JPS58145861A - Engine driving type heat pump - Google Patents

Engine driving type heat pump

Info

Publication number
JPS58145861A
JPS58145861A JP2695282A JP2695282A JPS58145861A JP S58145861 A JPS58145861 A JP S58145861A JP 2695282 A JP2695282 A JP 2695282A JP 2695282 A JP2695282 A JP 2695282A JP S58145861 A JPS58145861 A JP S58145861A
Authority
JP
Japan
Prior art keywords
engine
heat
heat pump
driven
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2695282A
Other languages
Japanese (ja)
Other versions
JPH0221502B2 (en
Inventor
畑 継徳
山口 克幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2695282A priority Critical patent/JPS58145861A/en
Publication of JPS58145861A publication Critical patent/JPS58145861A/en
Publication of JPH0221502B2 publication Critical patent/JPH0221502B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、空気調和装置や給湯装置などとして用いられ
るヒートポンプで、詳しくは、エンジンにて駆動される
圧縮機からの加圧冷媒を凝縮器、膨張弁、蒸発器ならび
に前記圧NIIAに亘って循看流動させるべく構成しで
あるエンジン駆動式ヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump used as an air conditioner, a water heater, etc., and more specifically, the present invention relates to a heat pump that is used as an air conditioner or a water heater. The present invention relates to an engine-driven heat pump configured to circulate the flow over the pressure NIIA.

この種のヒートポンプの駆動源であるエンジンは、機械
室等の空9LtIk動の悪い場所中エンジ・1の近傍に
他の加#klIlが存在する場所などのように雰囲気温
度が高い条件下で使用しなければならない場合があり、
このような高温雰囲気で使用すると、エンジンが過負荷
運転の場合と同様の現象を起し、燃焼不良、排気温度の
上昇によってピストン、ピストンリング、シリンダ、メ
ンテナンス期間の短縮、メンテナンス作業時間の増大、
寿命の低下等を招来し易い欠点があった。
The engine, which is the driving source for this type of heat pump, is used under conditions of high ambient temperature, such as in an empty place such as a machine room, or in a place where other heat pumps exist in the vicinity of the engine. You may have to
If the engine is used in such a high-temperature atmosphere, the same phenomenon as when the engine is operated under overload will occur, resulting in poor combustion and increased exhaust temperature, resulting in reduced maintenance periods for the piston, piston rings, and cylinders, and increased maintenance work time.
There was a drawback that the service life was likely to be shortened.

また、このようなメンテナンス面及び耐久性によって冷
却する丸めの専用の冷却装置を別途設けてたものが知ら
れているが、これによる場合は、ヒートポンプ全体が大
型化するばかりでなく、ランニングコストが高く付き易
い欠点がある。
In addition, it is known that a dedicated cooling device for cooling the heat pump is installed separately due to maintenance and durability, but this not only increases the size of the entire heat pump but also increases the running cost. It has the disadvantage of being expensive.

本発明は、上述の実情に鑑み、高温雰囲気下でのエンジ
ン駆動に起因する燃焼不良や排気温度の上昇を、構造面
、ランニングコスト面で有利に抑制することができるよ
うにする点に第1目的を有し、第8目的は、過繍機付き
エンジンの出力アップを図らんとする点にある。
In view of the above-mentioned circumstances, the present invention has the following points: to advantageously suppress combustion defects and exhaust temperature increases caused by engine operation in high-temperature atmospheres in terms of structure and running costs. The eighth purpose is to increase the output of the engine equipped with the embroidery machine.

本第1発明によるエンジン駆動式ヒートポンプは、前記
エンジンに吸入される燃焼用空気を黴とすゐものである
から、例え、エンジンを高温の雰囲気条件下で駆動する
場合でも、前記熱交換部での凝縮器通過後の冷媒と燃焼
用空気との熱交換により、この冷媒の蒸発潜熱を利用し
て燃焼用空気を冷却することができる。 それ故に、冷
媒循環経路及び吸気経路の局部的な改良で良く、従来の
ような特別な水冷式の冷却装置を設ける場合に比して、
高温雰囲気下でのエンジン駆動に起因する燃焼不良や排
気温度の上昇を構造面、ランニングコスト面で有利な状
態で#i夷、十分に抑制し得るに至った。
Since the engine-driven heat pump according to the first aspect of the present invention turns the combustion air taken into the engine into mold, even if the engine is driven under high-temperature atmospheric conditions, the heat exchange section By heat exchange between the refrigerant after passing through the condenser and the combustion air, the combustion air can be cooled using the latent heat of vaporization of the refrigerant. Therefore, local improvements to the refrigerant circulation path and the intake path are sufficient, compared to the case of installing a special water-cooled cooling device as in the past.
It has now been possible to sufficiently suppress combustion defects and increases in exhaust temperature caused by engine operation in a high-temperature atmosphere, while being advantageous in terms of structure and running costs.

