JPS5814617A - Tuning fork type quartz oscillator - Google Patents

Tuning fork type quartz oscillator

Info

Publication number
JPS5814617A
JPS5814617A JP11258281A JP11258281A JPS5814617A JP S5814617 A JPS5814617 A JP S5814617A JP 11258281 A JP11258281 A JP 11258281A JP 11258281 A JP11258281 A JP 11258281A JP S5814617 A JPS5814617 A JP S5814617A
Authority
JP
Japan
Prior art keywords
tuning fork
crystal
fork type
base
crystal resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11258281A
Other languages
Japanese (ja)
Inventor
Hirochika Sato
弘親 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP11258281A priority Critical patent/JPS5814617A/en
Publication of JPS5814617A publication Critical patent/JPS5814617A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To compensate the unbalance due to a residue of etching, by providing the level diffferences of different heights in the width direction at both sides of a tuning fork type quartz oscillator consisting of two oscillating arms and a basement. CONSTITUTION:A tuning fork type quartz oscillator 1 containing two oscillating arms 5, 5' and a basement 2 is formed out of a quartz thin plate by a lithography process. In this case, a so-called residue of etching is caused on the side face of the oscillator 1 to cause an unbalanced tuning fork. In this connection, the level differences 3 and 3' are provided in the width direction at both sides of the basement 2. The heights w1 and w2 of the levels 3 and 3' are set different from each other to compensate the unbalance of the tuning fork.

Description

【発明の詳細な説明】 本発明はリングツフィープロセスで形成された2本1の
振動腕と基部とから構成された音叉製水晶振動子の形状
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the shape of a tuning fork crystal oscillator composed of two vibrating arms and a base formed by a ring-tuffy process.

本発明の目的は、音叉型水晶振動子の基部から客器を伝
わって外部へ漏れる振動エネルギーを小さくすることに
ある。
An object of the present invention is to reduce the vibration energy that leaks from the base of a tuning fork type crystal resonator to the outside through a customer device.

近年、水晶発振式電子腕時計の小型、薄麗化が要求され
、それに使われる音叉型水晶振動子もリソグラフィープ
關セスで形成されるものが多(なってきている、更に最
近の傾向として2次の屈曲振動モードを用いた音叉型水
晶振動子が使用されつつあるが、この振動子も同様にリ
ソダツフイープ四セスで形成されている。
In recent years, there has been a demand for crystal oscillation type electronic watches to be smaller and thinner, and many of the tuning fork-shaped crystal units used in them are also formed using lithography processes. A tuning fork type crystal resonator using the flexural vibration mode is being used, but this resonator is similarly formed of four litho-datsu sweeps.

さて音叉型水晶振動子の欠点の−りに支持部から外部へ
漏れる振動エネルギの大きいことが挙げらnる。このこ
とは2次の屈曲振動モード管用いた音叉型水晶振動子で
は1lItK*きな問題となっている。このため、第1
図に示すように音叉製水晶振動子10基部20両儒に等
しい大きさの段差3*3’t−設けることが提案さnて
いる。りま)珊論上は段差を音叉基部に設けることによ
〉基部端4の付近で振動変位量が極めて小さくなるため
に外部へ漏れる振動エネルギーが小さくなるというわけ
であゐ、しかしながら実際にリソグラフィープロセスに
よ〉第1図のような形状に振動子を試作してみると、振
動子の切り出し方位によりてはほとんど効果の愈いこと
がわかった。むしろ文中に悪化する場合もあった。ここ
で振動子の切シ出し方位は第3図のように水晶の電気軸
(X軸)を中心tl[(法線が光軸と平行な板ンをa 
g1回転するととによ)決定される。
Now, one of the drawbacks of the tuning fork type crystal resonator is that a large amount of vibration energy leaks from the supporting portion to the outside. This is a major problem in a tuning fork type crystal resonator using a second-order bending vibration mode tube. For this reason, the first
As shown in the figure, it has been proposed to provide a step 3*3't- of a size equal to the base 20 of a tuning fork crystal resonator 10. In theory, by providing a step at the base of the tuning fork, the amount of vibration displacement near the base end 4 becomes extremely small, so the vibration energy leaking to the outside becomes small.However, in practice, lithography When we tried manufacturing a vibrator in the shape shown in Figure 1 (by process), we found that the effect was almost ineffective depending on the direction in which the vibrator was cut out. In fact, in some cases it got worse during the sentence. Here, the direction in which the vibrator is cut out is centered around the electric axis (X-axis) of the crystal as shown in Figure 3.
When g1 is rotated, it is determined.

