JPS58146153A - Optical transmission system - Google Patents

Optical transmission system

Info

Publication number
JPS58146153A
JPS58146153A JP57029740A JP2974082A JPS58146153A JP S58146153 A JPS58146153 A JP S58146153A JP 57029740 A JP57029740 A JP 57029740A JP 2974082 A JP2974082 A JP 2974082A JP S58146153 A JPS58146153 A JP S58146153A
Authority
JP
Japan
Prior art keywords
circuit
optical
signal
physical quantity
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57029740A
Other languages
Japanese (ja)
Other versions
JPH0148703B2 (en
Inventor
Akira Ote
明 大手
Hideto Iwaoka
秀人 岩岡
Koji Akiyama
浩二 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP57029740A priority Critical patent/JPS58146153A/en
Publication of JPS58146153A publication Critical patent/JPS58146153A/en
Publication of JPH0148703B2 publication Critical patent/JPH0148703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PURPOSE:To obtain an optical transmission system transmitting an accurate physical quantity of signal with low power consumption, by operating a transmission terminal intermittently. CONSTITUTION:A transmission terminal 1 stores an electrical energy obtained from a reception terminal via an optical fiber 31 and a photoelectric conversion means 16 to a storage circuit 17 comprising capacitors and batteries, and the energy is used for the operating power supply of a circuit section. A clock circuit 18 is normally charged. For example, a switch 19 is closed by about 10sec per 1hr, the power is supplied to circuits section 11-15 for the time to activate the sections. During the power application, the physical quantity such as temperature from a sensor (not shown) is converted into an electric signal via the conversion circuit 11 and the amplifier 12 to illuminate a light emitting element 14 with pulse width, pulse intervals and the number of pulse relating to the measured physical quantity from the drive circuit 13. This optical signal is transmitted to the terminal 2 via an optical fiber 32. Since the terminal 1 is activated intermittently, average power consumption is reduced.

Description

【発明の詳細な説明】 本発明は、温度、圧力等の各種物理量を光信号を利用し
て伝送する光学伝送システムに関するものである。更に
詳しくは、本発明は、伝送端側を間歇的に動作させるこ
とによって、伝送端側での低消費電力化を図った光学伝
送システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical transmission system that transmits various physical quantities such as temperature and pressure using optical signals. More specifically, the present invention relates to an optical transmission system in which power consumption on the transmission end side is reduced by intermittently operating the transmission end side.

光ファイバなどの光伝送路あるいは半導体レーザ、  
LEDなどの各種光学素子の開発の進展に伴ない、各種
の光学計測、伝送システムが、従来のシステムに代えて
稲々提案されている。
Optical transmission lines such as optical fibers or semiconductor lasers,
BACKGROUND OF THE INVENTION As the development of various optical elements such as LEDs progresses, various optical measurement and transmission systems are being proposed in place of conventional systems.

本発明は、このようなシステムにおいて、伝送端側での
低消費電力化が可能な光学伝送システムを実現しようと
する亀のである。
The present invention is an attempt to realize an optical transmission system capable of reducing power consumption on the transmission end side in such a system.

第1図は本発明に係るシステムの一例を示す構成プロ、
り図である。図において、1は伝送端。
FIG. 1 shows a configuration program showing an example of a system according to the present invention.
This is a diagram. In the figure, 1 is the transmission end.

2は受信端、3は伝送端1と受信端2とを結ぶ光伝送路
で、ここでは2本の光ファイバ31.32で構成された
ものを示す。伝送端1において、11は伝送すぺ〈物理
量が与えられ、これを電気的な信号に変換する変換回路
を総括的に示したもの、12はこの変換回路11からの
電気信号を増幅する増幅器。
2 is a receiving end, and 3 is an optical transmission line connecting the transmission end 1 and the receiving end 2, which is shown here as being composed of two optical fibers 31 and 32. At the transmission end 1, 11 is a transmission unit (a general representation of a conversion circuit that is given a physical quantity and converts it into an electrical signal), and 12 is an amplifier that amplifies the electrical signal from this conversion circuit 11.

