JPS58144739A - Electrochemical detector - Google Patents

Electrochemical detector

Info

Publication number
JPS58144739A
JPS58144739A JP57028000A JP2800082A JPS58144739A JP S58144739 A JPS58144739 A JP S58144739A JP 57028000 A JP57028000 A JP 57028000A JP 2800082 A JP2800082 A JP 2800082A JP S58144739 A JPS58144739 A JP S58144739A
Authority
JP
Japan
Prior art keywords
electrode
liquid
flow path
flat plate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57028000A
Other languages
Japanese (ja)
Other versions
JPH0222902B2 (en
Inventor
Bunji Hagiwara
萩原文二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57028000A priority Critical patent/JPS58144739A/en
Publication of JPS58144739A publication Critical patent/JPS58144739A/en
Publication of JPH0222902B2 publication Critical patent/JPH0222902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Abstract

PURPOSE:To enable manufacture of an electrode device which has a high-sensitivity and a small capacity, by a method wherein a porous flat plate and a measuring electrode are positioned facing and opposite to each other, and a contrast electrode and an auxiliary electrode are located to the back of the flat plate. CONSTITUTION:A measuring electrode 1 has a flat responsing surface which is located so that it forms one wall surface of a flow path of liquid to be measured. A porous flat plate 3 is positioned in parallel and close and facing and opposite to the responsing surface of the electrode 1 at a distance being sufficiently shorter than a width in all the directions of the responsing surface of the electrode 1. The flat plate 3 forms the other wall surface of the flow path, and has denseness, a water-containing property, and a property which prevents liquid to be measured from flowing therethrough but allows ion to permeate therethrough. An electrolyte gathering part 4 and a reference electrode 2 are placed to the pack of the flat plate 3. The liquid to be measured flows between the electrode 1 and a porous liquid path 3, and an electrolytic current produced by an oxidizing reduction method flows in the direction of the reference electrode 2 from the electrode 1 through the liquid path 3, and thereby the current is amplified to record it.

Description

【発明の詳細な説明】 本発明は例えば高速液体クロマトグラフの展開液のよう
な流動液の経路に設置して通過液中の酸化還元性物質の
濃度を1!気化学的にモニターするための装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is installed in the path of a flowing liquid such as a developing liquid of a high-performance liquid chromatograph, and the concentration of redox substances in the flowing liquid is reduced to 1! This invention relates to a device for vapor chemical monitoring.

高速液体クロマトグラフは溶液中の無機物質、有機物質
、生化学物質などの分離分析に最も広く用いられている
方法の1つであるが、この方法はクロマトカラムによる
各種物質の分離法と、流出液中の分離物質の定量検出法
との2つの方法より成立している。後者の検出法には紫
外線吸収法、呈色法、螢光法、示差屈折法などの光学的
検出法が主として用いられてきたが、最近、一部の酸化
性生理活性物質に対して、WL完化学的検出法も導入さ
れるようになった。その代表的なものはキラシンジャー
ら(P、T、Kissinger at aIThe 
ANA−LYTICAL L[!:TT已RE3.6 
+51. P、495〜477 (+978) )によ
シ導入されたアドレナリン系ホルモン検出用のボ〃タン
メトリー電極装置で、これは既に数社により製品化され
ている、本発明の検出装置も、これと同じ電気化学反応
を応用した装置であるが。
High performance liquid chromatography is one of the most widely used methods for separating and analyzing inorganic substances, organic substances, biochemical substances, etc. in solutions. It consists of two methods: a quantitative detection method for separated substances in a liquid. For the latter detection method, optical detection methods such as ultraviolet absorption method, color method, fluorescence method, and differential refraction method have been mainly used. Complete chemical detection methods were also introduced. A typical example is Kissinger et al.
ANA-LYTICAL L[! :TT RE3.6
+51. P, 495-477 (+978)) is a buttonometric electrode device for detecting adrenergic hormones, which has already been commercialized by several companies, and the detection device of the present invention is similar to this. Although it is a device that applies the same electrochemical reaction.

