JPS58146832A - Method for monitoring shaft torsional vibration and fatigue of turbine generator - Google Patents

Method for monitoring shaft torsional vibration and fatigue of turbine generator

Info

Publication number
JPS58146832A
JPS58146832A JP2961182A JP2961182A JPS58146832A JP S58146832 A JPS58146832 A JP S58146832A JP 2961182 A JP2961182 A JP 2961182A JP 2961182 A JP2961182 A JP 2961182A JP S58146832 A JPS58146832 A JP S58146832A
Authority
JP
Japan
Prior art keywords
shaft
torsional vibration
fatigue
torsional
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2961182A
Other languages
Japanese (ja)
Other versions
JPH0326341B2 (en
Inventor
Akinori Nagata
永田 晃則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2961182A priority Critical patent/JPS58146832A/en
Publication of JPS58146832A publication Critical patent/JPS58146832A/en
Publication of JPH0326341B2 publication Critical patent/JPH0326341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/10Measuring characteristics of vibrations in solids by using direct conduction to the detector of torsional vibrations

Abstract

PURPOSE:To monitor exactly shaft torsional vibration and fatigue of a turbine generator, by adjusting a parameter of a mathematical model of a modal analyzing method by calculated modal damping, and deciding torsional vibration and stress of a shaft system. CONSTITUTION:By a damping operation part 8a of a signal processing part 8, torsional natural vibration of a shaft 4, modal damping, etc. are deciced from shaft torsional angle displacement from torsional angle detecting parts 5a, 5b. In accordance with decision of them, in a torsional vibration and stress calculating part 8b, a mathematical parameter by set modal analysis by electric torque and vapor pressure from detecting parts 6, 7 is adjusted, and a torsional vibration and stress state of each part of the shaft 4 is calculated. Subsequently, by a compare-operating part 8c, a calculation result of the calculating part 8b is compared with shaft torsional angle displacement, and in case when its error is large, the mathematical model parameter is readjusted, and it is repeated until the error becomes small. In this way, in accordance with a correct calculation result of the claculating part 8b, shaft torsional vibration and fatigue of a turbine generator is monitored exactly through a fatigue and life operating part 9.

Description

【発明の詳細な説明】 本発明は蒸気タービン並びにタービン発電機より成る回
転機軸系に発生するねじり振動,応力および疲労被害度
を監視するためのタービン発電機の軸ねじり振動・疲労
監視方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shaft torsional vibration/fatigue monitoring method for a turbine generator for monitoring the torsional vibration, stress, and degree of fatigue damage occurring in the shaft system of a rotating machine consisting of a steam turbine and a turbine generator.

〔発明の技術的背量〕[Technical weight of the invention]

一般に、蒸気タービン発電機は高圧.中圧。 Generally, steam turbine generators are high pressure. Medium pressure.

低圧から成る蒸気タービン、発電811(ロータ)、エ
キサイタ−およびこれらを連結するタービン軸から構成
されている。発1を機が定常状態で運転されている時の
軸ねじり振動、およびこれによって発生する軸各部の応
力餐動は微少であるが、突発的な短llf1嬌故時.低
速および高通再閉略失敢時,゛峨力系執と軸ねじり系と
の共振時。
It consists of a low-pressure steam turbine, a power generator 811 (rotor), an exciter, and a turbine shaft that connects these. When the machine is operating in a steady state, the torsional vibration of the shaft and the resulting stress vibration of each part of the shaft are minute, but in the event of a sudden short llf1 failure. At low speeds and high-speed re-closing failures, when the force system and shaft torsion system resonate.

さらには非同期投入時等には、タービン軸に突発的な過
渡ねじり振動と応力、或いは急激に嶽動が増大する正弦
波的な振動、応力が発生し、この非定常なねじりII&
動によって軸が疲労し破壊してしまうこともある。
Furthermore, during asynchronous start-up, sudden transient torsional vibration and stress, or sinusoidal vibration and stress with sudden increase in rocking motion occur on the turbine shaft, and this unsteady torsion II &
The shaft may become fatigued and break due to movement.