以上のような従来の第1図に示した形状の音叉型水晶振
動子の基部変位が大きくなるという現象について鋭意研
究した結果、その原因を明らかにすることができ、本発
明の基本的な原理が生まれた。以下、本発明を図面を示
しながら説明していく。
As a result of intensive research into the phenomenon in which the base displacement of the conventional tuning fork crystal resonator with the shape shown in FIG. was born. The present invention will be explained below with reference to the drawings.

水晶はエツチング速度に異方性を有しているために、リ
ソグラフィープロセスにより形成される振動子にはその
形状が非対称となってしまう欠点がある。つi)、第3
図に示す水晶の結晶軸方向とエツチング速度の関係のた
めに第1図の形状を有する音叉形水晶振動子は、第4図
であられされるように振動子10側面に言わゆるエツチ
ング残ル6が生じることによって音叉が丁ンパランx2
−なってしまう、このアンバランスは音叉基部での振動
変位會増大させるために都合の悪いものである。さて第
4図において、サイドのエツチング残シロは、段差3.
3’に注目すると一層大龜(なってお)、段差3.31
−が音叉振動腕5,51と基部2の境目にあるために段
差部でのエツチング残シによ)生じているアンバランス
がmm1M5゜51の振動に著しく影響を与えることが
容晶にわかるであろう、従って、理論的には第1図に示
した形状では振動漏れが小さくなるはずのものが、実際
にリソグラフィープロセスによって形成されたものでは
、エツチング残)Kよる影響でほとんど効果がないばか
シか、著しく悪化させる可能性もあるわけである。
Since quartz crystal has anisotropy in etching rate, a resonator formed by a lithography process has the disadvantage that its shape is asymmetrical. i), 3rd
Due to the relationship between the crystal axis direction of the crystal and the etching speed shown in the figure, the tuning fork-shaped crystal resonator having the shape shown in FIG. As a result, the tuning fork becomes Dingumparang x2
- This unbalance is inconvenient because it increases the vibration displacement at the tuning fork base. Now, in Fig. 4, the etching remaining margin on the side is 3.
If you pay attention to 3', it becomes even bigger and the step is 3.31.
- is located at the boundary between the tuning fork vibrating arms 5, 51 and the base 2, so it can be clearly seen that the unbalance caused by the etching residue at the stepped portion significantly affects the vibration of mm1M5゜51. Therefore, although the shape shown in Figure 1 should theoretically reduce vibration leakage, the shape actually formed by the lithography process has almost no effect due to the influence of etching residue (K). In other words, there is a possibility that it may worsen significantly.

本発明は、かかるエツチング残シによるアンバランスを
、振動子形状を非対称とすることによシ補正しようとす
るものである。さて、第5図に本発明の音叉型水晶振動
子の実施例を示す、なお、第1図、第4図と共通なもの
は同じ番号を割シ付けている。基部2と振動腕5.51
の境目付近には段差3.31が設けられてシシ、かつそ
れぞれの段差3.31の大きさ参露、#寓は異なってい
る。従来は、振動子形状な完全に対称とすることが要求
されていたわけだが、リソグラフィープロセスで形成す
る場合にエツチング残シによるアンバランスを補正する
ために振動子形状をあらかじめ非対称にしておくのであ
る。第5図の振動子を水晶薄板よシ実際にリソグラフィ
ープロセスによ〉形成した図を第6図に示す、基部の段
差部分8.81に注目すると左側の段差部分8はエツチ
ング残シロによ〉実質的な段差の大きさが#、より小さ
くなっているのがわかる。従って左側の段差部8雷の大
きさ1息を−8よ)も小さくすることによシバランスを
保とうとするわけである。
The present invention attempts to correct the unbalance caused by such etching residue by making the shape of the vibrator asymmetric. Now, FIG. 5 shows an embodiment of the tuning fork type crystal resonator of the present invention. Components common to those in FIGS. 1 and 4 are assigned the same numbers. Base 2 and vibrating arm 5.51
There is a step 3.31 near the border, and the size of each step 3.31 is different. Conventionally, it was required that the resonator shape be completely symmetrical, but when forming the resonator through a lithography process, the resonator shape is made asymmetric in advance in order to correct for imbalance caused by etching residue. Figure 6 shows a diagram of the vibrator shown in Figure 5 actually formed from a thin crystal plate using a lithography process.If you pay attention to the stepped portion 8.81 at the base, the stepped portion 8 on the left is due to the etching residue. It can be seen that the actual size of the step has become smaller by #. Therefore, an attempt is made to maintain balance by reducing the size of the lightning at the left step (8) (-8).

