heat medium circuit 11 for heating the polymer composition in the gap 6 . The volatile components separated in the gap 6 are led out and collected from a volatile component outlet 12 provided in the direction of the outer circumference of the rotating surface. The polymer composition from which most of the volatile components have been separated is transferred toward the tip of the rotor 8 by the discharge force generated by the rotation of the rotor 8, but during this time it is also transferred from the stator inner surface 3 and/or the rotor outer surface. Devolatilization continues to be accelerated by thermal conduction heating, shear heat generation, and surface renewal due to shear. After the devolatilization, the polymer composition is densified by the action of a rotor 8, preferably a screw, and then passed through an extrusion die 1 near the tip of the rotor.
The polymer composition is taken out from the outlet port 14 provided at 3. Under steady operating conditions, the gap 6 in the devolatilizing extruder is kept substantially empty except for the vicinity of the extrusion die 13 by the discharge force of the rotor 8, so devolatilization is completed in a short period of several seconds. Therefore, the residence time of the polymer composition in the machine from when it is supplied from the pores 5 to when it is discharged from the outlet 14 can be extremely shortened.

本発明の方法において使用する脱揮押出機の配置はその
作動原理から明白なように回転軸が垂直方向、水平方向
あるいはその中間などのいずれであっても差支えないが
通常は第1図のように回転軸が水平方向となるよう配置
される。
As is clear from its operating principle, the arrangement of the devolatilizing extruder used in the method of the present invention may be such that the axis of rotation is vertical, horizontal, or somewhere in between; however, it is usually as shown in Figure 1. The rotation axis is placed in the horizontal direction.

成形材料あるいは押出板等の製造に用いる樹脂状あるい
はゴム状0熱可塑性重舎体組成物を塊状重合法あるいは
溶液重合法で連続的に製造する場合、熱収支、副生酸物
防止、重合安定性などの制限から、一般には130〜1
70℃、液粘度十数〜数千ポイズの範囲の重合条件が好
適とされているが従来の方法、例えば特公昭52−17
555号公報、特公昭51−29914号公報に記載の
方法では脱揮に先立って重合体組成物を十分な高温、例
えばメチルメタクリレート系樹脂組成物の場合は210
℃以上、好ましくは250〜270℃の温度まで加熱し
て揮発分離に必要な熱量の概ね全量を与えておくことが
必須であった。これに対して本発明の方法においては、
脱揮押出機の固定子内面3および/または回転子外面7
を通じて外部からの伝熱により供給される熱量、および
両面間における重合体組成物の剪断により発生する熱量
のいずれもが重合体組成物の温度上昇に有効に作用する
から、必ずしも前段に特別の加熱装置の設置を要せずに
揮発成分の分離に必要な熱量が付与される。このため揮
発成分が多量に含有される重合体組成物も好適に処理で
きる利点が有る。また重合体組成物を加熱昇温する装置
が付加的に使用されても良い。このとき使用する装置は
重合体組成物の高粘性および熱変質性のため、できるだ
け総括伝熱係数が高(、セルフクリーニング性を有し、
滞留時間を短かくできる掻取セ、成熱交換器、例えばフ
ライト間隙の小さいスクリユーを高速回転させる押出機
型のものが適する。
When continuously manufacturing resinous or rubbery thermoplastic composite compositions used for manufacturing molding materials or extruded plates, etc. by bulk polymerization or solution polymerization, heat balance, prevention of by-product acids, and polymerization stability are important. Generally 130-1 due to restrictions such as gender.
Polymerization conditions of 70°C and a liquid viscosity of 10-10 to several thousand poise are considered suitable, but conventional methods, such as Japanese Patent Publication No. 52-17
In the method described in Japanese Patent Publication No. 555 and Japanese Patent Publication No. 51-29914, the polymer composition is heated at a sufficiently high temperature before devolatilization, for example, 210°C in the case of a methyl methacrylate resin composition.
It was essential to provide almost the entire amount of heat necessary for volatile separation by heating to a temperature of 250 to 270° C. or higher. In contrast, in the method of the present invention,
Stator inner surface 3 and/or rotor outer surface 7 of a devolatilizing extruder
The amount of heat supplied by heat transfer from the outside through the wafer and the amount of heat generated by shearing of the polymer composition between the two surfaces both effectively increase the temperature of the polymer composition, so special heating is not necessarily required in the previous stage. The amount of heat required to separate volatile components is provided without requiring the installation of equipment. Therefore, there is an advantage that polymer compositions containing a large amount of volatile components can also be treated suitably. Moreover, an apparatus for heating the polymer composition to raise its temperature may be additionally used. Due to the high viscosity and thermal deterioration properties of the polymer composition, the equipment used at this time has as high an overall heat transfer coefficient as possible (has self-cleaning properties,
A scraper or heat exchanger that can shorten the residence time, such as an extruder type in which a screw with a small flight gap is rotated at high speed, is suitable.

本発明の方法においては、その前工程である重合工程お
よび/または熱交換器を経て供給される重合体組成物は
その中に含有される揮発成分の揮発に必要な熱量の一部
を付与されていれば十分であるから、揮発成分が60〜
99.9重量%もの多量含有される重合体組成物の場合
にも品質低下を来たすほどの高温まで熱交換器において
昇温することなく好適に処理できる利点を有する。処理
される熱可塑性重合体組成物は前述の連続的製造法によ
るもののほか、回分的に製造されたものであっても良く
、また塗料用重合体、フィルム用重合体、繊維用重合体
等を製造する縮合重合、付加重合、開環重合などの他の
プロセスから得られる熱可塑性重合体を含有する工程液
や廃液等であっても良い。なお揮発成分が99.9重量
%を超える場合には吐出力が有効に発現され難くなる欠
点が表われてくるので適しない。
In the method of the present invention, the polymer composition supplied through the polymerization step and/or the heat exchanger is provided with a portion of the heat necessary for volatilizing the volatile components contained therein. It is sufficient if the volatile components are 60~
Even in the case of a polymer composition containing as much as 99.9% by weight, it has the advantage that it can be suitably processed without raising the temperature in a heat exchanger to a high temperature that would cause quality deterioration. The thermoplastic polymer composition to be treated may be produced by the above-mentioned continuous production method, or may be produced batchwise. Process liquids or waste liquids containing thermoplastic polymers obtained from other manufacturing processes such as condensation polymerization, addition polymerization, and ring-opening polymerization may also be used. It should be noted that if the volatile component exceeds 99.9% by weight, it is not suitable because it becomes difficult to effectively develop the ejection force.

