JPS5814482B2 - Manufacturing method of high-density high-alloy steel sintered body - Google Patents

Manufacturing method of high-density high-alloy steel sintered body

Info

Publication number
JPS5814482B2
JPS5814482B2 JP51003996A JP399676A JPS5814482B2 JP S5814482 B2 JPS5814482 B2 JP S5814482B2 JP 51003996 A JP51003996 A JP 51003996A JP 399676 A JP399676 A JP 399676A JP S5814482 B2 JPS5814482 B2 JP S5814482B2
Authority
JP
Japan
Prior art keywords
density
alloy steel
sintered
sintered body
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51003996A
Other languages
Japanese (ja)
Other versions
JPS5288207A (en
Inventor
雄一 斎藤
正幸 飯島
邦夫 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP51003996A priority Critical patent/JPS5814482B2/en
Publication of JPS5288207A publication Critical patent/JPS5288207A/en
Publication of JPS5814482B2 publication Critical patent/JPS5814482B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は高密度の高合金鋼焼結体を製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a high-density, high-alloy steel sintered body.

従来、粉末治金法によって機械部品などの焼結体を製造
するに際しては、前記焼結体の耐摩耗性および強度など
の機械的性質を向上させるための一手段として、通常の
粉末治金法によって成形された焼結素材に、大気雰囲気
中で型鍛造、転造、もしくは押出の熱間加工を施して前
記焼結素材内の空孔をつぶし非多孔質体とすることが行
なわれている。
Conventionally, when manufacturing sintered bodies such as mechanical parts by powder metallurgy, ordinary powder metallurgy was used as a means to improve the mechanical properties such as wear resistance and strength of the sintered body. The sintered material formed by the sintered material is subjected to hot processing such as die forging, rolling, or extrusion in an atmospheric atmosphere to crush the pores in the sintered material and make it a non-porous body. .

しかしながら、上記従来の焼結素材非多孔質化手段にお
いては、 (1)一般に上前焼結素材は、密度比75〜85%をも
つため多孔質となっているので、熱間加工前の加熱中に
酸化および脱炭反応がその内部まで進行し、特に還元が
困難なCr,V,Mn,およびSjなどの成分を多量に
含有する高速度鋼やステンレス鋼などの焼結素材におい
ては、その粒子表面に酸化皮膜が形成して機械的性質を
著しく劣化させると共に、十分な緻密化が行なわれない
ことになる。
However, in the conventional means for making the sintered material non-porous, (1) Generally, the upper and lower sintered materials are porous because they have a density ratio of 75 to 85%; In sintered materials such as high-speed steel and stainless steel, which contain large amounts of components such as Cr, V, Mn, and Sj, which are difficult to reduce, oxidation and decarburization reactions proceed to the inside of the material. An oxide film is formed on the particle surface, significantly deteriorating the mechanical properties, and insufficient densification.

したがって、これら焼結素材の熱間加工前の加熱に際し
ては酸化防止のためにきわめて難かしい雰囲気調整を行
なわなければならない。
Therefore, when heating these sintered materials before hot working, extremely difficult atmosphere adjustments must be made to prevent oxidation.

(2)上述のように通常の粉末治金法によって成形され
た多孔質焼結素材の熱間加工に際しては、前記多孔質の
ために熱伝導性が悪いので、パンチや型およびロールな
どと接触する前記焼結素材の周縁部は、その中央部に比
して温度低下がはげしく、変形抵抗が著しく増大するた
めに、熱間加工後の焼結体の中央部と周縁部とでは、そ
の密度に大きな差が生じ、均一な密度をもった焼結体を
得ることができない。
(2) As mentioned above, during hot processing of a porous sintered material formed by the normal powder metallurgy method, the porous nature has poor thermal conductivity, so it comes into contact with punches, molds, rolls, etc. The temperature at the periphery of the sintered material is much lower than that at the center, and the deformation resistance increases significantly. A large difference occurs in the sintered body, making it impossible to obtain a sintered body with uniform density.

特に合金成分の含有量が高い高速度鋼やステンレス鋼の
ような高合金鋼焼結素材の熱間加工においては、前記高
合金鋼焼結素材は熱間加工前の温度500℃以下になる
と著しく変形抵抗が増大するという性質をもつために、
低合金鋼と比して相当大きな密度差が発生する。
Particularly in hot working of high-alloy steel sintered materials such as high-speed steel and stainless steel that have a high content of alloying components, the high-alloyed steel sintered materials are significantly Due to the property of increasing deformation resistance,
A considerably large density difference occurs compared to low alloy steel.