段差部の大Ilさの違いは、エラチンl残シの大きさt
−・とした時に、 −−m禽≦ω。
The difference in the size of the stepped portion is due to the size of the remaining elastin.
When −・, −−m bird≦ω.

となるようにすれば良いことを実験的に確認したところ
で、エツチング残シは振動子の切)出し方位や板厚によ
ってその大きさは轟然異なって(る、特に切シ出し方位
が、 −25°〜+25 。
Although we have experimentally confirmed that etching residues can vary in size depending on the cutting direction of the transducer and the plate thickness, especially when the cutting direction is -25 °~+25.

のような広い範囲にわたっている時にはエツチング残シ
は非常に大きいものとな)従って振動子に生じるアンバ
ランス量も増大してくる。このため第1図に示した従来
の形状の振動子では振動漏れが極めて大きく、損失の増
大や不安定等の現象がシこシ実用化の大きな防げ牛なっ
ていたが、本発明によ)改善が可−となった。
(The etching residue becomes very large when the etching is over such a wide range.) Therefore, the amount of unbalance that occurs in the vibrator also increases. For this reason, with the conventional shape of the vibrator shown in Figure 1, vibration leakage was extremely large, and phenomena such as increased loss and instability were major obstacles to practical application. Improvement was possible.

本発明は特に2次の屈曲振動モードを用いた振動子に対
し界きな効果がある。なぜなら音叉基部に段差を設ける
ことは、2次の屈曲振動毫−ドに対し著しく有効であル
、同時にエツチング残〉によるアンバランスも補正する
からであ夛、通常の基本屈曲毫−ドの振動子に対しては
基部の段差は大きな寄与とはならず、エツチングによる
アンバランスの補正のみが効いてくるわけである。
The present invention is particularly effective for vibrators using a second-order bending vibration mode. This is because providing a step at the base of the tuning fork is extremely effective against secondary bending vibration waves, and at the same time corrects the unbalance caused by etching residue. For the child, the level difference at the base does not make a large contribution, and only the unbalance correction by etching is effective.

本発明によ)音叉基部での変位量、即ち外部へ漏れる振
動エネルギーが非常に小さくなるため、Ox(タリスタ
ルインピーダンス〕値、Q値、周波数経時変化等の特性
は著しく向上することになる。
According to the present invention), since the amount of displacement at the base of the tuning fork, that is, the vibration energy leaking to the outside, is extremely small, characteristics such as Ox (talistal impedance) value, Q value, and frequency change over time are significantly improved.

tた、音叉基部の段差の大きさのズレ量(第5図におけ
る・i”−”m)も振動子の切シ出し方位や板厚に応じ
て最適値にするだけで良いので設計も容易である。
In addition, the design is easy because the amount of deviation in the size of the step at the base of the tuning fork (・i''-''m in Figure 5) can be set to an optimal value according to the cutting direction of the vibrator and the plate thickness. It is.

以上本発明の効果は絶大でToシ、その工業的価値は大
きい。
As described above, the effects of the present invention are tremendous, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる水晶振動子の形状を示す平面図
である。 第2図は水晶振動子の切シ出し方位を説明するための図
である。 第3図は水晶の結晶軸方向とエツチング速度の関係な示
すグラブである。 第4図は従来のリングッフイープ四セスによ〉形成され
た水晶振動子を示す平面図である。 第5図は本発明の水晶振動子の実施例を示す平面図であ
る。 第6図は本発明のリソグラフィープロセスによシ形成さ
れた水晶振動子を示す平面図である。 1゜、音叉型水晶振動子 2゜。音叉基部 3.3+。、音叉基部に設けられた段差5 @ 5 ’
 e *音叉振動腕 6 @ II e @ * エツチング残シ以上 第1図 第3図 第2図
FIG. 1 is a plan view showing the shape of a crystal resonator used in the present invention. FIG. 2 is a diagram for explaining the cutting direction of the crystal resonator. FIG. 3 is a graph showing the relationship between the crystal axis direction of quartz and the etching rate. FIG. 4 is a plan view showing a quartz crystal resonator formed by a conventional ring sweep. FIG. 5 is a plan view showing an embodiment of the crystal resonator of the present invention. FIG. 6 is a plan view showing a crystal resonator formed by the lithography process of the present invention. 1°, tuning fork crystal oscillator 2°. Tuning fork base 3.3+. , step 5 @ 5' provided at the base of the tuning fork
e * Tuning fork vibrating arm 6 @ II e @ * More than etching remains Fig. 1 Fig. 3 Fig. 2

Claims (1)

