JPS58146437A - Manufacture of semiconductor crystal - Google Patents

Manufacture of semiconductor crystal

Info

Publication number
JPS58146437A
JPS58146437A JP2963282A JP2963282A JPS58146437A JP S58146437 A JPS58146437 A JP S58146437A JP 2963282 A JP2963282 A JP 2963282A JP 2963282 A JP2963282 A JP 2963282A JP S58146437 A JPS58146437 A JP S58146437A
Authority
JP
Japan
Prior art keywords
ampule
crystal
semiconductor crystal
ampoule
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2963282A
Other languages
Japanese (ja)
Inventor
Tomoshi Ueda
知史 上田
Junjiro Goto
純二郎 後藤
Mitsuo Yoshikawa
吉河 満男
Michiharu Ito
伊藤 道春
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2963282A priority Critical patent/JPS58146437A/en
Publication of JPS58146437A publication Critical patent/JPS58146437A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain easily in a short time a uniform raw material crystal for growth by enclosing >=2 kinds of material for forming semiconductor crystal into an ampule and melting and solidifying the material with giving ultrasonic oscillation to the ampule as well as the heating. CONSTITUTION:The material 12 for forming crystal of semiconductor such as Hg1-x CdxTe is filled in the ampule 11 which is then sealed. The ampule 11 is fixed to a supporting jig 13 made of metal and inserted into a reaction tube 14 made of qualz etc. This tube 14 is heated in heating furnace and ultrasonic oscillation is given to the oscillator of ultrasonic wave generator provided to the end of the jig 13 so as to oscillate the jig 13 at the time, point when the material 12 in the ampule 11 is melted. This oscillation is propagated to the ampule 11 to solidify the material 12 in the ampule 11 while stirring by the oscillation. Thereby, numbers of the process is decreased and the crystal having uniform composition of the material for epitaxial growth can be obtained in a short time.

Description

【発明の詳細な説明】 (!L)  発明の技術分野 本発明は化合物半導体結晶例えばテルル化カドミクム(
C(l Te)基板上に化合物半導体結晶、例えば水銀
・カドミタム テルル(Hg s−X’A yTe )
の結晶を液相エピタキシャル成長させる際の前記HPI
 −XCd、Te成長用−材結晶を形成する方法の改良
に関するものでるる1、  − (1)  技術の背景 赤外線検知素子のような光電変換素子の形成用材料KF
i、一般にエネルギーギャップの狭い即ト。
Detailed Description of the Invention (!L) Technical Field of the Invention The present invention relates to compound semiconductor crystals such as cadmium telluride (!L)
A compound semiconductor crystal, such as mercury-cadmium tellurium (Hg s-X'A yTe ), is deposited on a C(lTe) substrate.
The HPI during liquid phase epitaxial growth of a crystal of
- For the growth of XCd, Te - Regarding improvement of the method for forming crystals of materials Deruru 1, - (1) Background of the technology Material KF for forming photoelectric conversion elements such as infrared sensing elements
i, generally with a narrow energy gap.

CdアToのような化合物半導体結晶が用いられている
にのようなHg1−xc61T@の結晶を光11変換素
子形UK都合が良いように大面積でしかも′f11層の
状物に得るためには、一般fCEgCdTeより大面積
の単結晶が容易に得られるCITo結晶を基板として用
い、その上K Hg r −x Cd X T eの結
晶を液相エピタキシャル!Llkさせている。
In order to conveniently obtain a crystal of Hg1-xc61T@, such as a compound semiconductor crystal such as CdA-To, in a large area and in the form of a 'f11 layer, uses a CITo crystal as a substrate, which is easier to obtain a single crystal with a larger area than general fCEgCdTe, and then liquid-phase epitaxial! I'm letting you Llk.