などの問題点が発生していた。Problems such as this were occurring.

また、一方高速度鋼やステンレス鋼のような高合金鋼焼
結体を製造する方法として、平均粒径1〜2mmをもっ
たきわめて粗い前記高合金鋼の原料粉末をカスアトマイ
ズ法によって製造し、前記原料粉末を金属容器に詰め、
ついで前記原料粉末封入の金属容器を冷問および熱間に
て加圧圧縮することからなる方法も知られているが、こ
の方法によって製造された理論密度に近い焼結ビレット
から所望形状の製品を製造するには、まず前記焼結ビレ
ットから所定寸法の素材に圧延し、ついで前記素材から
機械切削などにより所望形状の最終製品に成形する手段
をとらなければならないために上記方法においては、粉
末治金法の大きな利点である歩留の向上ならびに量産性
をはかることができない。
On the other hand, as a method for manufacturing a sintered body of high alloy steel such as high speed steel or stainless steel, extremely coarse raw material powder of the high alloy steel with an average particle size of 1 to 2 mm is manufactured by a cast atomization method, Packing the raw material powder into a metal container,
A method is also known in which the metal container containing the raw material powder is then compressed under cold and hot pressure, and a product of a desired shape is produced from a sintered billet with a density close to the theoretical density produced by this method. In order to manufacture the product, it is necessary to first roll the sintered billet into a material of a predetermined size, and then form the material into a final product of the desired shape by mechanical cutting or the like. It is not possible to improve yield and mass production, which are the major advantages of the gold method.

本発明者等は、上述のような観点から、粉末治金法を適
用して密度のきわめて高い高速度鋼やステンレス鋼など
の高合金鋼焼結体を単純な工程で製造すべく研究を行な
った結果、熱間加工前の前記高合金鋼の焼結素材の密度
を理論密度の95%以上にすると、熱間加工前の加熱雰
囲気の調整が容易で、かつ大気雰囲気中での熱間加工に
よって、低い加工圧力で、中央部分と周縁部分の密度差
が全くない高密度の高合金鋼焼結体が得られるという知
見を得るに至ったのである。
From the above-mentioned viewpoint, the present inventors have conducted research to apply powder metallurgy to produce sintered bodies of high-alloy steel such as extremely high-density high-speed steel and stainless steel in a simple process. As a result, if the density of the sintered material of the high alloy steel before hot working is 95% or more of the theoretical density, it is easy to adjust the heating atmosphere before hot working, and hot working in an atmospheric atmosphere is possible. This led to the discovery that a high-density, high-alloy steel sintered body with no difference in density between the central portion and the peripheral portion can be obtained with low processing pressure.

ついで、この発明の高密度高合金鋼焼結体の製造法にお
いて、熱間加工前の焼結素材の密度比を95係以上と限
定した理由について述べる。
Next, in the method for producing a high-density high-alloy steel sintered body of the present invention, the reason why the density ratio of the sintered material before hot working is limited to a factor of 95 or more will be described.

すなわち、一般に焼結素材を熱間加工すれば、その密度
が高められることは周知の事項であることから、熱間加
工前の焼結素材の密度については、上述のようにあまり
考慮がはらわれておらず、通常75〜85%の密度比で
熱間加工を行なうのが現状である。
In other words, since it is generally known that hot working a sintered material increases its density, little consideration is given to the density of the sintered material before hot working as mentioned above. At present, hot working is usually carried out at a density ratio of 75 to 85%.

このような多孔質の焼結素材の熱間加工を低合金鋼を対
象として行なう場合にはあまり問題はないが、高速度鋼
やステンレス鋼などの高合金鋼を対象として行なう場合
には、種々の問題点が発生することは前述したとおりで
あり、この発明においては、前記高合金鋼焼結体製造に
際して発生する問題点を前記高合金鋼の焼結素材の熱間
加工前の密度比を95係以上に高めることによって解決
したことも前述のとおりである。
There are not many problems when performing hot working of such porous sintered materials on low alloy steel, but when performing hot working on high alloy steel such as high speed steel and stainless steel, there are various problems. As mentioned above, problems occur, and in this invention, the problems that occur when manufacturing the high alloy steel sintered body are solved by changing the density ratio of the sintered material of the high alloy steel before hot working. As mentioned above, the problem was solved by increasing the ratio to 95 or higher.