【特許請求の範囲】 ■水晶薄板よシリソゲラフイープロセスによシ形成され
た2本の振動腕と基部とから構成された音叉形水晶振動
子において、前記基部の両側には巾方向にそれぞれ段差
が設けられてsp J) sかり前記段差の高さがそれ
ぞれの側で異なっていることを特徴とする音叉形水晶振
動子。 (2、特許請求の範囲第(1)項において、音叉型水晶
振動子は高次の屈曲振動場−ドをその主振動としている
ことを特徴とする音叉型水晶振動子。 (ω特許請求の範囲第0項において、水晶薄板は水晶の
電気軸(X軸]を中心に2板(法線が光軸に平行な水晶
板>t−25°〜+25°回転させて得られる方位を有
していることを特徴とする音叉型水晶振動子。
[Scope of Claims] ■ In a tuning fork-shaped crystal resonator composed of two vibrating arms and a base formed by the silisogelafie process using a thin crystal plate, each side of the base has two vibrating arms in the width direction. A tuning fork-shaped crystal resonator characterized in that a step is provided and the height of the step is different on each side. (2. In claim (1), the tuning fork type crystal resonator is characterized in that its main vibration is a high-order bending vibration field. In the range 0 term, the crystal thin plate has an orientation obtained by rotating two crystal plates (a crystal plate whose normal is parallel to the optical axis > t -25° to +25° around the electric axis (X axis) of the crystal. A tuning fork type crystal resonator characterized by:
JP11258281A 1981-07-17 1981-07-17 Tuning fork type quartz oscillator Pending JPS5814617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11258281A JPS5814617A (en) 1981-07-17 1981-07-17 Tuning fork type quartz oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11258281A JPS5814617A (en) 1981-07-17 1981-07-17 Tuning fork type quartz oscillator

Publications (1)

Publication Number Publication Date
JPS5814617A true JPS5814617A (en) 1983-01-27

Family

ID=14590327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11258281A Pending JPS5814617A (en) 1981-07-17 1981-07-17 Tuning fork type quartz oscillator

Country Status (1)

Country Link
JP (1) JPS5814617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120920A (en) * 1983-12-02 1985-06-28 株式会社グランドレジャー Kaiware raddish culture method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046090A (en) * 1973-08-28 1975-04-24
JPS5299095A (en) * 1976-02-17 1977-08-19 Citizen Watch Co Ltd Tuning fork type crystal oscillator element and manufacturing method
JPS57170614A (en) * 1981-04-14 1982-10-20 Citizen Watch Co Ltd Tuning fork type quartz oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046090A (en) * 1973-08-28 1975-04-24
JPS5299095A (en) * 1976-02-17 1977-08-19 Citizen Watch Co Ltd Tuning fork type crystal oscillator element and manufacturing method
JPS57170614A (en) * 1981-04-14 1982-10-20 Citizen Watch Co Ltd Tuning fork type quartz oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120920A (en) * 1983-12-02 1985-06-28 株式会社グランドレジャー Kaiware raddish culture method and apparatus

Similar Documents

Publication Publication Date Title
US8174171B2 (en) Piezoelectric vibrating devices having bisymmetric vibrating arms and supporting arms, and devices comprising same
US7423363B2 (en) Piezoelectric vibrating element and piezoelectric vibrator
JP4594412B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP4714770B2 (en) Tuning fork type piezoelectric vibrating piece and method for manufacturing tuning fork type piezoelectric vibrating piece
JP2000278080A (en) Piezoelectric device
JP2006238266A (en) Piezoelectric vibrating piece and piezoelectric vibrator
JPS5814617A (en) Tuning fork type quartz oscillator
JP2009094844A (en) Crystal oscillator piece
JPH03235408A (en) Structure of ultrathin plate piezoelectric resonator
JP2003060481A (en) Piezoelectric oscillation element and manufacturing method therefor, and piezoelectric device
JP4449482B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, piezoelectric vibrator, and piezoelectric oscillator
JP2813996B2 (en) 3rd overtone AT-cut crystal unit
JPH06209225A (en) Piezoelectric vibrator for overtone oscillation
JPS644694B2 (en)
JP3109596B2 (en) Piezoelectric resonator with ring-shaped electrode
JPH1051262A (en) Piezoelectric vibrator and its production
JPS62173812A (en) Thin film acoustic wave resonator
JP2019092111A (en) Method for manufacturing piezoelectric device
JPS59135916A (en) Coupling tuning fork type crystal oscillator
JPS6070811A (en) Longitudinal vibration type piezoelectric vibrator and its manufacture
JPS5824503Y2 (en) Width-slip crystal oscillator
JPS5944118A (en) Tuning fork type vibrator
JPS5957512A (en) Crystal oscillator
JP4803299B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator
JPH06104685A (en) Crystal resonator