(C)従来技術と問題点 との液相エピタキシャル成長方法は、直方体形状のカー
ボンよ抄々る支持台に凹所を設けてその凹所KOtlT
e基板を埋設する。一方該支持台上をスライドして移動
する直方体形状のカーホンよりなるスライド部材に?−
1方形の貫通孔状の液だめを設は該液だめKは基板上に
形成すべき結晶層の材料となるHg1−xc6xT6t
1.畏廟材料を充填する、その後肢支持台とスライド部
材とよりなる液相エピタキシャル成長装置を水素(H2
)カス雰囲気内の反応管に導入したのち、該反応管を加
熱する。
(C) The liquid phase epitaxial growth method of the prior art and the problem is that a recess is provided in a rectangular parallelepiped-shaped support made of carbon, and the recess is KOtlT.
Embed the board. On the other hand, what about the sliding member made of a rectangular parallelepiped car phone that slides on the support base? −
A liquid reservoir in the form of a rectangular through hole is provided, and the liquid reservoir K is made of Hg1-xc6xT6t, which is the material of the crystal layer to be formed on the substrate.
1. Hydrogen (H2
) After introducing into a reaction tube in a scum atmosphere, the reaction tube is heated.

そして液だめ内の即1 zC(izT8成長片材料が溶
融した時点でスライド部材をスライドさせて基板上に液
だめを静置させたのち、加熱炉の温度を低下させて基板
上にHgI−xcdxToの結晶層を形成するようにし
ている。ところで前記Hg1zcdxTe成長用材料の
うちCdか偏析する割合が’re、agの偏析する割合
より太き(Hg1−xCdxToの液相を基板上に設置
して該液相の温度を低1させて豫ト。但逃の結晶層を形
成すると所望のCd0X値より大きいCd0X値を有す
るような結晶層が形成される。
Then, when the HgI- By the way, the proportion of Cd segregated in the Hg1zcdxTe growth material is larger than the proportion of ag (the liquid phase of Hg1-xCdxTo is placed on the substrate). When the temperature of the liquid phase is lowered to 1. However, when a crystalline layer is formed, a crystalline layer having a Cd0X value larger than the desired Cd0X value is formed.

そこで従来Vi$1図に示すように液だめ内に充填する
Hgk−XOdxTefft、要用材料として、あらか
しめx@を基板上に形成すべきHgl 、CdxToの
結晶層の有するX値より小さくしてそれぞれHg 、C
(1,T。
Therefore, as shown in the conventional Vi$1 diagram, Hgk-XOdxTefft is filled into the liquid reservoir, and as a necessary material, x@ is made smaller than the X value of the crystal layer of Hgl and CdxTo to be formed on the substrate. Hg, C
(1, T.

の材料を秤量したのち、石英製のアンプル1内に充填し
、該アシフル内を真空に#*してから該アンプルの一端
を封止する。そしてこのアンプルを、、□。
After weighing the material, it is filled into an ampoule 1 made of quartz, the inside of the ampule is evacuated, and one end of the ampoule is sealed. And this ampoule...

加熱炉2に挿入し、加熱してアンプル内のHgk−*0
5x Te成成長材材料4溶融する。そして材料か溶融
した時点で加熱炉を情事5411ftN3いて上下方向
に移動させて溶融したFIgl−106zT@成長用材
料を撹拌するようKしていた。またその他にアンフルを
加熱炉中に挿入して該加熱炉を加熱し溶融材料中の原子
の拡散によって溶融材料を撹拌していた。しがしこのよ
う表方法であるとBgl−8CdXTeの材料が均一な
状[%になるまで1遍間程度の長時間を要する勢問題が
ありエピタキシャル成長用の素材結晶の形成に要する工
数がかかりすぎる等の欠点があった。
Insert into heating furnace 2 and heat to reduce Hgk-*0 in the ampoule.
5x Te growth material 4 melt. When the material was melted, the heating furnace was moved vertically to stir the molten FIgl-106zT growth material. In addition, an ampere was inserted into the heating furnace to heat the heating furnace, and the molten material was stirred by diffusion of atoms in the molten material. However, with this method, there is a problem that it takes a long time to reach a uniform state of Bgl-8CdXTe, and it takes too many man-hours to form the material crystal for epitaxial growth. There were drawbacks such as.