このため、運転中の軸ねじり振動を監視し、そのねじり
角変形から軸各部に発生する応力を推定し、その部分の
疲労被害度を評価することは、回転軸の寿命設計上或い
は運転上極めて重要なことである。特に、タービン発電
機軸に生じる過大なねじり振動はその軸系に及ぼす疲労
度が大きく、この応力値を運転中に短時間内で測定、評
価することは非常に重要である。
For this reason, monitoring the shaft torsional vibration during operation, estimating the stress generated in each part of the shaft from the torsional angular deformation, and evaluating the degree of fatigue damage in that part is extremely important in terms of life design and operation of the rotating shaft. It's important. In particular, excessive torsional vibration occurring in the turbine generator shaft causes a large degree of fatigue on the shaft system, and it is very important to measure and evaluate this stress value within a short period of time during operation.

〔背景技術の藺―点〕[Background technology points]

従って、従来よりかかる回転軸系のねじり振動検出や応
力測定を行なっているが、軸系の複数箇所の振動検出、
応力調定を行なう場合に、その測定箇所(評価対象部所
)毎に測定装置を設けなければならず極めて□不経済で
もあるし、検出器の寿命の点からも信頼性のある方法、
であるとは言えない。また、櫨々の要因から軸系のねじ
り振動、応力および疲労値害度の監視な積度良く行なう
ことができないという間融がある。
Therefore, although torsional vibration detection and stress measurement of such rotating shaft systems have been conventionally performed, vibration detection at multiple locations of the shaft system,
When performing stress adjustment, it is necessary to install a measuring device for each measurement point (part to be evaluated), which is extremely uneconomical, and there is no reliable method in terms of the life of the detector.
I cannot say that it is. Furthermore, due to various factors, it is not possible to monitor the torsional vibration, stress, and fatigue value of the shaft system in a thorough manner.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような事情に鑑みて成されたもので、そ
の目的は軸系各部におけるねじり振動、応力状態並びに
疲労被害度を正確にしかも8属に行なうことができる経
済性、信頼性の高いタービン発電機の軸ねじり振動・疲
労監視方法を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to provide an economical and reliable method that can accurately measure torsional vibration, stress state, and fatigue damage in each part of the shaft system, and reduce the degree of fatigue damage to 8 categories. An object of the present invention is to provide a method for monitoring shaft torsional vibration and fatigue of a high-performance turbine generator.

〔発明の概要〕[Summary of the invention]

本発明はタービン発″t1m軸系のねじり振動・応力状
態が 軸系全体のねじりダンピングに強く依存しており
、またこのダンピングが蒸気タービンの負荷変動とター
ビン軸に掛る振動・応力の大きさにも依存している、す
なわち後者の状態が大きい程系全体のダンピングも大き
くなる傾向にあるという点に着目したものである。
In the present invention, the torsional vibration and stress state of the turbine shaft system at t1m strongly depends on the torsional damping of the entire shaft system, and this damping is influenced by the load fluctuation of the steam turbine and the magnitude of vibration and stress applied to the turbine shaft. This study focuses on the fact that the larger the latter state is, the greater the damping of the entire system tends to be.

よって、上記目的を達成するために本発明では、蒸気タ
ービン並びにタービン発msiより成る回転機軸系にお
ける複数−所の輔ねじυ角変位、4気トルク、蒸気圧力
を夫々同時に検出し、上記軸ねじり角変位より軸系の固
有振動数とそ一ダルダンピングを求めて、これ−二より
上記電気1ルクと蒸気圧力を入力とするモーダル解析法
による数学モデルのパラメータを1llIlシて上記軸
ねじり角変位検出量と比較し、適切な数学モデルを設定
して軸系各部の軸ねじり振動、応力および疲労被害度を
監視することを特徴とする。
Therefore, in order to achieve the above object, the present invention simultaneously detects the shaft screw υ angular displacement, 4-kilo torque, and steam pressure at multiple locations in the shaft system of a rotating machine consisting of a steam turbine and a turbine generator msi, and detects the shaft torsion. From the angular displacement, find the natural frequency of the shaft system and its damping, and from this, set the parameters of the mathematical model using the modal analysis method using the electricity 1 lux and steam pressure as inputs to calculate the shaft torsional angular displacement. It is characterized by comparing the detected amount and setting an appropriate mathematical model to monitor the shaft torsional vibration, stress, and fatigue damage degree of each part of the shaft system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