したがって、前記高合金鋼焼結素材の熱間加工前の密度
が95%未満では、加工前の加熱に際して酸化および脱
炭反応が前記焼結素材の内部まで進行し、これを防止す
るためには難かしい雰囲気調整を必要とするために品質
管理が困難となるばかりでなく、パンチや型およびロー
ルと接触する前記焼結素材の周縁部では、温度低下がは
げしくなり、この結果この部分の変形抵抗が著しく増大
するために、その中央部と周縁部の密度差をなくすこと
が困難となり、理論密度に近い密度をもった焼結体を得
ることができず、強いで高密度のものを得ようとすれば
、加工圧力をきわめて太きくしなければならず、このこ
とは型やロールなどの寿命の短命を招くなどの問題を発
生させることから前記焼結素材の熱間加工前の密度を9
5%以上としたのであって、好ましくは97%以上の密
度をもつようにするのが望ましい。
Therefore, if the density of the high alloy steel sintered material before hot working is less than 95%, oxidation and decarburization reactions will proceed to the inside of the sintered material during heating before working, and in order to prevent this, Not only is quality control difficult due to the need for difficult atmosphere control, but the temperature decreases rapidly at the periphery of the sintered material that comes into contact with punches, molds, and rolls, and as a result, the deformation resistance of this area decreases. As the density increases significantly, it becomes difficult to eliminate the density difference between the center and the periphery, making it impossible to obtain a sintered body with a density close to the theoretical density. In this case, the processing pressure must be extremely high, which causes problems such as shortening the life of molds and rolls, so the density of the sintered material before hot processing must be reduced to 9.
It is desirable to have a density of 5% or more, preferably 97% or more.

つぎに、この発明を実施例により詳述する。Next, the present invention will be explained in detail with reference to Examples.

C:0.86%、Si:0.23%、Mn : 0.3
1%、P:0.021%、S:0.016%、Cr
: 4.1 3%、Mo : 4.9 5%、W:6.
03%、V:1.98%、Feおよびその他の不可避不
純物:残りからなる組成(JIS−SKHQ相当組成)
をもった高速度鋼粉末に、前記高速度鋼粉末の含有する
酸素量に対して調整した量の炭素粉末を添加し混合粉砕
して粒度100メッシュ以下の原料粉末を調整した。
C: 0.86%, Si: 0.23%, Mn: 0.3
1%, P: 0.021%, S: 0.016%, Cr
: 4.1 3%, Mo: 4.9 5%, W: 6.
Composition consisting of 03%, V: 1.98%, Fe and other unavoidable impurities: remainder (JIS-SKHQ equivalent composition)
Carbon powder in an amount adjusted to the amount of oxygen contained in the high-speed steel powder was added to the high-speed steel powder and mixed and pulverized to prepare a raw material powder with a particle size of 100 mesh or less.

ついで前記原料粉末から径30mmφ×長さ30mmの
圧粉体を形成すると共に、前記圧粉体を10−3mmH
gの真空中で焼結して前記高速度鋼の焼結素材を製造し
た。
Next, a green compact with a diameter of 30 mmφ and a length of 30 mm is formed from the raw material powder, and the green compact is heated to 10-3 mmH.
The sintered material of the high-speed steel was manufactured by sintering in a vacuum of 100 g.

なお、前記焼結工程の初期において、前記圧粉体中の酸
素を同時添加の前記炭素粉末との気体反応によって還元
除去すると共に、前記圧粉体成形圧力を増加させたり、
焼結温度の調整によって、それぞれ密度比78.0%、
90.0+%、95.0%、97.5%、および99.
0%をもった焼結素材1〜5を成形した。
In addition, at the initial stage of the sintering process, oxygen in the green compact is reduced and removed by a gas reaction with the carbon powder added at the same time, and the pressure for compacting the green compact is increased;
By adjusting the sintering temperature, the density ratio was 78.0%,
90.0+%, 95.0%, 97.5%, and 99.
Sintered materials 1 to 5 with 0% were molded.