重合工程および/または熱処理器を出る重合体組成物は
その中に含有される揮発成分の揮発のために通常上なる
揮発成分の沸点より50℃以上高い温度に加熱され、揮
発に必要な熱量の全部ないし一部を与えられているから
、好ましくは120〜330℃、メチルメタクリレート
系樹脂の場合の場合には好ましくは150〜250℃の
高温条件下にあり、揮発成分の蒸気圧が高くなるので、
脱揮押出機の直前に設置された細孔部に到るまで重合体
組成物中における気泡の発生を抑えて液相状態を保持す
るよう通常2〜100即/♂G、好ましくは10〜50
即/♂G の高圧に加圧される。重合工程と熱交換器は
同圧であっても良いが、熱交換器に昇圧装置を付加して
も良い。
The polymer composition leaving the polymerization process and/or heat treatment device is heated to a temperature 50°C or more higher than the boiling point of the volatile components normally contained therein to volatilize the volatile components contained therein, and the amount of heat required for volatilization is Since all or part of the volatile components are given, the temperature is preferably 120 to 330°C, and in the case of methyl methacrylate resin, preferably 150 to 250°C, and the vapor pressure of the volatile components is high. ,
Usually 2 to 100 I/M, preferably 10 to 50 to suppress the generation of bubbles in the polymer composition and maintain the liquid phase state up to the pores installed just before the devolatilizing extruder.
Immediately pressurized to high pressure of ♂G. Although the pressure in the polymerization step and the heat exchanger may be the same, a pressure booster may be added to the heat exchanger.

脱揮押出機に供給される重合体組成物の温度がこの範囲
より低いときには脱揮された重合体組成物中の残存揮発
成分含量を十分減少させることが困難となり、一方、3
30℃より高いときには重合体組成物自身が熱的に変質
劣化していずれも好ましくない。また重合体組成物に加
えられる圧力が2KP/n2G  より低いときには揮
発成分の沸騰により気泡が発生して液相状態を維持する
ことが困難となり、一方、100 Kf/cm2Gより
高くすることは特に利点を有しないばかりでなく装置の
製作および運転上の負担の増大となりいずれも好ましく
ない。
When the temperature of the polymer composition supplied to the devolatilizing extruder is lower than this range, it becomes difficult to sufficiently reduce the content of residual volatile components in the devolatilized polymer composition;
When the temperature is higher than 30°C, the polymer composition itself is thermally altered and deteriorated, which is not preferable. Furthermore, when the pressure applied to the polymer composition is lower than 2 KP/nG, bubbles are generated due to boiling of the volatile components, making it difficult to maintain the liquid phase state; This method not only does not have the following characteristics, but also increases the burden on manufacturing and operating the device, both of which are undesirable.

高温、高圧下にある重合体組成物は固定子側の外部から
細孔部5を通じて5 Torrの真空ないし2気圧、好
ましくは5 Q Torrの真空ないし大気圧雰囲気中
に設けられた間隙部6に直接放出される。このとき脱揮
押出機内の圧力が2気圧より高いときには揮発成分の分
離が不十分となり、一方、5Torrより低いときには
重合体組成物中の残存揮発分含量を小さくすることがで
きるが、細孔部5から噴出後の見掛比重が低くなり嵩高
となって処理能力が低下すること、揮発成分の凝縮装置
が過大となること、回転子8の軸封部9の漏れ防止が煩
雑になることなどがあり、いずれも好ましくない。
The polymer composition under high temperature and high pressure is passed from the outside of the stator side through the pores 5 into the gap 6 provided in a vacuum of 5 Torr to 2 atmospheres, preferably a vacuum of 5 Q Torr to atmospheric pressure. Directly emitted. At this time, if the pressure inside the devolatilizing extruder is higher than 2 atm, the separation of volatile components will be insufficient, while if it is lower than 5 Torr, the residual volatile content in the polymer composition can be reduced, but the pores The apparent specific gravity after ejection from the rotor 5 becomes low and bulky, resulting in a reduction in processing capacity, the condensation device for volatile components becomes excessively large, and leakage prevention from the shaft seal 9 of the rotor 8 becomes complicated, etc. Both are undesirable.

細孔部5の機能は、高圧部と低圧部の境界として必要な
圧力損失を生じさせることや、放出される重合体組成物
の流速を速くして揮発成分の分離を助けることなどがあ
る。
The functions of the pores 5 include creating the necessary pressure drop as a boundary between the high pressure section and the low pressure section, and increasing the flow rate of the discharged polymer composition to aid in the separation of volatile components.

圧力損失は重合体組成物が液相状態を保持する限りにお
いては第−義的にはその粘度に依存するが、実際には細
孔部5の途中での発泡に伴常状態が維持される。しかし
ながら圧力損失カイ小さすぎる場合や、細孔部5のE流
における圧力損失が相対的に大きすぎる場合には、揮発
成分の吹き抜けを生じて流動が不安定となったり、熱交
換器内などでの発泡による局部的増結が流動の停滞を生
じて変質、劣化の原因となったりして好ましくないので
、重合体組成物が液相状態を保持するに必要な圧力が常
時得られるよう細孔部5の圧力損失が調節される。また
細孔部5から脱揮押出機内部に到る接続部分においても
上述の吹き抜けや停滞は好ましくないから、細孔部5は
押出機内部の脱揮空間の直前に可能な限り近接して設置
されるのが好ましく、固定子2を貫通して設置され、重
合体組成物が間隙部6に直接吹き込まれるよう配置され
る。
As long as the polymer composition maintains a liquid phase state, the pressure drop essentially depends on its viscosity, but in reality, the pressure loss is maintained as a result of foaming in the middle of the pores 5. . However, if the pressure loss is too small, or if the pressure loss in the E flow in the pores 5 is relatively large, volatile components may blow through, making the flow unstable, or inside the heat exchanger etc. Localized increase due to foaming is undesirable as it may cause flow stagnation and cause alteration or deterioration. 5 pressure losses are adjusted. Also, since the above-mentioned blow-through and stagnation are undesirable in the connecting part from the pore part 5 to the inside of the devolatilizing extruder, the pore part 5 is installed as close as possible immediately before the devolatilizing space inside the extruder. It is preferably placed through the stator 2 and arranged so that the polymer composition is blown directly into the gap 6.

本発明の方法における細孔部5の個数は通常1個で良い
が複数個設置しても良い。
The number of pores 5 in the method of the present invention is usually one, but a plurality of pores may be provided.

本発明の方法に怠ける脱揮押出機内部において重合体組
成物から揮発成分が分離される工程は概念的には二つの
過程から成る。第一は先行する重合工程および/または
熱交換器で重合体組成物に加えられた熱量に見合う揮発
成分が細孔部5の出口付近において瞬間的に急激な揮発
と発泡を生じて分離される過程であり、第二は重合体組
成物が回転子8の回転によって発生する吐出力によって
回転子8の先端方向に移送される間に外部よりの伝熱あ
るいは重合体組成物の剪断発熱暑こよって追加供給され
る熱量と剪断による揮発界面更新の効果とが相まって実
質的に殆んどの脱揮を完了する過程である。しかしなが
らこの二つの過程は事実上併発的に進行し、実質的に一
段で容易に高水準の脱揮が達成される。
The process by which volatile components are separated from the polymer composition within the devolatilizing extruder of the method of the present invention conceptually consists of two steps. First, volatile components corresponding to the amount of heat added to the polymer composition in the preceding polymerization step and/or heat exchanger instantaneously cause rapid volatilization and foaming near the exit of the pore section 5 and are separated. The second is heat transfer from the outside or shear heat generation of the polymer composition while the polymer composition is transferred toward the tip of the rotor 8 by the discharge force generated by the rotation of the rotor 8. Therefore, the additional heat supplied and the effect of renewing the volatilization interface due to shear combine to substantially complete most of the devolatilization. However, these two processes actually proceed concurrently, and a high level of devolatilization can be easily achieved in substantially one step.