図は、本発明によるタービン発電機の軸ねじり振動監視
方法の一例をブロック的に示したものである1図におい
て、1は高圧、中圧、低圧からなる蒸気タービン、2は
タービン発電機、1はエキ葉イタ−であり、これらをタ
ービン軸4にて連結しタービン発電機軸系を構成してい
る。
The figure is a block diagram showing an example of the shaft torsional vibration monitoring method of a turbine generator according to the present invention. In the figure, 1 is a steam turbine consisting of high pressure, intermediate pressure, and low pressure; is an exhaust leaf iterator, which are connected by a turbine shaft 4 to constitute a turbine generator shaft system.

一方、5晦、ibはタービン@4のねじり角つまり軸の
相対ねじ!ノ角に関係する変動的な振動・応力成分を検
出する軸ねじり角検出g #はタービン発電fi2にか
かる電気トルクを検出する電気トルク検出部、7は蒸気
タービン1の蒸気圧力な検出する蒸気圧力検出部である
。また、8は上記各検出部Sm、6b、6.rにより検
出された軸ねじり角変位、′4気トルク、蒸気圧力の各
検出器を入力とし、これらの入力量をデジタルまたはア
ナログ信号処理する信号処理部で、その内部構成は以下
の通りである。
On the other hand, ib is the torsion angle of the turbine @4, or the relative screw of the shaft! Shaft torsion angle detection g that detects fluctuating vibration and stress components related to the rotation angle; # is an electric torque detection unit that detects the electric torque applied to the turbine power generation fi2; This is the detection part. Moreover, 8 is each of the above-mentioned detection parts Sm, 6b, 6. This is a signal processing unit that receives the shaft torsion angular displacement detected by r, the 4K torque, and the steam pressure as inputs, and processes these input quantities into digital or analog signals. Its internal configuration is as follows. .

つまり、固有振動数・ダンピング演算部laにおいて、
2点間の軸ねじり角検出部1m、lbからの検出器であ
る軸ねじり変位から、軸4のねじり固有振動数Nfi(
1−1〜11次)と、時間と共に変化するであろう各固
有振動数に対応するダンピング、すなわちモーダルダン
ピング81(t)(1−1〜a次)を求める。次に、ね
じり振動・応力針算部8bにおいて、上記各検出部6.
1からの出力量である電気トルクと蒸気圧力とを入力と
゛する予め設定した軸系全体のモーダル解析法による数
寄モデルのパラメータを。
In other words, in the natural frequency/damping calculation section la,
From the shaft torsion displacement detected by the shaft torsion angle detection unit 1m, lb between two points, the torsion natural frequency Nfi (
1-1 to 11th order) and damping corresponding to each natural frequency that will change over time, that is, modal damping 81(t) (1-1 to a order). Next, in the torsional vibration/stress calculation section 8b, each of the detection sections 6.
Parameters of the Suki model based on the modal analysis method of the entire shaft system set in advance, which inputs the electric torque and steam pressure, which are the output quantities from 1.

上記Nf j (Jswlxa ) 、 8 j(t)
(j m1〜tr )に基づいて調整し、軸各部のねじ
り振動・応力状態を算出する。つぎに、比較演算部1c
においてその算出結果と上記2点間の軸ねじり角変位と
比較して計算結果の正しさをチェックし、若し誤差の大
きい場合は上記81(t)のばらつき範囲内で再度数学
モデルのパラメータを調整し、再度軸各部の振動番応力
状]1t−算出して比較し該誤差が小宴くなるまでこれ
を繰返し行なう。
The above Nf j (Jswlxa), 8 j(t)
(j m1~tr ) to calculate the torsional vibration and stress state of each part of the shaft. Next, the comparison calculation section 1c
Check the correctness of the calculation result by comparing it with the shaft torsional angular displacement between the two points above, and if the error is large, re-calibrate the parameters of the mathematical model within the variation range of 81(t) above. Adjust, calculate and compare the vibration number stress of each part of the shaft again, and repeat this process until the error becomes small.

その結果、正しいと判断された場合は、軸各部の振動・
応力状態から各部の疲労被害度を疲労寿命演算部tl:
おいで求め、出方−1#より該結果を出力する。
As a result, if it is determined to be correct, the vibration of each part of the shaft
Fatigue life calculation unit tl calculates the degree of fatigue damage of each part from the stress state:
Then, output the result from Output-1#.