本第8発明では、過給機付きエンジンに、前記エンジン
に吸入される燃焼用空気を前記凝縮器通過後の冷媒との
熱交換によ〕冷却することが可能な熱交換部を設は鴬 ことにより、高温雰囲気条件下でのエンジン駆動に起因
する燃焼不良中排気温度上昇を抑制することができるば
かりでなく、雰囲気温度が設定範囲内にあるときでも、
過給故に生じる燃焼用空気の温度上昇を前記熱交換部で
の熱交換によって抑制することが可能で、給気の密度を
高めて充填効率の向上を図シ、エンジンの出力アップを
達成し得るに至った。
In the eighth invention, the supercharged engine is provided with a heat exchange section capable of cooling combustion air taken into the engine by heat exchange with the refrigerant after passing through the condenser. This not only makes it possible to suppress the exhaust temperature rise during poor combustion caused by engine operation under high-temperature atmospheric conditions, but also suppresses the increase in exhaust temperature even when the ambient temperature is within the set range.
It is possible to suppress the temperature rise of the combustion air caused by supercharging by heat exchange in the heat exchange section, and it is possible to increase the density of the charge air, improve the charging efficiency, and increase the output of the engine. reached.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

エンジン駆動式ヒートポンプの冷凍サイクルを構成する
に、第1図で示すように、エンジンfilにクラッチ(
2)を介して連動された圧縮機(3」からの加圧冷媒を
凝縮!! +43 、膨張弁(5)、蒸発器(6)なら
びに前記圧縮機(3)に亘って循環流動させるべく構成
している。
To configure the refrigeration cycle of an engine-driven heat pump, as shown in Figure 1, a clutch (
2) condenses the pressurized refrigerant from the compressor (3) coupled through the compressor (3)!!+43, configured to circulate and flow through the expansion valve (5), the evaporator (6) and the compressor (3). are doing.

このヒートポンプでは、前記* is m ta+での
熱交換時における冷媒の凝縮潜熱を暖房又は給湯のため
の加熱源として利用したp、或いは、前記蒸発器(6)
での熱交換時における冷媒の蒸発潜熱を冷野肉は冷凍の
丸めの冷却源として利用するものである。
In this heat pump, the evaporator (6) or the evaporator (6) utilizes the latent heat of condensation of the refrigerant during heat exchange in the *is m ta+ as a heat source for space heating or hot water supply.
The latent heat of evaporation of the refrigerant during heat exchange is used as a cooling source for frozen meat.

而して、前記凝縮器(4)と膨張弁(5)との間の冷媒
通路部分と前記蒸発器(61と圧縮機(31との間の冷
媒通路部分とに亘って、その一部が前記エンジン(1)
の吸気マニホルドCIA)に遅過接続され九吸気管(7
)を貫通する状態で絞り装置(8)付きのバイパス路(
9)を設け、このバイパス路(9)の、IfJIE吸気
管17)内に位置する管部分をもって、エンジン(II
K吸入される燃焼用空気を前記**器(4)通過後の冷
媒との熱交換により冷却するとともに冷媒を蒸発させる
熱交換部αGを構成している。
Thus, a part of the refrigerant passage between the condenser (4) and the expansion valve (5) and the refrigerant passage between the evaporator (61 and compressor 31) is The engine (1)
The intake manifold (CIA) is connected late to the nine intake pipes (7
) with a bypass passage (
9), and with the pipe portion of this bypass passage (9) located within the IfJIE intake pipe 17), the engine (II
K constitutes a heat exchange section αG that cools the intake combustion air by heat exchange with the refrigerant after passing through the ** device (4) and evaporates the refrigerant.