本発明の方法によれば、細孔部5の出口付近において瞬
間的に急激な揮発と発泡を生じるが、その爆発力で自ら
非常に大きな発泡を生じる前に対向する固定子内面3お
よび/または回転子外面に吹き付けられ、両面間での剪
断力が加わって直ちに連続気泡を形成するから揮発成分
は回転子8の駆動部方向から円滑に回収され、かつ発泡
による体積増加は最小限に抑えられ、かつ分離された重
合体組成物は回転子8の回転によって発生する吐出力に
よって回転子8の先端方向に移送されつつある間も、常
に回転方向に働く大きな剪断力によって混練されること
により蒸発面が更新されるから、嵩高で大きな蒸発面積
を持つ時間を極めて短かくでき、かつこの間に固定子内
面3tよび/または回転子外面7からの高い総括伝熱係
数による伝熱あるいは前記剪断力に伴なう発熱による重
合体組成物の加熱昇温が非常基と短時間に均一に行なわ
れるから揮発成分の分離が加速継続され、重合体組成物
中の残存揮発成分含量は極めて効率的に減少させること
ができる。また殆んどの揮発成分が分離された重合体組
成物は前記吐出力によって直ちに稠密化させられ固定子
先端部付近の押出ダイ13に設けられた導出口14から
取り出されるから、高温条件下に#ける滞留時間は極め
て短かくすることができ、熱的に不安定な成分を含有す
る重合体組成物の処理においても変質劣化などを生じ難
い利点も併せ有している。
According to the method of the present invention, rapid volatilization and foaming occur instantaneously near the exit of the pore portion 5, but before the explosive force causes very large foaming, the opposing stator inner surface 3 and/or Since it is sprayed onto the outer surface of the rotor and a shearing force is applied between both surfaces to immediately form open bubbles, the volatile components are smoothly recovered from the direction of the drive section of the rotor 8, and the increase in volume due to foaming is minimized. , and while the separated polymer composition is being transferred toward the tip of the rotor 8 by the discharge force generated by the rotation of the rotor 8, it is constantly kneaded by a large shearing force acting in the direction of rotation, thereby causing evaporation. Since the surface is renewed, the time for having a bulky and large evaporation area can be extremely shortened, and during this time, the heat transfer from the stator inner surface 3t and/or the rotor outer surface 7 due to the high overall heat transfer coefficient or the shear force The heating of the polymer composition due to the accompanying heat generation is carried out uniformly in a short period of time, so the separation of volatile components is accelerated and continued, and the content of residual volatile components in the polymer composition is extremely efficiently reduced. can be done. In addition, the polymer composition from which most of the volatile components have been separated is immediately densified by the discharge force and taken out from the outlet 14 provided in the extrusion die 13 near the tip of the stator. The residence time can be made extremely short, and it also has the advantage that deterioration and deterioration are unlikely to occur even in the treatment of polymer compositions containing thermally unstable components.

本発明における回転子外面7および固定子内面3は回転
子8の回転により共働して剪断力と吐出力とを生じ、重
合体組成物を回転子8の先端方向へ移動させ、かつ未反
応単量体、溶剤および/または副生成物等の揮発成分を
反対方向に取り出す機能を有しておればどの様な形状で
クリユー溝が設けられる。第2図はその一例の正面断面
図を示したものであり、同番号の各部は第1図と同名称
である。スクリュー溝は通常のベント押出機と同様例え
ば深溝部8、溝深変化部8′、初よび浅溝部8″の様に
適宜具なる溝深を有している。
In the present invention, the rotor outer surface 7 and the stator inner surface 3 cooperate with each other by the rotation of the rotor 8 to generate a shearing force and a discharge force, which moves the polymer composition toward the tip of the rotor 8 and unreacts the polymer composition. The Krieux groove can be provided in any shape as long as it has the function of taking out volatile components such as monomers, solvents, and/or by-products in the opposite direction. FIG. 2 shows a front sectional view of one example, and parts with the same numbers have the same names as in FIG. 1. The screw grooves have appropriate groove depths, for example, a deep groove section 8, a groove depth changing section 8', and an initial and shallow groove section 8'', as in a conventional vent extruder.

また、固定子内面3は一般には平滑面が使用されるが、
伝熱面積を大きくしたり、剪断力を大きくする目的で特
殊の凹凸形状、例えばラセン溝などを持たせてもよい。
In addition, although a smooth surface is generally used for the stator inner surface 3,
For the purpose of increasing the heat transfer area or increasing the shearing force, a special uneven shape such as a helical groove may be provided.

固定子側に設けられた細孔部5は回転子8の先端部と駆
動部側の揮発成分出口12との中間位置に配置され、好
ましくは細孔部5と揮発成分出口12とが回転子80軸
径をDとしたとき軸方向に2D以上、好ましくは3D以
上の距離を有して配置される。細孔部5が回転子8の先
端部に近すぎると揮発成分の分離が十分行われないまま
に押出ダイ13に達して出口14から排出される結果と
なり、一方、回転子8の駆動部側の揮発成分出口12に
近づきすぎると剪断力および吐出力が十分発現されない
ままに重合体組成物が揮発成分出口12に達して発泡し
易く不揮発成分が回収される揮発成分に混入して排出さ
れる結果となり連続運転が不能になるなどいずれも好ま
しくない。
The pore portion 5 provided on the stator side is arranged at an intermediate position between the tip of the rotor 8 and the volatile component outlet 12 on the drive unit side, and preferably the pore portion 5 and the volatile component outlet 12 are located on the rotor side. When the 80-axis diameter is D, they are arranged at a distance of 2D or more, preferably 3D or more in the axial direction. If the pores 5 are too close to the tip of the rotor 8, the volatile components will reach the extrusion die 13 and be discharged from the outlet 14 without being sufficiently separated. If the polymer composition is too close to the volatile component outlet 12 of the polymer composition, the polymer composition reaches the volatile component outlet 12 before sufficient shearing force and ejection force are developed, and tends to foam, and the non-volatile components are mixed with the recovered volatile components and discharged. As a result, continuous operation becomes impossible, which is undesirable.