なお、上記においてtは入力波の時刻である。Note that in the above, t is the time of the input wave.

前者のN目については時刻に泡して不変に求まるが、後
者の81(t)については時刻tと共にゆるやかに減少
する特性が一般的である。これは、振動・応力状躊が小
さくなる程81も小さくなる傾向にあるからである。ま
た、8i(t)については−律1;定まることがなく、
あるばらつきを持ったパyド状の変化になる。
The former N-th value bubbles with time and remains unchanged, but the latter 81(t) generally has a characteristic that gradually decreases with time t. This is because 81 tends to become smaller as the vibration/stress state becomes smaller. Also, regarding 8i(t) - Law 1: It is not fixed,
This results in a pie-shaped change with some variation.

また、上記において軸系のねじり振動と応力を解析する
ための数学モデルの基本は次のように表現される。
Furthermore, the basic mathematical model for analyzing the torsional vibration and stress of the shaft system described above is expressed as follows.

MΦ十〇Φ十にΦ−F (6、1’)  −−−−−−
−−−−−−(1)ここで、Φは軸各部のねじり角を表
わす列ベクトル、Φ、Φは夫々その加速度量と速度量で
ある。また、M、D、には夫々マス、ダンピング。
MΦ1〇Φ1 to Φ−F (6, 1') --------
--------(1) Here, Φ is a column vector representing the torsion angle of each part of the shaft, and Φ and Φ are the acceleration and velocity amounts, respectively. Also, mass and damping are applied to M and D, respectively.

剛性マトリックスである。さらに、P(e*p)は電気
トルクeと蒸気圧力pを変数とする入方列ベクトルであ
る。
It is a rigid matrix. Further, P(e*p) is an input column vector with electric torque e and steam pressure p as variables.

この場合、上記(1)式へモーダル解析手法を適用する
と、Φの出力は軸系の各モード毎の出力に分離され、第
1次モードの出力ρlの総和として表現できる。すなわ
ち、ρ1の出力は第1次モードの結果として次式より求
められる。
In this case, when a modal analysis method is applied to the above equation (1), the output of Φ is separated into outputs for each mode of the shaft system, and can be expressed as the sum of the outputs ρl of the first mode. That is, the output of ρ1 is obtained from the following equation as a result of the first mode.

mムρ1+旧(1)−ふ1十に1す’ −’ (@ I
 9 ) ”” (2)ここで、 ntl、kiは第1
次モードのマスと剛性であり(1)式より定められる。
mm ρ1 + old (1) - 10 to 1'-' (@ I
9) "" (2) Here, ntl, ki are the first
The mass and stiffness of the next mode are determined by equation (1).

81(1家ダンピング#を算の出力量であり、第1次の
固有振動数はNfム一体〒/miに等しい。一方、Φの
第一次のねじり角出力Φ轟は としてモーダル解析法により求められる。
81 (1 house damping # is the output quantity calculated, and the first-order natural frequency is equal to Nf 〒/mi. On the other hand, the first-order torsion angle output Φ of Φ is calculated by the modal analysis method as Desired.

従って、(2)式における8ム(1)とmlまたはki
のパラメータをN目に基づいて調整する。但し、パラメ
ータ変化が大きい場合については、(3)式のCIJ結
合マトリックスもそれに応じて調整する必要がある。ま
た、比較演算部8cにおいては(3)式のφ1と、軸ね
じり角変位とを比較することになる。
Therefore, 8 m (1) and ml or ki in equation (2)
The parameters of are adjusted based on the Nth. However, if the parameter changes are large, the CIJ coupling matrix in equation (3) needs to be adjusted accordingly. Further, the comparison calculation unit 8c compares φ1 in equation (3) with the shaft torsional angular displacement.