13は増幅器からの出力信号を入力し発光素子14を駆
動する発光素子駆動回路で、発光素子14を測定物理量
に関連したパルス幅、パルス間隔 パルス数等で駆動す
る。15は発光素子14と直列に接続された駆動回路1
3の出力によって導通するトランジスタである。発光素
子14は、光ファイバ32の一端に光学的に結合してお
り、発光素子14の光出力はこの光ファイバ32を介し
て受信端に伝送される。
Reference numeral 13 denotes a light emitting element drive circuit which inputs an output signal from an amplifier and drives the light emitting element 14, and drives the light emitting element 14 with a pulse width, a pulse interval, a pulse number, etc. related to the physical quantity to be measured. 15 is a drive circuit 1 connected in series with the light emitting element 14
This transistor is turned on by the output of 3. The light emitting device 14 is optically coupled to one end of an optical fiber 32, and the light output of the light emitting device 14 is transmitted to the receiving end via the optical fiber 32.

16は光エネルギを電気エネルギに変換する太陽電池、
光電池のような光電変換手段で、光ファイバ31の一端
に光学的に結合している。17は光電変換手段16から
の電気エネルギが蓄えられる蓄電回路で、ここではコン
デンサが用いられているが蓄電池でも良い。これらの光
電変換手段16及び蓄電回路17は、伝送端2の電源回
路を構成している。18は、蓄電回路17から供給され
る電力によって作動している時計回路で、所定時間TL
(例えば1時間)ととに駆動信号を出力し、蓄電回路1
7の出力94に設けたスイッチ19を一定時間Tm(例
えば10秒間)だけ駆動する。この時計回路としては、
C−MOS等で構成される低消費電力の回路が用いられ
、またスイッチ19としてはFETのような素子が用い
られる0変換回路11.増幅器12.駆動回路13及び
発光素子14は、いずれもスイッチ19を介して蓄電回
路17の出力端子+Vに接続されており、スイッチ19
が導通した時、蓄電回路17(光電変換回路16)から
の電力によって作動するようになっている。
16 is a solar cell that converts light energy into electrical energy;
It is optically coupled to one end of the optical fiber 31 by photoelectric conversion means such as a photovoltaic cell. Reference numeral 17 denotes a storage circuit in which electrical energy from the photoelectric conversion means 16 is stored, and although a capacitor is used here, a storage battery may also be used. These photoelectric conversion means 16 and power storage circuit 17 constitute a power supply circuit of the transmission end 2. Reference numeral 18 denotes a clock circuit which is operated by the power supplied from the power storage circuit 17, and is operated for a predetermined time TL.
(for example, one hour) and outputs a drive signal to the power storage circuit 1.
The switch 19 provided at the output 94 of 7 is driven for a certain period of time Tm (for example, 10 seconds). This clock circuit is
The zero conversion circuit 11 uses a low power consumption circuit configured with C-MOS or the like, and uses an element such as an FET as the switch 19. Amplifier 12. Both the drive circuit 13 and the light emitting element 14 are connected to the output terminal +V of the power storage circuit 17 via a switch 19.
When conductive, it is operated by electric power from the power storage circuit 17 (photoelectric conversion circuit 16).

受信端2において、21#′i光源で、光7アイバ31
の他端に光学的に結合している。この光源としては、レ
ーザ光源1発光ダイオード、白熱ランプ等が使用可能で
ある。22は受光素子で、光ファイバ32の他端に光学
的に結合している。この受光素子としては、受光ダイオ
ード、ホトトランジスタ。
At the receiving end 2, the 21#'i light source
is optically coupled to the other end. As this light source, a laser light source 1 light emitting diode, an incandescent lamp, etc. can be used. 22 is a light receiving element, which is optically coupled to the other end of the optical fiber 32. This light-receiving element is a light-receiving diode or a phototransistor.

光導電素子などが使用し得る。A photoconductive element or the like can be used.

このように構成した装置の動作は次の通りである。受信
端2の光源21を動作させ、ここからの光エネルギを光
ファイバ31を介して伝送端1に送る。
The operation of the device configured as described above is as follows. The light source 21 of the receiving end 2 is operated and the optical energy from there is sent to the transmitting end 1 via the optical fiber 31.