ついで前記の密度比をもったそれぞれの焼結素材を、通
常の電熱式加熱炉にて1100℃に加熱した後、大気雰
囲気中にで種々の鍛造圧力を適用して前記高速度鋼の焼
結体を製造し、この結果得られた前記焼結体の密度を測
定した。
Next, each of the sintered materials having the above-mentioned density ratios is heated to 1100°C in an ordinary electric heating furnace, and then various forging pressures are applied in an atmospheric atmosphere to sinter the high-speed steel. A body was manufactured, and the density of the resulting sintered body was measured.

この結果が第1図に示されている。第1図に示されるよ
うに、前記高速度鋼焼結素材の密度比が95.0%以上
をもつ場合に、きわめて低い鍛造圧力で理論密度(密度
比100%)をもった高速度鋼焼結体が得られ、かつ鍛
造前の加熱に際して酸化が起らないのに対して、その密
度比が95.0%未満の高速度鋼焼結素材においては、
かなり高い鍛造圧力を付加しなければ理論密度をもった
焼結体が得られず、しかも鍛造前の加熱時に内部まで酸
化が起ることが明らかである。
The results are shown in FIG. As shown in Figure 1, when the density ratio of the high-speed steel sintered material is 95.0% or more, the high-speed steel sintered material has a theoretical density (density ratio of 100%) with extremely low forging pressure. While a compact is obtained and oxidation does not occur during heating before forging, in high-speed steel sintered materials whose density ratio is less than 95.0%,
It is clear that a sintered body with the theoretical density cannot be obtained unless a considerably high forging pressure is applied, and furthermore, oxidation occurs to the inside during heating before forging.

なお、上記実施例においては高速度鋼焼結体を鍛造によ
って製造する場合について述べたが、この発明はこれに
限定されるものではなく、ステンレス鋼などその他の高
合金鋼焼結体を鍛造によって製造する場合にも、またこ
れらの焼結体を転造もしくは押出しによって製造する場
合においても同様な結果がもたらされることは勿論であ
る。
In the above embodiment, a case was described in which a high-speed steel sintered body is manufactured by forging, but the present invention is not limited to this, and other high-alloy steel sintered bodies such as stainless steel can be manufactured by forging. It goes without saying that similar results can be obtained in the case of manufacturing, and also in the case of manufacturing these sintered bodies by rolling or extrusion.

上述のように、この発明によれば、 (1)高合金鋼焼結素材の熱間加工前の加熱に際して素
材内部まで酸化や脱炭が進行しないために加熱雰囲気の
管理が容易である。
As described above, according to the present invention, (1) When heating a high-alloy steel sintered material before hot working, oxidation and decarburization do not proceed to the inside of the material, making it easy to control the heating atmosphere.

(2)高合金鋼焼結素材の大気雰囲気中での熱間加工に
際して、その加工圧力はきわめで低くくてよいので金型
やロールなどの寿命が向上すると共に、同一容量の加工
装置によってより大きな焼結素材の熱間加工が可能とな
る。
(2) When hot working high-alloy steel sintered materials in the atmosphere, the working pressure is extremely low, which improves the life of molds, rolls, etc., and increases processing equipment with the same capacity. Enables hot processing of large sintered materials.

(3)その中央部と周縁部とに密度差がなく、理論密度
に近い密度をもった均一組織の形状複雑な高合金鋼焼結
体を単純な工程で製造することができる など工業上有用な効果がもたらされるのである。
(3) There is no density difference between the center and the periphery, and it is industrially useful as it is possible to manufacture complex-shaped high-alloy steel sintered bodies with a uniform structure and a density close to the theoretical density through a simple process. This brings about a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は種々の密度比をもった高速度鋼焼結素材に関し
、鍛造圧力と型鍛造後の高速度鋼焼結体の密度比との関
係を示した図である。
FIG. 1 is a diagram showing the relationship between forging pressure and the density ratio of a high-speed steel sintered body after die forging, regarding high-speed steel sintered materials having various density ratios.