(d)  発明の目的 本発明は上述した欠点を除去し、短時間で容易に前記素
材結晶が均一な状態で得られるような半導体結晶の製造
方法の提供を目的とするものである。
(d) Object of the Invention The object of the present invention is to provide a method for manufacturing a semiconductor crystal, which eliminates the above-mentioned drawbacks and allows the material crystal to be easily obtained in a uniform state in a short period of time.

(e)  発明の構成 かかる目的を達成するための本発明の半導体結晶の製造
方法は、半導体結晶形成用材料を少なく(じ とも2種以上アシプル中に封入したのち、該アンフルを
支持部材にて固定してから加熱炉中忙挿入し、前記支持
部材を超音波発振器により振動させることでアシフルを
振動させながら、前記半導体結晶形成用材料を溶融した
のち、固化して素材結晶と、するものである。
(e) Structure of the Invention In order to achieve the above object, the method for manufacturing a semiconductor crystal of the present invention includes encapsulating a small number of materials for forming a semiconductor crystal (initially two or more kinds in an aspirate, and then holding the ampul with a support member). After being fixed, the material is inserted into a heating furnace, and the supporting member is vibrated by an ultrasonic oscillator to vibrate the Asiflu, while the semiconductor crystal forming material is melted and solidified to form a raw material crystal. be.

(f)  発明の実施例 以下図面を用いて本発明の一実施例につき詳細に説明す
る。第2図と!3図とは本発明の半導体結晶の製造方法
に用いる装置の概略図とその要部のムーA′断面図を示
し、11!4図は本発明の半導体結晶の製造方法の他の
実施例に用いる装置の概略図である。
(f) Embodiment of the Invention An embodiment of the invention will be described in detail below with reference to the drawings. Figure 2 and! Figure 3 shows a schematic diagram of the apparatus used in the method of manufacturing a semiconductor crystal of the present invention and a cross-sectional view of the main part of the apparatus, and Figures 11 to 4 show other embodiments of the method of manufacturing a semiconductor crystal of the present invention. It is a schematic diagram of the apparatus used.

まず第2図およびそのA −A’断面図に示すように1
(gl−xC(IXT6成長用素材の液相が液相エピタ
キシャルtLJl!:により結晶層となる際に、Ca成
分が偏析してcdの成分か所定の値より大きくなる分だ
け見越し゛(あらかじめCa成分を少なくなるようにし
て、つ1すX@を形成すべき結晶層の値より小さくして
Hg、Cd、Teのそれぞれの材料を秤量してからアン
プル1内に該Hgt 、CdxTeの材料12t−充填
してから該アンプル内を真空に排気してから該アンプル
の端部を溶融して封止する。
First, as shown in Figure 2 and its A-A' sectional view, 1
(gl-xC (When the liquid phase of the IXT6 growth material becomes a crystal layer by liquid phase epitaxial tLJl!:, the Ca component segregates and the amount of the CD component that becomes larger than a predetermined value is accounted for (in advance) Weigh the Hg, Cd, and Te materials so that the Ca component is reduced and the value of X@ is smaller than the value of the crystal layer to be formed, and then add the Hgt, CdxTe materials into the ampoule 1. After filling the ampoule with 12t, the inside of the ampoule is evacuated and the ends of the ampoule are melted and sealed.