伝送端1において、光電変換手段16は、光ファイバ3
1の一端から出射する光エネルギを受光し、これを電気
エネルギに変換する。この電気エネルギは、蓄電回路1
7に蓄えられ、時計回路18が作動する。この時計回路
は、例えば1時間ごとに例えば10秒間だけスイッチ1
9を駆動する。これによって、変換回路11.増幅器1
2.駆動回路13は、ス・イッチ19が導通している1
0秒間だけ電力が供給されて作動する。すなわち、変換
回路11は測定すべき物理量に対応した電気的な信号e
を出力し、増幅器12で増幅された後、駆動回路13に
よって、発光素子14を測定物理量に関連したパルス幅
あるいはパルス間隔あるいはパルス数で発光させる。発
光素子14からの光信号は、光ファイバ32を介して受
信端2に送られる。
At the transmission end 1, the photoelectric conversion means 16 connects the optical fiber 3
The light energy emitted from one end of the light beam is received and converted into electrical energy. This electrical energy is transferred to the storage circuit 1
7 and the clock circuit 18 is activated. This clock circuit switches the switch 1 for 10 seconds every hour, for example.
Drive 9. As a result, the conversion circuit 11. amplifier 1
2. The drive circuit 13 is connected to the circuit 1 in which the switch 19 is conductive.
Power is supplied for 0 seconds and it operates. That is, the conversion circuit 11 converts the electrical signal e corresponding to the physical quantity to be measured.
After being amplified by the amplifier 12, the driving circuit 13 causes the light emitting element 14 to emit light at a pulse width, pulse interval, or number of pulses related to the physical quantity to be measured. The optical signal from the light emitting element 14 is sent to the receiving end 2 via the optical fiber 32.

受信端2において、受光素子22は光ファイバ32を介
して伝送された光信号を受光し、これを電気信号に変換
し、増幅、信号処理して物理量を知ることができる。
At the receiving end 2, the light receiving element 22 receives the optical signal transmitted through the optical fiber 32, converts it into an electrical signal, amplifies it, and processes the signal to obtain a physical quantity.

このように構成した装置によれば、伝送端1側での消費
電力は、時計回路18でのわずがな消費電力と、変換回
路11.増幅器12.駆動回路13が作動状態にある例
えばTm = 10秒間といった短時間に消費する電力
と、10秒間の中にあって、発光素子14が発光してい
る時間に消費する電力の合計を所定時間TLで平均した
ものであって、TtnlTLを小さくするととKよって
、全体として低消費電力化を図ることができる。
According to the device configured in this way, the power consumption on the transmission end 1 side is the insignificant power consumption in the clock circuit 18 and the conversion circuit 11 . Amplifier 12. The sum of the power consumed in a short period of time, for example, Tm = 10 seconds when the drive circuit 13 is in an operating state, and the power consumed during the time when the light emitting element 14 is emitting light within 10 seconds is calculated by a predetermined time TL. It is an average value, and if TtnlTL is made smaller, the power consumption can be reduced as a whole.

第2図は本発明の他の実施例を示す構成接続図で、こと
では熱電対によって温度を測定し、この温度信号を受信
端に伝送する場合を例示する。
FIG. 2 is a configuration and connection diagram showing another embodiment of the present invention, specifically illustrating a case where temperature is measured by a thermocouple and this temperature signal is transmitted to the receiving end.

この実施例のシステムにおいては、受信端2@から光フ
ァイバ31を介して、第3図(イ)に示すように1測定
開始を示す測定開始パルスP8と、この測定開始パルス
Psから一定時間T8後に発生する基準パルスP。の各
断続パルスを含む光信号を伝送端1に送る。受信端2に
おいて、23は発光素子21からの光信号にこれらのパ
ルスp8. poを重畳する役目をしている。蓄電回路
17からの電力によって動作している第1のロジック回
路19&は、コンデンサC□を介して伝送された光信号
中に含まれる測定開始パルスPsと基準パルスPcとを
入力とし、スイッチ19を一定時間りだけ導通させる。
In the system of this embodiment, a measurement start pulse P8 indicating the start of one measurement is transmitted from the receiving end 2@ via the optical fiber 31 as shown in FIG. Reference pulse P generated later. An optical signal containing each intermittent pulse is sent to the transmission end 1. At the receiving end 2, 23 adds these pulses p8. to the optical signal from the light emitting element 21. It plays the role of superimposing the po. The first logic circuit 19&, which is operated by power from the power storage circuit 17, inputs the measurement start pulse Ps and the reference pulse Pc contained in the optical signal transmitted via the capacitor C□, and switches the switch 19. Conducts electricity for a certain period of time.