回転子外面7詔よび/または固定子内面3カ)らの伝熱
により重合体組成物に揮発に必要かつ十分な熱量を供給
するため、回転子8および/まtこは固定子2には加熱
された熱媒体また&よスチームが循環される。熱媒体の
温度&書通常180〜350℃、好ましくは200〜3
30℃の間をこ選ifれる。この範囲より低いときは揮
発成分の分離が不十分となり、一方この範囲より高し1
とを番ζは重合体組成物の変質劣化が生じてし1ずれも
好ましくない。また細孔部5を通じて間隙部6番こ吹き
込まれた状態での温度は脱揮後の重合体組成物のガラス
転移温度より20℃以上高くりるように重合体組成物の
温度と脱揮押出機内の真空度が選ばれる。このとき速や
かに吐出力が発現できるので脱揮押出機の装置効率を特
に高くすることができ、従って装置を小型化できる利点
を有する。
In order to supply the polymer composition with the necessary and sufficient amount of heat for volatilization by heat transfer from the rotor outer surface 7 and/or the stator inner surface 3), the rotor 8 and/or the stator 2 are The heated heat medium and steam are also circulated. Temperature of heat medium: Normally 180-350℃, preferably 200-3
You can choose between 30℃. When it is lower than this range, the separation of volatile components is insufficient, while when it is higher than this range, 1
The number ζ and the number ζ cause deterioration and deterioration of the polymer composition, so any deviation is undesirable. In addition, the temperature of the polymer composition and the devolatilization extrusion are adjusted so that the temperature when the air is blown into the gap 6 through the pore 5 is 20°C or more higher than the glass transition temperature of the polymer composition after devolatilization. The degree of vacuum inside the aircraft is selected. At this time, since the discharge force can be quickly developed, the device efficiency of the devolatilizing extruder can be particularly increased, and therefore, there is an advantage that the device can be made smaller.

本発明の方法においては通常脱揮後の重合体組成物中の
残存揮発成分含量は0.3〜lO重量%、見掛比重は0
.5〜1.3の間にある。好ましい操作条件下において
は、一段階の脱揮により残存揮発成分含量が0.3〜1
.0重量%、見掛比重が1.05〜1.25で、気泡を
実質的に含有しない重合体組成物が得られることは意外
な発見であった。
In the method of the present invention, the residual volatile component content in the polymer composition after devolatilization is usually 0.3 to 10% by weight, and the apparent specific gravity is 0.
.. It is between 5 and 1.3. Under preferred operating conditions, one-step devolatilization results in a residual volatile content of 0.3 to 1.
.. It was an unexpected discovery that a polymer composition with an apparent specific gravity of 0% by weight and an apparent specific gravity of 1.05 to 1.25 and substantially free of air bubbles could be obtained.

本発明の方法により塊状型合法あるいは溶液重合法によ
って得られた比較的高重合体含有率の液状重合体組成物
から目的とする樹脂状あるいはゴム状熱可塑性菖合体を
容易にかつ効率的に分離する方法が提供される。また高
い重合体含有率まで重合したときに架橋構造を生じてゲ
ル化し易い、例えばジエン系重合体または共重合体の如
きは高々10重量−程度の低重合体含有率の液状重合体
組成物が脱揮工lik供されるが、このよう番こ従来の
脱揮方法では麩理が困難な組成物に対しても好適な分離
方法が提供されの加水分解が起り分子量が低下し易い、
例えばポリヒドロキシポリエーテルのような重合体組成
物に対しても好適な分離方法が提供される。
By the method of the present invention, the desired resinous or rubbery thermoplastic iris polymer can be easily and efficiently separated from a liquid polymer composition with a relatively high polymer content obtained by a bulk type method or a solution polymerization method. A method is provided. Furthermore, when polymerized to a high polymer content, a crosslinked structure is formed and the liquid polymer composition has a low polymer content of about 10% by weight, such as diene polymers or copolymers, which tend to gel. However, this method provides a suitable separation method even for compositions that are difficult to devolatilize using conventional devolatilization methods.
Suitable separation methods are also provided for polymer compositions such as polyhydroxy polyethers.

更にまた熱可塑性重合体を含有する廃液等から高価な単
量体あるいは溶剤を容易に高い純度で、かつ高収率で回
収する方法が提供される。即ち、本発明の方法は重合体
含有率が0.1〜75重量%、好ましくは゛4〜60重
量−の広い範囲にわたって適用できる特徴を有する。
Furthermore, a method is provided for easily recovering expensive monomers or solvents from waste liquids containing thermoplastic polymers with high purity and high yield. That is, the method of the present invention has the feature that it can be applied over a wide range of polymer content ranging from 0.1 to 75% by weight, preferably from 4 to 60% by weight.

重合体組成物の取得を目的とする場合にはここで得られ
た重合体組成物はそのまま通常の方法により冷却、切断
および包装して成形材料、塗料用樹脂、フィルム用樹脂
などとしての使用に供することができる。また単量体あ
るいは溶剤の回収を目的とする場合にはここで得られた
回収液をそのまま再使用するか、あるいは常法により精
製して使用に供される。
If the purpose is to obtain a polymer composition, the polymer composition obtained here can be cooled, cut, and packaged using a conventional method to be used as a molding material, paint resin, film resin, etc. can be provided. In addition, when the purpose is to recover monomers or solvents, the recovered liquid obtained here can be reused as is or purified by conventional methods before use.

残存揮発成分含量は温度が高く、真空度が高く、かつ剪
断力が強いほど小さくなる。一方、見掛比重は温度が低
く、剪断力が弱いほど小さく嵩高になる。ここで、残存
揮発分含量を小さくシ、かつ見掛比重を大きくするため
の最良の選択について鋭意検討した結果、重合体組成物
の温度と脱揮押出機内の真空度を既述の範囲内に選び、
かつ回転子外面7と固定子内面3の間隙詔よび回転子8
の回転速度を調節して剪断力の最適条件を選ぶことが有
効であることカイ認められた。この面間隙は通常0.0
2〜lQm*、好ましくは0.05〜2111+111
に選ばれ、この範囲より狭いときは動力が過大になるほ
か発泡に伴なう体積増加が困難で揮発成分の排出が円滑
番と行われ難く、一方、この範囲より広いときには剪断
力が弱くなっていずれも好ましくない。また回板速度は
通常50〜1,000 rpm、好ましくは100〜s
oo rpmに選ばれ、この範囲より小さいときは必要
な剪断力および/または吐出力が得られず、逆に大きい
ときには回転子8の軸振れなど構造上の問題が生じて共
に好ましくない。
The content of residual volatile components decreases as the temperature increases, the degree of vacuum increases, and the shear force increases. On the other hand, the lower the temperature and the weaker the shearing force, the smaller the apparent specific gravity and the higher the bulk. After careful consideration of the best option for reducing the residual volatile content and increasing the apparent specific gravity, we determined that the temperature of the polymer composition and the degree of vacuum in the devolatilizing extruder were within the ranges mentioned above. Select,
and the gap between the rotor outer surface 7 and the stator inner surface 3 and the rotor 8
It was recognized that it is effective to select the optimum conditions for shear force by adjusting the rotation speed of the shear force. This surface gap is usually 0.0
2~lQm*, preferably 0.05~2111+111
If it is narrower than this range, the power will be excessive and it will be difficult to increase the volume due to foaming, making it difficult to discharge volatile components smoothly. On the other hand, if it is wider than this range, the shear force will be weak. Neither of these are desirable. The rotation speed is usually 50 to 1,000 rpm, preferably 100 to s.
oo rpm, and if it is smaller than this range, the necessary shearing force and/or ejection force cannot be obtained, and if it is larger, structural problems such as axial vibration of the rotor 8 will occur, both of which are undesirable.