その後肢アンプルを固定するような金属製の支持部J4
(金具)13を用いてアンプルの同辺部を巻きつけるよ
うにして固定して石英の反応管14中に挿入する。そし
て該反応管を加熱炉(図示せず)Kよって約り00℃〜
600℃程度に加熱する。アンフール中のHftl−1
clzTe材料力溶融した時点で金具13の端部BGC
取りつけである超音波発振装置の振動子に周波数が約5
0〜60KH2、出力が約100Wの超音波発振装置を
片いて超音波振動を与え金具を超音波振動させる。する
とこの金具の振動がアンプルに伝播してアンプルが振動
し、該アンプル内の溶融材料が振動によって撹拌される
ようになる。このような超音波振動は非常に微細振動で
かつ連続して行われるので従来のようにカム等を用いて
聞けつ的な振動をiえる場合に比較してはるかに効率良
く材料の液相か撹拌される。したがって本発明の方法を
用いると従来は均一な組成のlllgl−1c14T・
を得るのに約1週間の長時間を要していたのか約24時
間程度で済むようになり半導体結晶製造に要する工数が
大中に短縮される。
Metal support part J4 that fixes the hindlimb ampoule
(Metal fittings) 13 are used to wrap and fix the ampoule on the same side, and the ampoule is inserted into a quartz reaction tube 14. Then, the reaction tube was heated to about 00°C in a heating furnace (not shown) K.
Heat to about 600℃. Hftl-1 in Enfur
When the clzTe material is melted, the end BGC of the metal fitting 13
The frequency of the attached ultrasonic oscillator is approximately 5.
An ultrasonic oscillator with an output of about 100 W and a voltage of 0 to 60 KH2 is used to apply ultrasonic vibrations to make the metal fittings vibrate ultrasonically. Then, the vibration of the metal fitting is propagated to the ampoule, causing the ampoule to vibrate, and the molten material within the ampoule to be stirred by the vibration. Since such ultrasonic vibrations are very minute vibrations and are performed continuously, they are much more efficient in reducing the liquid phase of the material than when using a cam or the like to generate audible vibrations as in the past. Stirred. Therefore, when using the method of the present invention, conventionally the lllgl-1c14T.
It used to take about a week to obtain the crystal, but now it only takes about 24 hours, significantly reducing the number of man-hours required to manufacture semiconductor crystals.

また第4図に示すように前述し六Hg1−yc64Te
の材料12を充填したアンプル11を、内H!1面に内
接してリング状の発熱体となるカーボン部材21を有す
る石英製の反応管22内に挿入する。ここでリング状の
カーボン部材には中のアンプルの様子か&II[−きる
ような−き窓を設けておく。そしてIXb管の外壁に巻
きつけた高周波誘導コイル23に発振向波数約400 
KH2出力200−300Wの高岡波発振器を片いて高
尚波電流を流すようにする、するとアンプル内のHg1
−xCdア′Ieの溶融材料の内部に高周波電界が印加
さねこの電界ンζよる撹拌効果も重なって短時間でHg
1 、CdzTe成長用素材か均一な組成となる。この
ような高向波加熱方式であるとこの主間波電界によ−・
てHg1−xCdxTeの溶融材料か原子間で撹拌きれ
るようになるので、上述の超音波振動方式と併用した場
合、従来の機械的振動で溶融材Nを撹拌する場合に比べ
さらに短時間で均一な組成の半導体木材結晶が得られる
In addition, as shown in FIG.
Ampoule 11 filled with material 12 of H! It is inserted into a reaction tube 22 made of quartz having a carbon member 21 inscribed on one surface and serving as a ring-shaped heating element. Here, the ring-shaped carbon member is provided with a window that allows you to see the ampoule inside. Then, the high frequency induction coil 23 wound around the outer wall of the IXb tube has a wave number of about 400 in the oscillation direction.
If you disconnect the Takaoka wave oscillator with KH2 output of 200-300W and let a high wave current flow, then Hg1 in the ampoule
A high-frequency electric field is applied inside the molten material of -xCdA'Ie, and the stirring effect of this electric field Nζ also overlaps, resulting in Hg in a short time.
1. The CdzTe growth material has a uniform composition. With such a high direction wave heating method, this main wave electric field causes
The molten material of Hg1-xCdxTe can be agitated between atoms, so when used in conjunction with the above-mentioned ultrasonic vibration method, the molten material N can be stirred uniformly in a shorter time than when conventional mechanical vibrations are used to stir the molten material N. Semiconductor wood crystals of the composition are obtained.

□□□)発明の効果 以上述へたように本発明の半導体結晶の製造方法によれ
ば短時間で均一な組成のエピタキシャル成長用材料の結
晶が得られこのよう々材料でエピタキシャル成長すれば
均一な組成、のHg1−xcdzTeの結晶層が得られ
、該結晶層を用いて光tr賢換素子を形成すれば素子の
歩留も向上する利点を生じる。なお本発明けFig 1
− X Cd X T e以外の他の化合物半導体結晶
の形rit、にももちろん適用回船である。
□□□) Effects of the Invention As mentioned above, according to the method of manufacturing a semiconductor crystal of the present invention, a crystal of a material for epitaxial growth with a uniform composition can be obtained in a short time. A crystal layer of Hg1-xcdzTe of . Furthermore, according to the present invention, Fig. 1
-X Cd It is of course applicable to other compound semiconductor crystal forms other than X Te.