このように、蒸気タービン1並びにタービン発電I12
.エキナイター1をタービン軸4にて直結して成る蒸気
タービン発電機軸系において、軸ねじり角検出部tta
、ttbにて2点間の軸ねじり角変位を、電気トルク検
出部I、薫気圧力検出部lにて電気トルク、蒸気圧力を
同時に検出し、まず2点間の軸ねじり角屍位から一系の
特性蝋である固有振動数Nfjとモーダルダンピング8
4(t)を求め、次に上記電気トルクと蒸気圧力を入力
とする予定の軸系のモーダル解析法による数学モデルの
パラメータを上記Nfi。
In this way, the steam turbine 1 and the turbine power generation I12
.. In a steam turbine generator shaft system in which an equinator 1 is directly connected to a turbine shaft 4, a shaft torsion angle detection section tta
, ttb, the electric torque and steam pressure are simultaneously detected by the electric torque detection part I and the fume pressure detection part I, and first, the shaft torsion angle displacement between the two points is Natural frequency Nfj, which is the characteristic wax of the system, and modal damping8
4(t), and then set the parameters of a mathematical model based on the modal analysis method of the shaft system that is planned to use the electric torque and steam pressure as inputs as the above Nfi.

、S目t)に基づいて調整して軸各部の振動・応力状態
を算出し、しかる後該結果を上記2点間の軸ねじり角変
位と比較し、その誤差の大きい場合はこれが小さくなる
まで再度上記数学モデルのパラメータを調整して再度軸
各部の振動・応力状態を算出比較し、該比較結果が正し
いと判断(誤差が小)された場合に軸各部の振動・応力
状態から各部の疲労被害度を求めるようにしたものであ
る。
, S item t) to calculate the vibration and stress state of each part of the shaft, and then compare the results with the shaft torsional angular displacement between the above two points, and if the error is large, calculate the vibration and stress state of each part of the shaft. Adjust the parameters of the above mathematical model again, calculate and compare the vibration and stress states of each part of the shaft, and if the comparison results are judged to be correct (the error is small), the fatigue of each part can be determined from the vibration and stress state of each part of the shaft. It is designed to determine the degree of damage.

従って、水輪ねじり振動監視方法によれば、軸の2点間
の軸ねじり角変位を用いてモーダル解析法により軸系の
ねじり振動と応力を推定し、且つその推定精度を上げる
ために2点間の軸ねじり変位から軸系の特装置を算出し
、その結果を用いてモーダル解析法による数学モデルの
パラメータを副脩し、計算結果と2点間の軸ねじり角変
位との誤差が小さくなるまで該パラメータな再m整して
打算が行なわれるため、数学モデル内のパラメータを固
定として推定を行なうものとは興なり、推定誤差が小さ
く軸系のl1WIb・応力状態並びに疲労被害度を極め
て正確に監視することが可能となる。これにより、軸系
の破損を防止し得ることはちとより、電力系統の運用に
即応した最適なタービン発電機の運転が可能となる。ま
た、タービン発電機軸系の複数箇所の振動検出、応力測
定を行なう場合に、従来のように測定箇所毎に測定装置
を設ける必要がないため、かかる測定を簡単かつ経済的
にしかも高信頼性をもって行なうことができるものであ
る。
Therefore, according to the water ring torsional vibration monitoring method, the torsional vibration and stress of the shaft system are estimated by the modal analysis method using the shaft torsional angular displacement between two points of the shaft, and in order to improve the estimation accuracy, The special equipment of the shaft system is calculated from the shaft torsional displacement between the two points, and the results are used to subtract the parameters of the mathematical model using the modal analysis method, thereby reducing the error between the calculation result and the shaft torsional angular displacement between two points. Since the calculation is performed by re-adjusting the parameters up to the maximum, the estimation error is small and the estimation error is small, making it extremely accurate to estimate the l1WIb, stress state, and fatigue damage degree of the shaft system. It becomes possible to monitor the This not only prevents damage to the shaft system, but also allows the turbine generator to operate optimally in response to the operation of the power system. In addition, when detecting vibrations and measuring stress at multiple locations on the turbine generator shaft system, there is no need to install a measuring device for each measurement location as in the past, making such measurements simple, economical, and highly reliable. It is something that can be done.

尚、上記では軸系の2点間のみのねじり角変位を用いて
述べたが、3点以上の複数点ζ二ついても同様1;実施
することが可能であり、点数が増す程各部の華動・応力
状態の推定精度が同上することとなる。
In addition, although the above description was made using the torsional angular displacement between only two points of the shaft system, it is possible to implement the same method even if there are two or more points ζ of three or more points, and the more the number of points increases, the more beautiful each part becomes. The estimation accuracy of dynamic and stress states will be the same as above.