本発明の方法における脱揮押出機は通常を段階の使用に
より重合体組成物中の残存揮発成分含量を所望の水準ま
で十分減少させることができるが、要すれば、2基以上
直列に使用してもよく、従来から公知のベント押出機を
第2段脱揮部として直列に使用してもよい。第3図はそ
の一例の正面断面図を示したものである。図中、1〜1
4の各番号は第1詔よび2図と同名称であり、15はリ
ングスリット、16はベントロ、17.17′、17′
はそれぞれ深溝スクリュ一部、溝深変化部$よび浅溝ス
クリュ一部を示す。
The devolatilizing extruder used in the process of the present invention can usually be used in stages to sufficiently reduce the content of residual volatile components in the polymer composition to a desired level, but if necessary, two or more units can be used in series. Alternatively, a conventionally known vent extruder may be used in series as the second stage devolatilization section. FIG. 3 shows a front sectional view of one example. In the figure, 1 to 1
Each number 4 has the same name as the first edict and figure 2, 15 is a ring slit, 16 is a ventro, 17.17', 17'
indicate a part of the deep groove screw, a part of the groove depth change part $, and a part of the shallow groove screw, respectively.

本発明の方法番ζ#いて熱可塑性重合体とは、メチルメ
タクリレート、アルキルメタクリレート(ただし、アル
キル基は2〜8個の炭素原子を有する)、アルキルアク
リレート、(ただし、アルキル基は1〜8個のアルキル
基を有する)、スチレン、P−クロルスチレン、P−メ
チルスチレン、α−メチルスチレンなどのスチレン誘導
体、アクリロニトリル、メタクリロニトリルなどの不飽
和ニトリル誘導体、ブタジェン、イソプレンなどの共役
ジエン誘導体およびイソブチレンなどの不飽和単量体の
単独重合体またはこれらの1種または2種以上を60重
量−以上含有する共重合体、エチレン/酢酸ビニル共重
合体、エチレン/アルキルアクリレ−・ト共重合体(た
だし、アルキル基は1〜8個の炭素原子を有する)、E
PDMおよびビスフェノールAより誘導され下式(I)
で表わされる繰返し構造単位を有し実質的に線状である
ポリヒドロキシポリエーテル化合物などの縮合、付加あ
るいは開環重合体から選ばれた1種または2種以上を意
味する。
Thermoplastic polymers according to the method number ζ# of the present invention include methyl methacrylate, alkyl methacrylate (wherein the alkyl group has 2 to 8 carbon atoms), alkyl acrylate (where the alkyl group has 1 to 8 carbon atoms), (having an alkyl group of Homopolymers of unsaturated monomers such as or copolymers containing 60 weight or more of one or more of these, ethylene/vinyl acetate copolymers, ethylene/alkyl acrylate copolymers (However, the alkyl group has 1 to 8 carbon atoms), E
Derived from PDM and bisphenol A, the following formula (I)
It means one or more selected from condensation, addition, or ring-opening polymers such as substantially linear polyhydroxypolyether compounds having repeating structural units represented by the following.

(式中、nは80〜300 ) また本発明の方法において溶剤とは前記熱可塑性重合体
と実質的に均一に混合するものであれば特に限定されな
いが、熱可塑性重合体がポリスチレンの場合はエチルベ
ンゼン、ポリブタジェンやEPDMの場合はn−ヘキサ
ン、またポリヒドロキシポリエーテルの場合はメチルエ
チルケトンなどのようにその重合工程において使用され
る溶剤が例示される。
(In the formula, n is 80 to 300) In addition, in the method of the present invention, the solvent is not particularly limited as long as it can be mixed substantially uniformly with the thermoplastic polymer, but when the thermoplastic polymer is polystyrene, Examples of solvents used in the polymerization process include ethylbenzene, n-hexane in the case of polybutadiene and EPDM, and methyl ethyl ketone in the case of polyhydroxypolyether.

また本発明の方法に招いて熱可塑性重合体組成物とは、
上記熱可塑性重合体とその未反応単量体、溶剤および/
または副生成物からなる混合物を意味し、更番こ該組成
物には熱安定剤、紫外線吸収剤、着色剤、可塑剤、離型
剤、滑剤、果面活性剤などの添加剤怠よびガラス繊維、
無機塩、金属酸化物などの各種の充填剤を熱可塑性重合
体に対し等重量以下の範囲で含有しているものが包含さ
れる。これらの熱可塑性重合体組成物は塊状重合法ある
いは溶液重合法によって得られる反応生成物に限定され
ることなく、種々のプロセスから排出される熱可塑性重
合体を含有する廃液であってもよい。
Furthermore, the thermoplastic polymer composition referred to in the method of the present invention includes:
The above thermoplastic polymer, its unreacted monomer, solvent and/or
The composition also includes additives such as heat stabilizers, ultraviolet absorbers, colorants, plasticizers, mold release agents, lubricants, and surface active agents. fiber,
It includes those containing various fillers such as inorganic salts and metal oxides in an amount equal to or less than the weight of the thermoplastic polymer. These thermoplastic polymer compositions are not limited to reaction products obtained by bulk polymerization or solution polymerization, but may also be waste liquids containing thermoplastic polymers discharged from various processes.

以下、本発明の方法を実施例によって説明するが、本発
明はこれらの実施例によって限定されるものではない。
Hereinafter, the method of the present invention will be explained by examples, but the present invention is not limited by these examples.

実施例! 第1図の装置を使用した。スクリュー径はD= 30 
myn 、深溝部8は長さ4D、溝深6 mm。
Example! The apparatus shown in Figure 1 was used. Screw diameter is D=30
myn, the deep groove portion 8 has a length of 4D and a groove depth of 6 mm.

溝深変化部8′は長さ2D、浅溝部8′は長さ6D、溝
深1.5朋で、いずれもピッチDの単ねじであり、フラ
イト中は5 、n5vt 、フライト間隙は0.2−m
であった。また細孔部5はスクリユーの溝深変化部に対
向して配置され、揮発成分出口12とはスクリユーの軸
方向に4Dの距離を有していた。また重合体組成物出口
ノズル14は内径3朋であった。
The groove depth changing part 8' has a length of 2D, and the shallow groove part 8' has a length of 6D and a groove depth of 1.5 mm. Both are single screws with a pitch of D. During flight, the groove depth is 5 mm, n5vt, and the flight gap is 0.5 mm. 2-m
Met. Further, the pore portion 5 was arranged opposite to the groove depth changing portion of the screw, and had a distance of 4D from the volatile component outlet 12 in the axial direction of the screw. The polymer composition outlet nozzle 14 had an inner diameter of 3 mm.