既存のものとは全く異なった構成をとっていて、測定感
度が著しく向上したものになっている。−なお、この検
出装置は高速液体クロマトグラフのみならず、他の方法
で分離された流液中の物質中流液中に外部より注入され
たり、酵素反応などで生成した物質など、流液中に存在
する物質に対して広く適用できる。
It has a completely different configuration from existing ones, and has significantly improved measurement sensitivity. -This detection device can be used not only for high-performance liquid chromatographs, but also for detecting substances in the flowing liquid that have been separated by other methods, such as substances injected from the outside into the flowing liquid, or substances generated by enzyme reactions, etc. It can be widely applied to existing substances.

現在使用されている高速液体クロマトグラフ用キッシン
ジャー型装置では、測定電極にカーボン電極が用いられ
、十0.8 ボルトC対Ag/AgC1)附近の電位を
与えて生理活性アミン類の検出を打つている。この検出
反応はアドレナリンを例として示すと下式のようになる
In the currently used Kissinger-type devices for high-performance liquid chromatography, a carbon electrode is used as the measurement electrode, and a potential around 10.8 volts (C vs. Ag/AgC) is applied to detect physiologically active amines. There is. Taking adrenaline as an example, this detection reaction is expressed by the following formula.

このため電流が測定電極から対照電極(ま^助電極)に
流れるので、この電流の強さを測定することにより、装
置内を流れる物質の濃度が連続的に検出される。
For this reason, a current flows from the measuring electrode to the reference electrode (auxiliary electrode), and by measuring the strength of this current, the concentration of the substance flowing within the device is continuously detected.

さて、高速液体クロマトグラフ流出液のように釈い流液
中に分離されてくる物質の検出装置には2つの特性が要
求される。一つは検出感庫が正確かつ鋭敏であることで
あり、いま一つは検出部の容積が小さいことである。前
者はあらゆる計器に必要な要素であるが、後者は流液系
の場合に特に請求される要素で、高速液体クロマトグラ
フのように極めて鋭敏な分離帯が得られる場合には、こ
れを鈍化させないで測定するために著しく小さい容積(
20μ)以下)でなければならない。上述のキラシンジ
ャー型検出装置では、後で詳述するように測定電極、対
照電極、補助電極など総ての電極が被測定液の流路に沿
って配置されているので測定vL極の面積を大きくして
!極感度を上げながら、流路を薄層にして容積を小さく
することが。
Now, two characteristics are required of a detection device for a substance separated in a diluted liquid such as a high performance liquid chromatograph effluent. One is that the detection chamber is accurate and sensitive, and the other is that the volume of the detection section is small. The former is a necessary element for all instruments, but the latter is especially required for flow-through systems, such as in high-performance liquid chromatographs, where extremely sharp separation bands can be obtained, so that they do not dull them. A significantly smaller volume to measure in (
(20μ) or less). In the above-mentioned Kirasinger type detection device, all electrodes such as the measurement electrode, reference electrode, and auxiliary electrode are arranged along the flow path of the liquid to be measured, as will be explained in detail later. Make it bigger! It is possible to reduce the volume by making the flow path thinner while increasing the sensitivity.