【図面の簡単な説明】[Brief explanation of drawings]

I!!11図は従来の半導体結晶の製造方法に用いる装
置の概略図、第2図、餉3図、第4図は本発明の半導体
結晶の製造方法に用いる装置の一実施例を示す図である
。 図において1.1IFiアンプル、2は加熱炉、4.1
2 n agl−xCc!xTeの材料、5はカム、1
3Fi支持金具、14.22Ifi反応管、21けリン
グ状カーボン部材、Bは端部を示す。
I! ! FIG. 11 is a schematic diagram of an apparatus used in the conventional semiconductor crystal manufacturing method, and FIGS. 2, 3, and 4 are views showing an embodiment of the apparatus used in the semiconductor crystal manufacturing method of the present invention. In the figure, 1.1 IFi ampoule, 2 is heating furnace, 4.1
2 n agl-xCc! xTe material, 5 is cam, 1
3Fi support fittings, 14.22 Ifi reaction tube, 21 ring-shaped carbon member, B indicates the end.

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶形成用材料を少なくとも21に以上アンプル
中に封入したのち、該アンプルを支持部材にて同定して
から加熱炉中に挿入し前記支持部材を超音波発振機によ
り振動させることでアンプルを振動きせながら、前記半
導体結晶形成用材料を港融したのち、固化して素材結晶
を得ることを特徴とする半導体結晶の製−遣方法。
After sealing at least 21 semiconductor crystal forming materials into ampoules, the ampoules are identified by a support member, and then inserted into a heating furnace, and the support member is vibrated by an ultrasonic oscillator to vibrate the ampule. 1. A method for producing and distributing a semiconductor crystal, which comprises melting the material for forming a semiconductor crystal while melting it, and then solidifying it to obtain a raw material crystal.
JP2963282A 1982-02-23 1982-02-23 Manufacture of semiconductor crystal Pending JPS58146437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2963282A JPS58146437A (en) 1982-02-23 1982-02-23 Manufacture of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2963282A JPS58146437A (en) 1982-02-23 1982-02-23 Manufacture of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS58146437A true JPS58146437A (en) 1983-09-01

Family

ID=12281459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2963282A Pending JPS58146437A (en) 1982-02-23 1982-02-23 Manufacture of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS58146437A (en)

Similar Documents

Publication Publication Date Title
US3781209A (en) Method of producing homogeneous rods of semiconductor material
JPS58146437A (en) Manufacture of semiconductor crystal
JPH05139886A (en) Production of arsenic compound single crystal
US2835614A (en) Method of manufacturing crystalline material
JPS6317291A (en) Method for growing crystal and device therefor
JP2628211B2 (en) Composite silica body, method of manufacturing the same, and semiconductor manufacturing jig using the silica body
JP3253005B2 (en) Method for producing solid solution single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
US3716341A (en) Crucible-free zone melting device having an angled heating coil
JPH02130839A (en) Liquid epitaxially growing method
JPH1081595A (en) Apparatus for producing single crystal and production of single crystal
JP4253220B2 (en) Method for producing magnetic garnet single crystal film
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JPS6251237B2 (en)
JPS59164694A (en) Process for growing semiconductor crystal
JPS6283396A (en) Method for growing compound semiconductor crystal
JPS60116733A (en) Manufacture of special alloy by bonding of molten molecules under super-vibration
JPH05139884A (en) Production of single crystal
JPS58151391A (en) Ampoule for producing semiconductor crystal
JPS60204700A (en) Preparation of single crystal
JP2547188Y2 (en) PCB holder
JPH0383888A (en) Apparatus for pulling up single crystal
TWI245820B (en) Rotational-vibration unidirectional solidification crystal growth system and method
JP2014084254A (en) Solid-solution single crystal producing method
JPH02289488A (en) Production of single crystal of compound semiconductor