〔発明の効墨〕[Effect of invention]

以上説明したように本発明によれば、軸系各部における
ねじり振動、応力状態および疲労彼害度な極めて正確に
しかも容易に行なうことができる経済性、信頼性の高い
タービン発電機の軸ねじり振動・疲労監視方法が提供で
きる。
As explained above, according to the present invention, the shaft torsional vibration of a turbine generator with high economic efficiency and reliability can be performed extremely accurately and easily, reducing the torsional vibration, stress state, and fatigue damage in each part of the shaft system.・Fatigue monitoring method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示すブロック図である。 1・・・蒸気タービン、2・・・タービン発電機、1・
・・エキサイタ−14・・・タービン軸、1m、lb・
・・軸ねじり角検出部、6・・・電気トルク検出部、7
・・・蒸気圧力検出部、8・・・信号処理部、8m・・
・固有振動数・ダンピング演算部、Jb・・・ねじり振
動・応力計算部、8C・・・比較演算部、9・・・疲労
寿命演算部、10・・・出力部。
The figure is a block diagram showing one embodiment of the present invention. 1...Steam turbine, 2...Turbine generator, 1.
...Exciter-14...Turbine shaft, 1m, lb.
... Shaft torsion angle detection section, 6... Electric torque detection section, 7
...Steam pressure detection section, 8...Signal processing section, 8m...
- Natural frequency/damping calculation section, Jb...Torsional vibration/stress calculation section, 8C...Comparison calculation section, 9...Fatigue life calculation section, 10...Output section.

Claims (1)

【特許請求の範囲】 蒸気タービン並びにタービン発電機より成る回転機軸系
における軸各部の軸ねじり振動、応力および疲労を監視
する場合、前記軸系の複数箇所の軸ねじり角変化、電気
トルク、蒸気圧力を同時に検出し、まず前記軸ねじり角
変位より軸系の固有振動数とモーダルダンピングを求め
。 次に前記電気トルクおよび蒸気圧力を入力とするモーダ
ル解析法による数学モデルのパラメータを前記固有振動
数とモーダルダンピングに基づいて1lII11シて軸
各部のねじり振動、応力状態を算出し、しが委後該結果
V前記軸ねじり角変位と比較し、その@差が大きい時は
これが小さくなるまで前記パラメータの−11および振
動。 応力状態の算出と比較とを繰返し行ない、該結果が正し
いと判断した時に軸各部の振動、応力状態から各部の疲
労被害度を算出するようにして行なうことを特徴とする
タービン発′w1機の輪ねじり振動・疲労監視方法。
[Claims] When monitoring shaft torsional vibration, stress, and fatigue of each part of a shaft in a rotating machine shaft system consisting of a steam turbine and a turbine generator, changes in shaft torsion angle, electric torque, and steam pressure at multiple locations of the shaft system are monitored. are simultaneously detected, and first, the natural frequency and modal damping of the shaft system are determined from the shaft torsion angular displacement. Next, the parameters of the mathematical model using the modal analysis method using the electric torque and steam pressure as input are calculated based on the natural frequency and modal damping to calculate the torsional vibration and stress state of each part of the shaft. Compare the result V with the shaft torsional angular displacement, and when the difference is large, -11 and vibration of the parameter until it becomes small. This method is characterized in that the stress state is repeatedly calculated and compared, and when the result is determined to be correct, the fatigue damage degree of each part is calculated from the vibration and stress state of each part of the shaft. Ring torsional vibration/fatigue monitoring method.
JP2961182A 1982-02-25 1982-02-25 Method for monitoring shaft torsional vibration and fatigue of turbine generator Granted JPS58146832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2961182A JPS58146832A (en) 1982-02-25 1982-02-25 Method for monitoring shaft torsional vibration and fatigue of turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2961182A JPS58146832A (en) 1982-02-25 1982-02-25 Method for monitoring shaft torsional vibration and fatigue of turbine generator

Publications (2)

Publication Number Publication Date
JPS58146832A true JPS58146832A (en) 1983-09-01
JPH0326341B2 JPH0326341B2 (en) 1991-04-10