メチルメタクリレート92重量sbよびエチルアクリレ
ート8重量−からなる単量体混合物を塊状重合して得た
メチルメタクリレート−エチルアクリレート共重合体4
5重量%、メチルメタクリレート単量体49重量%、お
よびエチルアクリレート単量体6重量−の組成で、17
0℃、10気圧の温度および圧力条件下にある重合体組
成物を、脱揮押出機バレル2に設けたニードル弁により
調圧し細孔部5を通して、480rptmで回転してい
るスクリュー外面7とバレル内面3とで構成される間隙
部6に直接吹き込んだ。このとき脱揮押出機の内部は2
60 Torr  に維持され、バレル2に設けられた
熱媒循環路11 には250℃の熱媒体が循環された。
Methyl methacrylate-ethyl acrylate copolymer 4 obtained by bulk polymerization of a monomer mixture consisting of 92 weight sb of methyl methacrylate and 8 weight of ethyl acrylate
17% by weight, 49% by weight of methyl methacrylate monomer, and 6% by weight of ethyl acrylate monomer.
The polymer composition under temperature and pressure conditions of 0° C. and 10 atm is pressure-regulated by a needle valve provided in the devolatilizing extruder barrel 2, and passed through the fine hole 5 to the outer surface of the screw 7 and the barrel rotating at 480 rpm. The air was blown directly into the gap 6 formed between the inner surface 3 and the inner surface 3. At this time, the inside of the devolatilizing extruder is 2
The temperature was maintained at 60 Torr, and a 250° C. heat medium was circulated in the heat medium circulation path 11 provided in the barrel 2.

揮発成分を分離した重合体組成物はバレル先端付近の押
出ダイ13に設けられた重合体組成物出口14より8.
1KP/ h rの割合で取り出された。最終重合体組
成物は気泡を殆んど含有せず、残存揮発成分含量は0.
3重量%であった。また分離した揮発成分は排気口12
から取り出され凝縮して回収され、その回収率は理論値
の98チ以上であった。この条件で12時間連続運転し
た結果、排気口12への重合体組成物の付着は全く認め
られなかった。
The polymer composition from which the volatile components have been separated is passed through the polymer composition outlet 14 provided in the extrusion die 13 near the tip of the barrel.
It was extracted at a rate of 1 KP/hr. The final polymer composition contains almost no air bubbles and has a residual volatile content of 0.
It was 3% by weight. In addition, the separated volatile components are removed from the exhaust port 12.
It was taken out, condensed and recovered, and the recovery rate was higher than the theoretical value of 98%. As a result of continuous operation for 12 hours under these conditions, no adhesion of the polymer composition to the exhaust port 12 was observed.

実施例2〜7 実施例1の装置を用い第1表の組成の液状重合体組成物
を脱揮押出に供した。スクリューはいずれの場合もao
o rpmとした。これらの液状重合体組成物は第1表
に示した温度および圧力に加熱昇圧し51/hrの流量
でニードル弁4を通して大気圧下に開放された面間隙に
供給した。熱媒循環路11  にはj11表に示した温
度の熱媒が循環されており、導出口14より取り出され
た重合体組成物中の残存揮発成分含量は第1表番ご示し
たと1りでいずれも極めて小さく、また気泡を殆んど含
有せず、着色増加、ゲル化あるいは加水分解などは全く
認められなかった。
Examples 2 to 7 Using the apparatus of Example 1, liquid polymer compositions having the compositions shown in Table 1 were subjected to devolatilization extrusion. The screw is ao in both cases.
o rpm. These liquid polymer compositions were heated and pressurized to the temperature and pressure shown in Table 1, and supplied at a flow rate of 51/hr through a needle valve 4 to a surface gap open to atmospheric pressure. A heating medium having a temperature shown in Table J11 is circulated in the heating medium circulation path 11, and the residual volatile component content in the polymer composition taken out from the outlet 14 is as shown in Table 1. All of them were extremely small and contained almost no air bubbles, and no increase in coloring, gelation, or hydrolysis was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するに適する脱揮押出装置の
一例の正面断面図、@2図は回転子にスクリュー溝を設
けて吐出力を高めた一例の口 正面断面図、また[18図は後段にベントPを設けで脱
揮能力を補強した一例の正面断面図をそれぞれ示したも
のである。 第1〜8図において、lは重合体組成物入口、2は固定
子(バレル)、8は固定子内面(バレル内面)、4はニ
ードル弁、5は細孔部、6は間隙部、7は回転子外面(
スクリュー外&)、8は回転子(スクリュー)、9は軸
封部、10は回転軸、11は熱媒循環路、12は揮発成
分出口、18は押出ダイ、14は重き体組成物をそれぞ
れ示す(カッコ内は第2,8図に対応する)。 また、第2,8図においr、8.17は浅溝スクリュ一
部、8’ 、 17’は溝深変化部、8’、17’は深
溝スクリュ一部をそれぞれ示す。 方I酊 手続補正書(指命) −事件の表示 昭和57年 特許顧箪 30917号 −発明の名称 脱揮押出装置詔よびその装置 、 補正をする者 事件との関係  特許出願人 住 所  大願市東区北浜5丁目15番地名 称  (
209)住友化学工業株式金社代表者    土 方 
  武 代  理  人
Fig. 1 is a front sectional view of an example of a devolatilization extrusion device suitable for carrying out the method of the present invention, and Fig. 2 is a front sectional view of an example in which the rotor is provided with screw grooves to increase the discharge force. The figures each show a front sectional view of an example in which a vent P is provided at the rear stage to reinforce the devolatilization ability. In FIGS. 1 to 8, l is the polymer composition inlet, 2 is the stator (barrel), 8 is the stator inner surface (barrel inner surface), 4 is the needle valve, 5 is the pore portion, 6 is the gap portion, and 7 is the rotor outer surface (
outside the screw, 8 is a rotor (screw), 9 is a shaft seal, 10 is a rotating shaft, 11 is a heat medium circulation path, 12 is a volatile component outlet, 18 is an extrusion die, and 14 is a heavy body composition. (Figures in parentheses correspond to Figures 2 and 8). Further, in FIGS. 2 and 8, r, 8.17 indicates a part of the shallow groove screw, 8' and 17' indicate groove depth changing parts, and 8' and 17' indicate a part of the deep groove screw, respectively. Written amendment to the procedure for drunkenness (instruction) - Indication of the case 1982 Patent review No. 30917 - Name of the invention Order for devolatilization extrusion device and its device, person making the amendment Relationship with the case Patent applicant address Daigan City Higashi 5-15 Kitahama, Ward Name (
209) Sumitomo Chemical Co., Ltd. Kinsha Representative Hijikata
Masato Takeyo

Claims (1)