増幅器12.駆動回路13を構成する増幅器A2.比較
器A3.モノマルチ回路MM、 ロジ、り回路:L9b
a 、いずれもスイ、チ19が導通している間、光電変
換手段16(蓄電回路17)からの電力が供給されて作
動する。これらが作動している間、増幅器12は熱電対
11からの信号exを増幅する。ロジック回路19bは
、ロジック回路19aから測定開始パルスpと基準パル
スPcを受けるとともに、比較器A3の出力信号を入力
しており、スイッチS1.S2を互いに逆動作するよう
に駆動する。すなわち、スイッチS1を、はじめに測定
開始パルスPsが印加されてから、基準パルスPが印加
されるまでの一定時間Ts導通させる。増幅器A2とコ
ンデンサC2を含んで構成されている積分器は、スイッ
チS1が導通している一定時間Ts、増幅器12の出力
電圧EXを積分する。続いてスイッチSをOFFにする
とともにスイッチS2を導通させ、積分器の出力が所定
基準電圧E8になるまで放電させる。
Amplifier 12. Amplifier A2 configuring the drive circuit 13. Comparator A3. Mono multi circuit MM, logic, circuit: L9b
While switch 19 and switch 19 are conductive, power is supplied from photoelectric conversion means 16 (power storage circuit 17) to operate. While these are in operation, amplifier 12 amplifies the signal ex from thermocouple 11. The logic circuit 19b receives the measurement start pulse p and the reference pulse Pc from the logic circuit 19a, and also receives the output signal of the comparator A3, and switches S1. S2 are driven to operate in opposite directions. That is, the switch S1 is made conductive for a certain period of time Ts from when the measurement start pulse Ps is first applied until the reference pulse P is applied. An integrator including an amplifier A2 and a capacitor C2 integrates the output voltage EX of the amplifier 12 for a certain period of time Ts during which the switch S1 is conductive. Subsequently, the switch S is turned OFF and the switch S2 is made conductive to discharge the output of the integrator until it reaches a predetermined reference voltage E8.

第3図(ロ)は、この積分器の出力電圧E。を示す波形
図である。積分器、比較器A3. Clシック回路19
b、スイッチS□、S2を含んで形成されるルーズは、
このような動作を測定パルスP8が印加されるごとに行
うもので、一定時間Tと、基準パルスP。
Figure 3 (b) shows the output voltage E of this integrator. FIG. Integrator, comparator A3. Cl thick circuit 19
b, the loose formed including the switches S□ and S2 is
Such an operation is performed every time a measurement pulse P8 is applied, and a fixed time T and a reference pulse P are applied.

から積分器の出力電圧E。が基準電圧E8になるまでの
時間TXのデユティレシオは、増幅器12の出力電圧、
すなわち熱電対11の出力信号eに対応したものとなる
。ロジ、り回路19b及びモノマルチ回路MMは、トラ
ンジスター5を介して発光素子14を、第3図(ハ)に
示すように基準パルスP。と、積分器の出力電圧E。が
基準電圧になり九時点で発生する細いパルス幅信号PK
よって駆動し、ここから間隔へを有する光パルス信号を
発生させる。これらのパルス信号は、光ファイバ32を
介して受信端2側に伝送され、受信端2@においてパル
ス間隔TXが検出され、Txと受信端側において得られ
るT8とを演算処理するととによって温度を知ることが
できる。
from the integrator output voltage E. The duty ratio of the time TX until becomes the reference voltage E8 is the output voltage of the amplifier 12,
That is, it corresponds to the output signal e of the thermocouple 11. The logic circuit 19b and the monomulti circuit MM apply a reference pulse P to the light emitting element 14 via the transistor 5 as shown in FIG. 3(C). and the output voltage E of the integrator. becomes the reference voltage and the thin pulse width signal PK generated at the 9th point
Accordingly, the light pulse signal is driven to generate an optical pulse signal having an interval from this point. These pulse signals are transmitted to the receiving end 2 via the optical fiber 32, the pulse interval TX is detected at the receiving end 2, and the temperature is calculated by processing Tx and T8 obtained at the receiving end. You can know.