壕九、前記吸気管(7)内に吸入され九燃焼用空気が設
定温度(圓えば、25℃、80℃)以上に上昇したこと
を検出すゐセンサーα℃を設けるとともに、前記バイパ
ス路(9)の絞り装置偉)よりも冷媒流動方向上手側に
は、膨張弁(2)及び前記センナ−(11)の検出作l
!Iに基づいて自動的かつ可逆的に開動される電磁弁Ω
を介在している。
A sensor α°C is provided to detect when the combustion air sucked into the intake pipe (7) rises above the set temperature (for example, 25°C, 80°C). The expansion valve (2) and the sensor (11) are located on the upper side of the throttle device (9) in the direction of refrigerant flow.
! A solenoid valve Ω that is automatically and reversibly opened based on I.
is intervening.

そして、エンジンfil K吸入される燃焼用空気の温
度が設定温度以上に上昇すると、電磁弁Iがセンサー0
υの検出結果に基づいて自動的に開動され、凝縮器(4
)通過後の冷媒の一部がバイパス路(9)を通して熱交
換部aoに供給される。 この熱交換部αGでの熱交換
により冷媒の蒸発潜熱を利用して燃焼用空気を冷却する
ことができるから、高温雰囲気でのエンジン駆動に起因
する燃焼不良や排気温度の上昇を回避することができる
When the temperature of the combustion air taken into the engine fil K rises above the set temperature, the solenoid valve I is activated by the sensor 0.
The condenser (4) is automatically opened based on the detection result of υ.
) A part of the refrigerant after passing through is supplied to the heat exchange section ao through the bypass path (9). Through heat exchange in this heat exchange section αG, the combustion air can be cooled using the latent heat of vaporization of the refrigerant, so it is possible to avoid combustion defects and increases in exhaust temperature caused by engine operation in a high-temperature atmosphere. can.

前記絞シ装置(8)はキャピラリチューブから構成され
ている。
The squeezing device (8) is composed of a capillary tube.

上述実施例では、吸入燃焼用空気の温度検出に基づいて
電磁パルプΩを開閉制御したが、別実施例として、第1
図の二点鎖線で示すように、排気ガス温度が設定温度(
例えば、450℃)以上に上昇したことを検出する装置
(11つの検出結果に基づいて電磁パルプa3を開閉制
御すべく構成しても良い。
In the above embodiment, the opening and closing of the electromagnetic pulp Ω was controlled based on the temperature detection of the intake combustion air.
As shown by the two-dot chain line in the figure, the exhaust gas temperature is set at the set temperature (
For example, a device may be configured to control the opening and closing of the electromagnetic pulp a3 based on 11 detection results of a device that detects that the temperature has risen to 450° C. or higher.

まえ、前記開閉式の電磁弁u3に代えて比例制御弁を使
用し、もって、吸入燃焼用空気又は排気ガスの検出温度
と設定温度とを比較して増−し、その比較結果に基づい
て前記比例制御弁Iを作動制御し、前記熱交換部(IG
への冷媒供給量を調節するべく構成して実施しても良い
First, a proportional control valve is used in place of the opening/closing solenoid valve u3, and the detected temperature of the intake combustion air or exhaust gas is compared with the set temperature, and the temperature is increased based on the comparison result. The operation of the proportional control valve I is controlled, and the heat exchange section (IG
It may be configured and implemented to adjust the amount of refrigerant supplied to.

第8図は別の実施例を示し、前記熱交換部αGを備えた
バイパス路(9)を、前記蒸発器(6)と圧縮機ta+
との閣の冷媒通路部分に遅過接続するとともに、このバ
イパス路(9)の上手側接続部に電磁式の三方弁a−を
介在して構成している。 この場合、蒸発器(6)出口
の低温の飽和或いは過熱蒸気冷媒により燃焼用空気を冷
却することができるから、上述実施例の場合に比して膨
張弁(2)を削減することができる。
FIG. 8 shows another embodiment, in which the bypass passage (9) equipped with the heat exchanger αG is connected to the evaporator (6) and the compressor ta+
A late connection is made to the refrigerant passage portion of the cabinet, and an electromagnetic three-way valve a- is interposed at the upper connection portion of this bypass path (9). In this case, since the combustion air can be cooled by the low-temperature saturated or superheated vapor refrigerant at the outlet of the evaporator (6), the number of expansion valves (2) can be reduced compared to the above embodiment.