Claims (1)

【特許請求の範囲】[Claims] 1 高合金鋼粉末から粉末治金法によって高合金鋼焼結
素材を成形し、ついで前記焼結素材に型鍛造、転造、も
しくは押出しの熱間加工を施して所望の形状の高合金鋼
焼結体を製造する方法において、前記熱間加工前の前記
高合金鋼焼結素材の密度を理論密度の95%以上とし、
かつ前記焼結素材に、大気雰囲気中にて型鍛造、転造、
もしくは押出しの熱間加工を施すことを特徴とする高密
度高合金鋼焼結体の製造法。
1. A high alloy steel sintered material is formed from high alloy steel powder by a powder metallurgy method, and then the sintered material is subjected to hot working such as die forging, rolling, or extrusion to form a high alloy steel sintered material into a desired shape. In the method for producing a compact, the density of the high alloy steel sintered material before the hot working is 95% or more of the theoretical density,
And the sintered material is subjected to die forging, rolling,
Alternatively, a method for producing a high-density, high-alloy steel sintered body characterized by hot working by extrusion.
JP51003996A 1976-01-19 1976-01-19 Manufacturing method of high-density high-alloy steel sintered body Expired JPS5814482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51003996A JPS5814482B2 (en) 1976-01-19 1976-01-19 Manufacturing method of high-density high-alloy steel sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51003996A JPS5814482B2 (en) 1976-01-19 1976-01-19 Manufacturing method of high-density high-alloy steel sintered body

Publications (2)

Publication Number Publication Date
JPS5288207A JPS5288207A (en) 1977-07-23
JPS5814482B2 true JPS5814482B2 (en) 1983-03-19

Family

ID=11572605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51003996A Expired JPS5814482B2 (en) 1976-01-19 1976-01-19 Manufacturing method of high-density high-alloy steel sintered body

Country Status (1)

Country Link
JP (1) JPS5814482B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB781083A (en) * 1954-10-01 1957-08-14 Gregory Jamieson Comstock Improvements relating to high speed tool forms and their production
US3150444A (en) * 1962-04-26 1964-09-29 Allegheny Ludlum Steel Method of producing alloy steel
US3450528A (en) * 1968-07-25 1969-06-17 Crucible Steel Corp Method for producing dispersioned hardenable steel
JPS4978606A (en) * 1972-12-02 1974-07-29
JPS5049109A (en) * 1973-09-01 1975-05-01
JPS5053206A (en) * 1973-09-12 1975-05-12
JPS50151705A (en) * 1974-05-29 1975-12-05

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB781083A (en) * 1954-10-01 1957-08-14 Gregory Jamieson Comstock Improvements relating to high speed tool forms and their production
US3150444A (en) * 1962-04-26 1964-09-29 Allegheny Ludlum Steel Method of producing alloy steel
US3450528A (en) * 1968-07-25 1969-06-17 Crucible Steel Corp Method for producing dispersioned hardenable steel
JPS4978606A (en) * 1972-12-02 1974-07-29
JPS5049109A (en) * 1973-09-01 1975-05-01
JPS5053206A (en) * 1973-09-12 1975-05-12
JPS50151705A (en) * 1974-05-29 1975-12-05

Also Published As

Publication number Publication date
JPS5288207A (en) 1977-07-23

Similar Documents

Publication Publication Date Title
US6334882B1 (en) Dense parts produced by uniaxial compressing an agglomerated spherical metal powder
US2306665A (en) Method of preparing ferritic iron powder for manufacturing shaped iron bodies
US3704115A (en) High alloy steel powders and their consolidation into homogeneous tool steel
US4391772A (en) Process for the production of shaped parts from powders comprising spheroidal metal particles
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
AT406349B (en) METHOD FOR PRODUCING A METAL POWDER WITH AN OXYGEN CONTENT LESS THAN 300 PPM, AND METHOD FOR PRODUCING MOLDED POWDER METALURGICAL METAL PRODUCTS FROM THIS METAL POWDER
CN110983152A (en) Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
JPH03285040A (en) Manufacture of powder high speed steel
JPS5814482B2 (en) Manufacturing method of high-density high-alloy steel sintered body
JPS62224602A (en) Production of sintered aluminum alloy forging
JPS5913037A (en) Production of w-ni-fe sintered alloy
JP2689486B2 (en) Method for producing low oxygen powder high speed tool steel
US2159604A (en) Metallic article
JPS6058289B2 (en) Manufacturing method of high chromium alloy material
JPS62188735A (en) Manufacture of tini alloy wire or plate
US3328166A (en) Process for producing shaped thin articles from metal powder
CN115961166B (en) By Ti2Ni、TiNi3Method for preparing TiNi alloy by using intermediate alloy
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPS6229481B2 (en)
JPH0762184B2 (en) Method for manufacturing Ti alloy product
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPH0565568B2 (en)
JPS63190102A (en) Production of sintered and forged product of aluminum alloy
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH0676642B2 (en) Manufacturing method of sintered high alloy steel