不可能であった。本発明は、この問題を解決するために
多孔質材質の平板と測定電極とを対面させ、前者の裏側
に対照!極や補助電極を置くという構成をとることで、
大面積で薄層の検出部を形成させて、高感度でしかも容
積の小さい1[極装置の製この装置は第1図に示されて
いるように測定電極部a、ヌベーサ一部b%電解液溜部
Cの三部よリナル。aは測定を極(1)を装着したプラ
スチック板、0はプラスチック板で多孔質板電解液溜め
、対照電極、補助Kmなどをその内部に収めたもの、b
(即ち(5))は上記aおよびCの間に挿入されるスペ
ーサーで、中央をくり抜いた極薄プラスチックフィルム
である。使用時には6本のネジによって…11定電極電
極、スペーサ一部す、@解液溜部Cの三者が密着して組
立てられるが、この図では理解の便宜上a、b、cの間
を離した形で示しである。
It was impossible. In order to solve this problem, the present invention places a flat plate made of porous material and a measurement electrode facing each other, and contrasts the back side of the former. By adopting a configuration in which poles and auxiliary electrodes are placed,
Manufacture of a high-sensitivity, yet small-volume 1[electrode] device by forming a thin-layer detection portion over a large area.As shown in Figure 1, this device consists of a measuring electrode part a, a nuvesa part b, and a %electrode. Rinal from the third part of liquid reservoir C. a is a plastic plate equipped with the measurement electrode (1), 0 is a plastic plate with a porous plate electrolyte reservoir, reference electrode, auxiliary Km, etc. stored inside it, b
(That is, (5)) is a spacer inserted between a and C above, and is an extremely thin plastic film with a hollowed out center. When in use, the 11 constant electrode, part of the spacer, and solution reservoir part C are assembled in close contact with each other using six screws, but in this figure, a, b, and c are separated for ease of understanding. This is shown in the form below.

第1図の(1)は平板状の測定!極で、被検出物質の種
類、濃度、分離の鋏敏度などに応じて1〇−ないし20
00−の面積を持たせる。その材質もグヲッシーカーボ
ンのような炭素板、白金や金のような貴金属板またはこ
れらに白金黒を電着したもの、ニッケル板、鉛板、貴金
属粉末を混合したプラスチック板、貴金属を蒸着または
電鍍したガフミ ス数またはセラにツク板など多種多様のものが用いられ
る。これらのIII定を極はいずれもアドレナリンのよ
うなフェノール化合物、ヒスタミンのようなアミン類、
各種のアミノ酸類、糖類、酸素、過酸化水素、アスコル
ビン酸、金属イオンなど極めて多種類の酸化還元性物質
の検出に用いられるが、反応性が物質ごとにかなり異っ
ているので、被検出物質の性質によって電極の材質を選
択することが望ましい。測定電極には対照電極を基準と
して一定の電位を加えて被検出物質と反応させるが、電
位を高くして酸化反応によって検出することもあるし、
迎に電位を低くして還元反応を行わ正な値を選ぶ必要が
ある。例えば医学的に重要なホルモンであるカテコール
アミン類(アドレナリン、)μアドレナリン、ドーパミ
ンなど)の検出では、炭素電極を用いたときには、PH
2附近では十〇、8ボ/I/)、PH5附近では+0.
6ボルト附近の加醒圧(対Ag / AσC1)が適当
で、これより高いと残余電流が急激に増加し、低いと検
出反応が普しく低下し、いずれも検出精度が悪くなる。
(1) in Figure 1 is a measurement of a flat plate! 10-20 depending on the type of substance to be detected, concentration, sensitivity of separation scissors, etc.
It has an area of 00-. Its materials include carbon plates such as Guoshi Carbon, precious metal plates such as platinum and gold or platinum black electrodeposited on them, nickel plates, lead plates, plastic plates mixed with precious metal powder, vapor-deposited precious metals or A wide variety of materials are used, including electrified Gafmis numbers or ceramic boards. These three extremes are all phenolic compounds such as adrenaline, amines such as histamine,
It is used to detect an extremely wide variety of redox substances such as various amino acids, sugars, oxygen, hydrogen peroxide, ascorbic acid, and metal ions. It is desirable to select the electrode material depending on the properties of the electrode. A constant potential is applied to the measurement electrode with reference to the reference electrode to cause it to react with the substance to be detected, but sometimes the potential is raised to detect it through an oxidation reaction.
It is necessary to lower the potential to perform a reduction reaction and select a positive value. For example, when detecting catecholamines (adrenaline, μ-adrenaline, dopamine, etc.), which are medically important hormones, when carbon electrodes are used, PH
10, 8 Bo/I/) around 2, +0 around PH5.
A rising pressure of around 6 volts (vs. Ag/AσC1) is appropriate; if it is higher than this, the residual current will increase rapidly, and if it is lower, the detection reaction will generally decrease, and in both cases the detection accuracy will deteriorate.