第3図乃至第6図は夫々、エンジン(1)の排気マニホ
ルド(IB)K連通接続された排気管(至)と吸気管(
71とに亘って過給機(至)を設けである第2発明の実
施−を示す。
Figures 3 to 6 respectively show the exhaust manifold (IB) K of the engine (1), the connected exhaust pipe (to), and the intake pipe (
Fig. 7 shows an implementation of the second invention in which a supercharger (to) is provided over 71 and 71.

mS図で示す実施例は、前記凝縮5(4)と膨張弁(5
1との間の冷媒通路部分と前記蒸発器(6)と圧縮機+
31との間の冷媒通路部分とに亘って、過給機(至)に
て吸入され九燃焼用空気を凝縮@ f41通過通過後媒
との熱交換によシ冷即することが可能な熱交換部−を備
えたバイパス路(9)を遅過接続するとともに、前記バ
イパス路(9)の熱交換部Q(1よりも上手側には膨張
弁αη、電磁弁(至)を介在し、かつ、下手側には電磁
弁部を介在して構成し九も・のである。
The embodiment shown in the mS diagram has the condensing valve 5 (4) and the expansion valve (5
1 and the refrigerant passage portion between the evaporator (6) and the compressor +
31, the air for combustion is drawn in by the supercharger (toward) and condensed. A bypass passage (9) equipped with an exchange part - is connected late, and an expansion valve αη and a solenoid valve (to) are interposed on the upper side of the heat exchange part Q (1) of the bypass passage (9), In addition, a solenoid valve part is interposed on the lower side.

第4図で示す実施例は第8図で説明したヒートポンプの
変形を示し、熱交換部αQを備え九バイパス路(9)を
、前記蒸発器(6)と圧縮機(31との間の冷媒流路部
分に接続するとともに、前記バイパス@(9)の接続部
間に位置する冷媒流路部分及びバイパス路(9)の上手
側接続部近くに夫々電磁弁■、@を介在している。
The embodiment shown in FIG. 4 shows a modification of the heat pump explained in FIG. Electromagnetic valves (1) and (2) are interposed near the refrigerant flow path portion and the upper connection portion of the bypass path (9), which are connected to the flow path portion and located between the connection portions of the bypass @(9).

第す図で示す実施例は、前記凝縮器(4)と膨張弁(5
1との間の冷媒流路部分と蒸発器(6)と圧縮機(3]
との間の冷媒流路部分とに亘って、膨張弁@及び電磁弁
−を備え九バイパス路(9)を遅過接続するとともに、
前記バイパス路(9)の膨張弁■を通過した冷媒と熱輸
送用媒体とを熱交換させる第1熱交換器(IOA)と、
これを通過した熱輸送用媒体と吸入燃焼用空気とを熱交
換させる第2熱交換器(IOB)とをもって、凝縮器(
4)通過後の冷媒の蒸発潜熱を利用して熱輸送用媒体を
冷却し、かつ、この媒体を介して吸入燃焼用空気を間接
的に冷却する熱交換部(至)を構成している。
The embodiment shown in FIG.
1, the refrigerant flow path section between the evaporator (6) and the compressor (3)
A nine bypass path (9) is provided with an expansion valve and a solenoid valve over the refrigerant flow path between
a first heat exchanger (IOA) that exchanges heat between the refrigerant that has passed through the expansion valve (2) of the bypass path (9) and the heat transport medium;
A condenser (
4) A heat exchange section is configured that cools the heat transport medium using the latent heat of vaporization of the refrigerant after passing through it, and indirectly cools the intake combustion air via this medium.

図中(至)は熱輸送用媒体を強制循環させるポンプであ
る。
In the figure (to) is a pump that forcibly circulates the heat transport medium.