なお、上記の各実施例においては、いずれも光ファイバ
を介して伝送端と受信端とを連絡させたものであるが、
光ファイバに代えて、空間的な伝送路を介して連絡させ
てもよく、また、伝送端側の光電変換手段16は太陽光
も受光できるようにしてもよい。また、光電変換手段1
6.蓄電回路17がら成る電源回路は、電池に代えても
よく、この場合、電池を長期間にわたって使用すること
ができる0また、上記の各実施例では、いずれも、発光
素子14を用l/−またものであるが、これに代えて、
液晶やPLZT等、光の反射又は透過量を制御する光学
制御素子を用い、受信端側から供給された光を制御して
受信端側に返送するようにしてもよい。また、伝送端に
おいて、スイッチを介して間歇的に電力が供給される回
路は、伝送端を構成するすべての回路でなくともよく、
i/にも電力消費の大きな回路についてだけ行うよう圧
してもよい。
In each of the above embodiments, the transmission end and the reception end are connected via an optical fiber.
Instead of an optical fiber, communication may be made via a spatial transmission path, and the photoelectric conversion means 16 on the transmission end side may also be able to receive sunlight. In addition, the photoelectric conversion means 1
6. The power supply circuit consisting of the power storage circuit 17 may be replaced with a battery, and in this case, the battery can be used for a long period of time.Furthermore, in each of the above embodiments, the light emitting element 14 is used instead of a battery. Again, instead of this,
An optical control element such as a liquid crystal or PLZT that controls the amount of reflection or transmission of light may be used to control the light supplied from the receiving end and return it to the receiving end. Furthermore, at the transmission end, the circuits to which power is intermittently supplied via the switch do not have to be all the circuits that constitute the transmission end.
i/ may also be forced to be performed only on circuits with large power consumption.

以上説明した通り、本発明によれば、伝送端側での消費
電力が小さく、従って、充電変換手段を含んで構成され
る電源や、電池によって長時間使用可能な光学伝送シス
テムが実現できる0
As explained above, according to the present invention, the power consumption on the transmission end side is small, and therefore an optical transmission system that can be used for a long time with a power source including a charging conversion means and a battery can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るシステムの一例を示す構成ブロッ
ク図、第2図は本発明の他の実施例を示す構成接続図、
@5図は第2図システムの動作を説明するための波形図
である。 1・・・伝送端、2・・・受信端、3・・・光伝送路、
11・・・変換回路、12・・・増幅器、13・・・駆
動回路、14・・・発光素子、15・・・トランジスタ
、16・・・光電変換回路、17・・・蓄電回路、18
・・・時計回路、19・・・スイッチ、21・・・光源
、22・・・受光素子。
FIG. 1 is a configuration block diagram showing an example of a system according to the present invention, FIG. 2 is a configuration and connection diagram showing another embodiment of the present invention,
@Figure 5 is a waveform diagram for explaining the operation of the system in Figure 2. 1... Transmission end, 2... Receiving end, 3... Optical transmission line,
DESCRIPTION OF SYMBOLS 11... Conversion circuit, 12... Amplifier, 13... Drive circuit, 14... Light emitting element, 15... Transistor, 16... Photoelectric conversion circuit, 17... Electric storage circuit, 18
... Clock circuit, 19... Switch, 21... Light source, 22... Light receiving element.

Claims (1)