Family

ID=12280860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2961182A Granted JPS58146832A (en) 1982-02-25 1982-02-25 Method for monitoring shaft torsional vibration and fatigue of turbine generator

Country Status (1)

Country Link
JP (1) JPS58146832A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501931A (en) * 2003-08-07 2007-02-01 シコルスキー エアクラフト コーポレイション Virtual load monitoring system and method
WO2009074011A1 (en) * 2007-12-04 2009-06-18 Sifang Electric (Group) Co., Ltd. Method for measuring shafting mechanical fatigue of turbine generator set.
CN101915601A (en) * 2010-07-22 2010-12-15 北京四方继保自动化股份有限公司 Method for solving modal damping of shaft system of 1,000MW steam turbo generator set
GB2534461A (en) * 2014-12-04 2016-07-27 Beijing Sifang Automation Co An identification method of torsional modal parameters of generator shafts under ambient excitation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681435A (en) * 1979-12-07 1981-07-03 Toshiba Corp Method and device for monitoring of shaft torsion of turbine generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681435A (en) * 1979-12-07 1981-07-03 Toshiba Corp Method and device for monitoring of shaft torsion of turbine generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501931A (en) * 2003-08-07 2007-02-01 シコルスキー エアクラフト コーポレイション Virtual load monitoring system and method
WO2009074011A1 (en) * 2007-12-04 2009-06-18 Sifang Electric (Group) Co., Ltd. Method for measuring shafting mechanical fatigue of turbine generator set.
CN101915601A (en) * 2010-07-22 2010-12-15 北京四方继保自动化股份有限公司 Method for solving modal damping of shaft system of 1,000MW steam turbo generator set
GB2534461A (en) * 2014-12-04 2016-07-27 Beijing Sifang Automation Co An identification method of torsional modal parameters of generator shafts under ambient excitation
GB2534461B (en) * 2014-12-04 2020-07-15 Beijing Sifang Automation Co An identification method of torsional modal parameters of generator shafts under ambient excitation

Also Published As

Publication number Publication date
JPH0326341B2 (en) 1991-04-10

Similar Documents

Publication Publication Date Title
Heath et al. A survey of blade tip-timing measurement techniques for turbomachinery vibration
Ewins The effects of detuning upon the forced vibrations of bladed disks
US4955269A (en) Turbine blade fatigue monitor
CN101122541B (en) Turbine blade vibration test method and device
WO2005026537A1 (en) Blade pitch angle control device and wind turbine generator
JP2017129583A (en) Vibration monitoring systems
CN102288362A (en) System and method for testing unsteady surface pressure of vibrating blade
Heath et al. A review of analysis techniques for blade tip-timing measurements
Figaschewsky et al. Efficient generation of engine representative tip timing data based on a reduced order model for bladed rotors
CN111649886B (en) Abnormality detection device, rotating machine, abnormality detection method, and computer-readable storage medium
Gossweiler et al. On fast-response probes: part 1—technology, calibration, and application to turbomachinery
CN109115408B (en) Dynamic balance test method of large hydroelectric generating set based on centrifugal force equation
Shravankumar et al. Detection of a fatigue crack in a rotor system using full-spectrum based estimation
Wei et al. Development of blade tip timing signal simulator based on a novel model reduction method of bladed disks
Verhoeven Excitation force identification of rotating machines using operational rotor/stator amplitude data and analytical synthesized transfer functions
JPS58146832A (en) Method for monitoring shaft torsional vibration and fatigue of turbine generator
JPH0121889B2 (en)
Kielb et al. Experimental and numerical study of forced response in a full-scale rotating turbine
JPH073360B2 (en) Shaft torsional vibration monitoring device
Griffin On predicting the resonant response of bladed disk assemblies
Salhi et al. Identification of modal parameters and aeroelastic coefficients in bladed disk assemblies
Niebsch et al. Simultaneous estimation of mass and aerodynamic rotor imbalances for wind turbines
JP3295089B2 (en) Method and apparatus for detecting freezing or failure of oscillator
Roemer et al. Machine health monitoring and life management using finite-element-based neural networks
JP2003302305A (en) Method and apparatus for correcting unbalance