第6図で示す実施例は第5図で説明し九ヒートポンプの
変形を示し、前記電磁弁(至)及び熱交換部叫の第1%
交換器(IOA)を備えたバイパス路(9)を、前記蒸
発器(6)と圧縮機(31との間の冷媒流路部分に接続
するとともに、このバイパス路(9)の接Rs間の冷媒
流路部分にも電磁弁■を介在して構成している。
The embodiment shown in FIG. 6 shows a modification of the nine heat pumps described in FIG.
A bypass path (9) equipped with an exchanger (IOA) is connected to the refrigerant flow path section between the evaporator (6) and the compressor (31), and a A solenoid valve (2) is also interposed in the refrigerant flow path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエンジン駆動式ヒートポンプの配管系統図、第
2図乃至第6図は大々側の実施例を示す配管系統図であ
る。 (1)・・・・・・エンジン、(,31・・・・・・圧
縮機、(4)・・・・・・凝縮器、(5)・・・・・・
膨張弁、(6)蒸発器、(至)・・・・・・熱交換部、
(Ill、 (11す・・・・・・検出装置、(至)・
・・・・・過給機。 代理人 弁理士  七 村    修 小第2図 第3図 1つ 第4図 「□□−
FIG. 1 is a piping system diagram of an engine-driven heat pump, and FIGS. 2 to 6 are piping system diagrams showing large-scale embodiments. (1)...Engine, (,31...Compressor, (4)...Condenser, (5)...
Expansion valve, (6) evaporator, (to)... heat exchange section,
(Ill, (11...detection device, (to)...
...supercharger. Agent Patent Attorney Osamu Nanamura Figure 2 Figure 3 One Figure 4 “□□-

Claims (1)

【特許請求の範囲】 ■ エンジン(1)にて駆動される圧縮機+31からの
加圧冷媒を凝縮器(4)、膨張弁(5)、蒸発器(6)
ならびに前記圧縮機(3+に亘って循環流動させるべく
構成しであるエンジン駆動式ヒートポンプにおいて、前
記エンジン(1)に吸入される燃焼用空気を前記凝縮器
(4]道過後の冷媒との熱交換により/&即することが
可能な熱交換saGを設けであることを##とするエン
ジン駆動式ヒートポンプ。 ■ 前記熱交換5(2)が作用状態と非作用状態とに切
換え可能なものに構成されている特許請求の範囲第0項
に記載のエンジン駆動式ヒートポンプ。 ■ 前記熱交換部αGでの熱交換手段が直接熱交である
特許請求の範囲第0項又は第0項に記載のエンジン駆動
式ヒートポンプ。 ■ 前記熱交換部αGでの熱交換手段が熱輸送用媒体を
利用する間接熱交である特許請求の範囲第0項又は第■
項の記載のエンリン躯動式%式% ■ 前記熱交換部[1Gは、l1ljX湿度が設定以上
に上昇したことを検出する装置#J1)の検出結果に基
づいて前記の?&卿作用状態に自動的かつ可逆的に切換
えられるべく構成されている特許請求の範囲第0項に記
載のエンジン駆動式ヒートポンプ。 ■ 前記熱交換部叫は、エンジン排気温度が設定以上に
上昇したことを検出する装置(11うの検出結果に基づ
いて前記の冷却作用快勝に自動的かつ可逆的に切換えら
れるべく構成されている特許請求の範囲第0項に記載の
エンジン駆動式ヒートポンプ。 ■ 過給機(Illを有すゐエンジン(1)にて駆動さ
れる圧縮機(3)からの加圧冷媒を凝縮器(4)、膨張
弁(5)、蒸発器(6)ならびに前記圧縮$ +31に
亘って循環flL動させるべく構成しであるエンνン駆
動式ヒートポンプにおいて、前記過給機18にて吸入さ
れる燃焼用空気を前記凝縮器(41通過後の冷媒との熱
交換によシ冷却することが可能な熱交換部(2)を設け
であること特徴とするエンジン駆動式ヒートポンプ。
[Claims] ■ Pressurized refrigerant from the compressor +31 driven by the engine (1) is transferred to the condenser (4), expansion valve (5), and evaporator (6).
In the engine-driven heat pump, the combustion air taken into the engine (1) is heat exchanged with the refrigerant after passing through the condenser (4). An engine-driven heat pump that is equipped with a heat exchanger saG that can be operated/& quickly. ■ The heat exchanger 5 (2) is configured to be switchable between an active state and a non-active state. The engine-driven heat pump according to claim 0. ■ The engine according to claim 0 or 0, wherein the heat exchange means in the heat exchange section αG is a direct heat exchanger. Drive-type heat pump. ■ Claim 0 or 2, wherein the heat exchange means in the heat exchange section αG is an indirect heat exchange using a heat transport medium.
The heat exchanger [1G is based on the detection result of the device #J1 that detects that the humidity has risen above the set level]. The engine-driven heat pump according to claim 0, wherein the engine-driven heat pump is configured to be automatically and reversibly switched to the operating state. ■ The heat exchanger is configured to automatically and reversibly switch to the cooling effect based on the detection result of step 11, which detects when the engine exhaust temperature rises above a set value. The engine-driven heat pump according to claim 0. ■ The pressurized refrigerant from the compressor (3) driven by the engine (1) having a supercharger (Ill) is transferred to the condenser (4). , the expansion valve (5), the evaporator (6), and the compression valve (6), and the combustion air taken in by the supercharger (18). An engine-driven heat pump characterized in that the engine-driven heat pump is provided with a heat exchange section (2) capable of performing cooling by heat exchange with the refrigerant after passing through the condenser (41).
JP2695282A 1982-02-22 1982-02-22 Engine driving type heat pump Granted JPS58145861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2695282A JPS58145861A (en) 1982-02-22 1982-02-22 Engine driving type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2695282A JPS58145861A (en) 1982-02-22 1982-02-22 Engine driving type heat pump