【特許請求の範囲】 (1)伝送端側から測定物理量に関連した光信号を受信
端側に伝送するシステムにおいて、前記伝送端側に、測
定物理量を電気的な信号に変換する変換回路と、前記物
理量に関連する光学的な信号を発生する光学素子と、前
記変換回路からの信号を入力し前記光学素子を駆動する
駆動回路と、電源回路と、この電源回路からの電力を前
記変換回路、光学素子、駆動回路の少なくともひとつ以
上に供給するスイッチとを設け、前記スイッチを間歇的
に駆動させるようKしたことを4111とする光学伝送
システム。 (2)  スイッチを、電源回路からの電力によって作
動する時計回路の出力信号によって間歇的に駆動するよ
うにした特許請求の範囲第1項記載の光学伝送システム
。 (3)  スイッチを、受信端側から伝送される信号に
関連して間歇的に駆動するようKした特許請求の範囲第
1項記載の光学伝送システム。 (4)  電源回路を、受信端側から伝送される光エネ
ルギ及び又は太陽光を電気エネルギに変換する充電変換
手段を含んで構成した特許請求の範囲第1項記載の光学
伝送システム〇(5)電源回路を、電池で構成した特許
請求の範囲第1項記載の光学伝送システム。 (6)受信端側から伝送端側に設置した回路を動作させ
るための基準クロック信号を伝送端側Kl給するようK
した特許請求の範囲第1項記載の光学伝送システム。
[Scope of Claims] (1) In a system for transmitting an optical signal related to a measured physical quantity from a transmission end side to a reception end side, a conversion circuit for converting a measured physical quantity into an electrical signal on the transmission end side; an optical element that generates an optical signal related to the physical quantity; a drive circuit that inputs a signal from the conversion circuit to drive the optical element; a power supply circuit; 4111. An optical transmission system comprising an optical element and a switch for supplying at least one of a drive circuit, the switch being driven intermittently. (2) The optical transmission system according to claim 1, wherein the switch is intermittently driven by an output signal of a clock circuit operated by power from a power supply circuit. (3) The optical transmission system according to claim 1, wherein the switch is driven intermittently in relation to the signal transmitted from the receiving end side. (4) Optical transmission system according to claim 1, in which the power supply circuit includes charging conversion means for converting light energy and/or sunlight transmitted from the receiving end side into electrical energy. The optical transmission system according to claim 1, wherein the power supply circuit is constructed of a battery. (6) K to supply the reference clock signal from the receiving end to the transmission end to operate the circuit installed on the transmission end.
An optical transmission system according to claim 1.
JP57029740A 1982-02-25 1982-02-25 Optical transmission system Granted JPS58146153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57029740A JPS58146153A (en) 1982-02-25 1982-02-25 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57029740A JPS58146153A (en) 1982-02-25 1982-02-25 Optical transmission system

Publications (2)

Publication Number Publication Date
JPS58146153A true JPS58146153A (en) 1983-08-31
JPH0148703B2 JPH0148703B2 (en) 1989-10-20

Family

ID=12284496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57029740A Granted JPS58146153A (en) 1982-02-25 1982-02-25 Optical transmission system

Country Status (1)

Country Link
JP (1) JPS58146153A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388892B2 (en) * 2004-12-17 2008-06-17 Corning Incorporated System and method for optically powering a remote network component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139538A (en) * 1982-02-15 1983-08-18 Furukawa Electric Co Ltd:The Optical transmission system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139538A (en) * 1982-02-15 1983-08-18 Furukawa Electric Co Ltd:The Optical transmission system

Also Published As

Publication number Publication date
JPH0148703B2 (en) 1989-10-20

Similar Documents

Publication Publication Date Title
US4502937A (en) Optical fiber joint type ion-concentration measurement apparatus
MY120415A (en) Light output apparatus and optical pickup apparatus employing the same.
US4189219A (en) Control system for flash photographing apparatus
CN101681547A (en) Alarm
KR850000668A (en) Work piece inspection device and method using probe
JP5632989B2 (en) Sensing method and sensing system
JPS58146153A (en) Optical transmission system
JPS58146152A (en) Optical transmission system
HU195589B (en) Portable optical system for protecting field
JPH0248959B2 (en) KOGAKUDENSOSHISUTEMU
US4899044A (en) Optically coupled remote sensor apparatus and system
US4719346A (en) Optical position locating apparatus with bidirectional light transmission
US7030362B2 (en) Optoelectronic device for meter optical detector module
JPS6213200Y2 (en)
JP2763605B2 (en) Fire detector
SU1578817A1 (en) Device for measuring attenuation of fibre-optical cable
SU1575141A1 (en) Apparatus for checking service life of quantum-electronic transmitting modules
SU1179109A1 (en) Apparatus for measuring radiation rate
SU992266A1 (en) Apparatus for checking operability of vehicle signal lights
JP2959073B2 (en) Optical-electrical input / output device
JPS6139642A (en) Light transmitting device
JPS62103799A (en) Fire alarm
JP2003087202A (en) Light receiving circuit, optical radio communication device and meter
JPS5723290A (en) Semiconductor laser device
JPS6256836A (en) Measuring instrument for light emission characteristics of laser diode