【特許請求の範囲】 (11未反応単量体、溶剤肴よび/または副生成物の揮
発成分を含有す墨熱可璽性重金体組成物から揮発成分を
分離するに当り、該組成物が実質的に液相状態を保持す
るに十分な圧力と、該組成物中の該揮発成分の揮発に必
要な熱量の全部ないし一部とを該組成物に与えた後、こ
れを回転子の軸方向に駆動部側から先端側に向って揮発
成分出口、細孔部ネよび脱揮後の重合体組成物の導出口
の順に配列され内部が5’rorrの真空ないし2気圧
の圧力条件下にある脱揮押出機の固定子を貫通して歓け
られた該細孔部を遥じて供給し、該脱揮押出機の固定子
白画と回転子外画とで構成される円筒状の間隙に直接吹
込むことにより揮発。 成分の大部分を分離して該揮発成分出口より取出して回
収すると共に、回転子ゐ回転により剪断力と吐出力を発
生させて重合体組成物を回転子の先端方向−と移送かつ
加熱しっつ残金の揮発成分を分離して、これを回転子先
端部方向に設けられた導出口から取出すことを特徴とす
る脱揮押出方法。 (2)脱揮押出機の細孔部と揮発成分出口とが、回転子
の軸径をDとしたとき軸方向に2D以上の距離を有して
配置される特許請求の範囲第(1)項に記載の方法。 (3)脱揮押出機の回転子がスクリューであり、固定子
がこれと共働するバレルである特許請求の範囲第<i>
項に記載の方法。 (4)熱可塑性重合体がアルキルメタクリレート(ただ
し、アルキル基は1〜8個の炭素原子を有する)、アル
キルアクリレート(ただしアルキル基は1〜8個の炭素
原子を、有する)、スチレン、P−クロルスチレン、P
−メチルスチレン、α−メチルスチレン、酢酸ビニル、
アクリロニトリル、メタクリロニトリル、ブタジェン、
イソプレンおよびインブチレンの単独重合体またはこれ
らの1種または2種以上を60重量−以上含有する共重
合体、エチレン/酢酸ビニル共重合体、エチレン/アル
キルアクリレート共重合体(ただし、アルキル基は1〜
8個の炭素原子を有する)、EPDM、およびビスフェ
ノール人より誘導され、下式(I)で表わされる繰返し
構造単位を有し実質的に線状であるポリヒドロキシポリ
エーテル化合物から選ばれた1種または2種以上である
特許請求の範囲第(1)項に記載の方法。 (式中、nは80〜300) (5)供給される重合体組成物中の揮発成分含有率が2
5〜99.9重量−である特許請求の範囲第(1)項に
記載の方法。 (6)一定の間隙を構成するよう配置された回転子と固
定子、該固定子を貫通して回転子外面に対向して配置さ
れた重合体組成物を供給するための細孔部、供給される
重合体組成物の圧力を維持するための該細孔部間隙の調
節機構、該回転子を回転するための駆動機構、該回転子
に設けられた吐出力を発生するための機構、装置内の空
間を所定の圧力に保持するための軸封機構、揮発成分を
取り出すための駆動部方向に配置された揮発成分取出口
、脱揮された重合体組成物を取り出すための回転子先端
部方向の固定子上に配置された導出口、および吐出圧を
発生させるための該導出口の開口度を調節するための機
構を有してなることを特徴とする脱揮押出装置。 (7)回転子がスクリ、−であり、固定子がこれと共働
するバレルである特許請求の範囲第(6)項に記載の装
置。
[Claims] (11) In separating volatile components from an ink thermoplastic heavy metal composition containing volatile components of unreacted monomers, solvents and/or by-products, the composition is After applying sufficient pressure to maintain the composition in a substantially liquid state and all or part of the amount of heat necessary to volatilize the volatile components in the composition, the composition is transferred to the shaft of a rotor. The volatile component outlet, the pore section, and the outlet for the devolatilized polymer composition are arranged in this order from the drive part side to the tip side, and the inside is under a vacuum of 5'rorr or a pressure of 2 atmospheres. A cylindrical tube that penetrates the stator of a certain devolatilizing extruder and is supplied far from the pores, and is composed of the stator white area and the rotor outer area of the devolatilizing extruder. Volatizes by blowing directly into the gap. Most of the components are separated and taken out from the volatile component outlet and collected, and the rotation of the rotor generates shear force and discharge force to transfer the polymer composition to the rotor. A devolatilizing extrusion method characterized by separating the volatile components of the residual metal from the tip direction and heating it, and taking it out from an outlet provided in the rotor tip direction. (2) Devolatilizing extrusion The method according to claim 1, wherein the pores of the rotor and the volatile component outlet are arranged with a distance of 2D or more in the axial direction, where D is the shaft diameter of the rotor. (3) Claim <i> wherein the rotor of the devolatilizing extruder is a screw, and the stator is a barrel cooperating therewith.
The method described in section. (4) Thermoplastic polymers include alkyl methacrylate (however, the alkyl group has 1 to 8 carbon atoms), alkyl acrylate (however, the alkyl group has 1 to 8 carbon atoms), styrene, P- Chlorstyrene, P
-methylstyrene, α-methylstyrene, vinyl acetate,
Acrylonitrile, methacrylonitrile, butadiene,
Homopolymers of isoprene and imbutylene or copolymers containing 60 weight or more of one or more of these, ethylene/vinyl acetate copolymers, ethylene/alkyl acrylate copolymers (however, the alkyl group is ~
8 carbon atoms), EPDM, and a substantially linear polyhydroxy polyether compound derived from bisphenols and having a repeating structural unit represented by the following formula (I) or the method according to claim (1), which is two or more types. (In the formula, n is 80 to 300) (5) The volatile component content in the supplied polymer composition is 2
The method according to claim 1, wherein the weight is 5 to 99.9% by weight. (6) A rotor and a stator arranged to form a certain gap, a pore portion for supplying a polymer composition disposed through the stator and facing the outer surface of the rotor, and a supply. A mechanism for adjusting the gap between the pores to maintain the pressure of the polymer composition, a drive mechanism for rotating the rotor, and a mechanism and device provided on the rotor for generating discharge force. A shaft sealing mechanism to maintain the inner space at a predetermined pressure, a volatile component extraction port arranged in the direction of the drive unit to take out volatile components, and a rotor tip part to take out the devolatilized polymer composition. 1. A devolatilizing extrusion device comprising: a discharge port disposed on a stator in the direction of the direction of the discharge; and a mechanism for adjusting the degree of opening of the discharge port for generating discharge pressure. (7) The device according to claim (6), wherein the rotor is a screw and the stator is a barrel cooperating therewith.
JP57030917A 1982-02-26 1982-02-26 Devolatilization extruding method and device thereof Granted JPS58147332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030917A JPS58147332A (en) 1982-02-26 1982-02-26 Devolatilization extruding method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030917A JPS58147332A (en) 1982-02-26 1982-02-26 Devolatilization extruding method and device thereof

Publications (2)

Publication Number Publication Date
JPS58147332A true JPS58147332A (en) 1983-09-02
JPH0153682B2 JPH0153682B2 (en) 1989-11-15