Publications (2)

Publication Number Publication Date
JPS58145861A true JPS58145861A (en) 1983-08-31
JPH0221502B2 JPH0221502B2 (en) 1990-05-15

Family

ID=12207486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2695282A Granted JPS58145861A (en) 1982-02-22 1982-02-22 Engine driving type heat pump

Country Status (1)

Country Link
JP (1) JPS58145861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995344A (en) * 1982-11-24 1984-06-01 小型ガス冷房技術研究組合 Method of operating heat pump by driving of engine
JP2016153713A (en) * 2015-02-20 2016-08-25 大阪瓦斯株式会社 Ejector cycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832131U (en) * 1981-08-26 1983-03-02 小型ガス冷房技術研究組合 Engine-driven heating and cooling equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832131B2 (en) * 1977-11-10 1983-07-11 シ−ケ−ディ株式会社 Device for taking out articles on pallet conveyor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832131U (en) * 1981-08-26 1983-03-02 小型ガス冷房技術研究組合 Engine-driven heating and cooling equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995344A (en) * 1982-11-24 1984-06-01 小型ガス冷房技術研究組合 Method of operating heat pump by driving of engine
JP2016153713A (en) * 2015-02-20 2016-08-25 大阪瓦斯株式会社 Ejector cycle

Also Published As

Publication number Publication date
JPH0221502B2 (en) 1990-05-15

Similar Documents

Publication Publication Date Title
US2829504A (en) Air conditioning system for dwellings
Horuz Vapor absorption refrigeration in road transport vehicles
CN113899105A (en) Engine-driven air source heat pump
US2562748A (en) Heat pump
JPS58145861A (en) Engine driving type heat pump
CN112066583A (en) Air conditioning unit with double heat sources and control method thereof
JPH06213521A (en) Method and device for combining cooling and heating processes for air condioning of room
JPS6093118A (en) Intake air cooling device of engine with supercharger
JPH0452469A (en) Air conditioner
JPS6052290B2 (en) Intake air cooler for internal combustion engine with supercharger
CN112361654A (en) Heat pump driven by gas engine
CN114413512B (en) Engine-driven air source heat pump
CN208734404U (en) Hybrid electric vehicle crankcase ventilation ice protection system
CN112361653B (en) Heat pump driven by gas engine
JP2609649B2 (en) Engine cooling device with exhaust heat recovery device
JPS60145422A (en) Exhaust path mechanism for internal-combustion engine associated with exhaust turbo supercharger
CN106440500A (en) Total heat recovery type engine air source air conditioning heating device and control method thereof
CN212205128U (en) CO2 air source heat pump device
JPS6018735Y2 (en) Heat recovery heating and cooling equipment
JPH0422038Y2 (en)
JP3776489B2 (en) Engine driven air conditioner
JPS5843734Y2 (en) Refrigeration equipment
CN112361655A (en) Heat pump driven by gas engine
CN112361652A (en) Heat pump driven by gas engine
JP3740757B2 (en) Air conditioner