Family

ID=12317047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030917A Granted JPS58147332A (en) 1982-02-26 1982-02-26 Devolatilization extruding method and device thereof

Country Status (1)

Country Link
JP (1) JPS58147332A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227938A (en) * 1983-06-10 1984-12-21 Mitsui Toatsu Chem Inc Polymer composition
US4906421A (en) * 1987-07-01 1990-03-06 Avery International Corporation Process for making high performance pressure sensitive adhesive tapes
JPH0349925A (en) * 1989-07-17 1991-03-04 Sumitomo Chem Co Ltd Devolatile extrusion method of thermoplastic polymer composition
US5236645A (en) * 1990-09-21 1993-08-17 Basf Corporation Addition of additives to polymeric materials
US5589122A (en) * 1991-10-01 1996-12-31 Minnesota Mining And Manufacturing Company Method of making double-sided pressure-sensitive adhesive tape
US5660922A (en) * 1991-10-01 1997-08-26 Minnesota Mining And Manufacturing Company Coextruded pressure-sensitive adhesive tape and method of making
JP2002161109A (en) * 1999-10-12 2002-06-04 Kanegafuchi Chem Ind Co Ltd Method for removing organic solvent and manufacturing pellet from solution of isobutylene-based block copolymer
JP2007052452A (en) * 1998-02-24 2007-03-01 Mitsubishi Rayon Co Ltd Plastic optical fiber, optical fiber cable, optical fiber cable with plug, method for producing methyl methacrylate based polymer and method for producing plastic optical fiber
WO2009040189A1 (en) * 2007-09-20 2009-04-02 Evonik Röhm Gmbh Degassing extruder for degassing a polymer material and method for degassing a syrup consisting of polymers, solvents and/or monomers using a degassing extruder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150708B2 (en) 2010-11-08 2013-02-27 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP5249366B2 (en) 2011-01-26 2013-07-31 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP5431376B2 (en) 2011-01-26 2014-03-05 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP2012207203A (en) 2011-03-17 2012-10-25 Sumitomo Chemical Co Ltd Process for production of polymer composition
JP5901361B2 (en) 2011-11-18 2016-04-06 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP2014012781A (en) 2012-07-05 2014-01-23 Sumitomo Chemical Co Ltd Method for producing methacrylic polymer composition
JP6002017B2 (en) 2012-12-03 2016-10-05 住友化学株式会社 Method for producing methacrylic polymer composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088193A (en) * 1973-08-15 1975-07-15
JPS5217555A (en) * 1975-08-01 1977-02-09 Asahi Glass Co Ltd Fluorine-containing copolymer compositions containing carbonaceous mat erials
JPS5530987U (en) * 1978-08-23 1980-02-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088193A (en) * 1973-08-15 1975-07-15
JPS5217555A (en) * 1975-08-01 1977-02-09 Asahi Glass Co Ltd Fluorine-containing copolymer compositions containing carbonaceous mat erials
JPS5530987U (en) * 1978-08-23 1980-02-28

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227938A (en) * 1983-06-10 1984-12-21 Mitsui Toatsu Chem Inc Polymer composition
US4906421A (en) * 1987-07-01 1990-03-06 Avery International Corporation Process for making high performance pressure sensitive adhesive tapes
JPH0349925A (en) * 1989-07-17 1991-03-04 Sumitomo Chem Co Ltd Devolatile extrusion method of thermoplastic polymer composition
US5236645A (en) * 1990-09-21 1993-08-17 Basf Corporation Addition of additives to polymeric materials
US5589122A (en) * 1991-10-01 1996-12-31 Minnesota Mining And Manufacturing Company Method of making double-sided pressure-sensitive adhesive tape
US5599602A (en) * 1991-10-01 1997-02-04 Minnesota Mining And Manufacturing Company Double-sided pressure-sensitive adhesive tape and method of making
US5660922A (en) * 1991-10-01 1997-08-26 Minnesota Mining And Manufacturing Company Coextruded pressure-sensitive adhesive tape and method of making
JP2007052452A (en) * 1998-02-24 2007-03-01 Mitsubishi Rayon Co Ltd Plastic optical fiber, optical fiber cable, optical fiber cable with plug, method for producing methyl methacrylate based polymer and method for producing plastic optical fiber
JP4545730B2 (en) * 1998-02-24 2010-09-15 三菱レイヨン株式会社 Optical fiber, optical fiber cable and optical fiber cable with plug
JP2002161109A (en) * 1999-10-12 2002-06-04 Kanegafuchi Chem Ind Co Ltd Method for removing organic solvent and manufacturing pellet from solution of isobutylene-based block copolymer
WO2009040189A1 (en) * 2007-09-20 2009-04-02 Evonik Röhm Gmbh Degassing extruder for degassing a polymer material and method for degassing a syrup consisting of polymers, solvents and/or monomers using a degassing extruder
US8585275B2 (en) 2007-09-20 2013-11-19 Evonik Roehm Gmbh Degassing extruder for degassing a polymer material and method for degassing a syrup consisting of polymers, solvents and/or monomers using a degassing extruder

Also Published As

Publication number Publication date
JPH0153682B2 (en) 1989-11-15

Similar Documents

Publication Publication Date Title
JPS58147332A (en) Devolatilization extruding method and device thereof
US3082816A (en) Process for treating material
US4110843A (en) Pressure restricting means for a liquid outlet of an extruder
US4578455A (en) Process and apparatus for removing volatile constituents from polymer melts or pastes
TW533125B (en) Aromatic polycarbonate kneading apparatus and method
EP0185527A2 (en) Methods and apparatus for mixing liquid with viscous material
JPS5958006A (en) Method and apparatus for recovering polymer from melt of so-lution containing volatile component
JPS5919724B2 (en) Rotating disc devolatilization extrusion method and device
US8252892B2 (en) Process for obtaining an elastomer in solid phase starting from its polymer solution
JPH09110999A (en) Production of particulate thermoplastic polymeric material from polymer solution
EP0046696B1 (en) Rotating disc evapo-extrusion process and apparatus therefor
US3840509A (en) Process for preparing polymers from styrene
US4028302A (en) Process for preparing concentrated acrylonitrile polymer solutions
KR840001013Y1 (en) Rotating disc evapo-extrusion apparatus
US3694535A (en) Process and apparatus for removing volatile substances from viscous compositions
JPH0714967B2 (en) Method for producing methacrylic resin
US4419488A (en) Process for continuous production of high impact polystyrene
KR20130135824A (en) Process for thermal separation of a solution consisting of thermoplastic polymer and solvent
JPH11315113A (en) Continuous production of poly(vinyl acetate) for producing poly(vinyl alcohol)
JP4180125B2 (en) Purification method of polymerization reaction product
JPS5850644B2 (en) Continuous manufacturing method for methyl methacrylate resin molding material
JPH07205146A (en) Continuously regenerating method for resin with coating film
JPH11129319A (en) Production of thermoplastic polymer and screw devolatilizing extruder used therein
JPH061808A (en) Production of maleimide copolymer
JPS6330921B2 (en)