第1図の(2)は対照電極で、普通飽和または1し M kcl中に浸にた大容量のAg / AgC1電極
が用いられる。(3)は親水性多孔質材質であるが、極
めて緻密(即ち通過孔が極めて細い)で実質的には東の
流通性が無いが、多量の電解質溶液を含み、しかもイオ
ンの移動が容易で、十分な導電性をもつことが必要であ
る。この様な材質には多種多様のものがあるが、最も良
好であったのは、孔径約10nm、孔率的60%のボア
ーガラスで、これは約5m1Bの犀さのとき、0.I 
M NaC!1中で電解分析に要求される値の100倍
以上の導電性をもつが、液の通過は1気圧以上の加圧下
でもほとんど認められない。このほかにも、極めて緻密
な多孔性陶器叡、著しく微細な半熔融ガラス粉也(ジン
タートガラ7)、緻密な硬質スポンジ状親水性プラスチ
ック数などが使用できる。また、十分に緻密でないため
に液の流通性のあるときには寒天やアクリルアミドなど
を浸み込ませてからゲル化して用いると有効である。本
多孔性材質の作用電極に対面する面はブヲスナック支持
機(6)と共に精密に研磨された平面で、スペーサー(
5)によって極めて短距離を隔てて測定電極(1)と対
面し、この間隙を被測定液が定速で通過するようになっ
ている。スペーサー(5)には10〜1002μmのテ
フロン、ポリプロピレン、ポリカーボネートなどのプラ
スチックフィルムが用いられる。なお、上記の多孔質板
(3)の裏面は電解液(4)に接している。また、同様
の多孔質材料は対照電極(2)と電解液(4)の電気的
導通のためにも用いられているが、この材質は@紀の測
定電極に対面している多孔質材料よりも導電性の良いも
のが望ましい。前記の電解液(4)は希薄な塩類溶液で
あれば何でもよいが、普通被測定用流通液と同−塩組成
の液を貯溜し密閉させておくか、または測定の終った流
通液を注入管(9)および流出管αqを用いて通過させ
る。
Figure 1 (2) is the control electrode, which is usually a high volume Ag/AgCl electrode saturated or immersed in 1 M kCl. (3) is a hydrophilic porous material, which is extremely dense (that is, the passage pores are extremely thin) and has virtually no flowability, but it contains a large amount of electrolyte solution and allows easy movement of ions. , it is necessary to have sufficient conductivity. There are a wide variety of such materials, but the best one is a bore glass with a pore diameter of about 10 nm and a porosity of 60%, which has a porosity of about 0.5 m at a size of about 5 m1B. I
MNaC! Although it has an electrical conductivity of more than 100 times the value required for electrolytic analysis in No. 1, almost no liquid can pass through it even under pressures of 1 atmosphere or more. In addition, extremely dense porous ceramics, extremely fine semi-molten glass powder (Sintert Gala 7), dense hard sponge-like hydrophilic plastics, etc. can be used. In addition, if the material is not dense enough so that liquid can flow through it, it is effective to impregnate it with agar, acrylamide, etc. and then gel it. The surface of this porous material facing the working electrode is a precisely polished flat surface along with the Buwosnack supporter (6), and the spacer (
5), it faces the measurement electrode (1) across a very short distance, and the liquid to be measured passes through this gap at a constant speed. For the spacer (5), a plastic film of 10 to 1002 μm made of Teflon, polypropylene, polycarbonate, or the like is used. Note that the back surface of the porous plate (3) is in contact with the electrolytic solution (4). A similar porous material is also used for electrical continuity between the reference electrode (2) and the electrolyte (4), but this material is better than the porous material facing the measurement electrode of @ period. It is also desirable to have good conductivity. The electrolytic solution (4) may be any dilute salt solution, but usually a solution with the same salt composition as the circulating fluid to be measured is stored and sealed, or the circulating fluid that has been measured is injected. Pass through using pipe (9) and outflow pipe αq.

第1図の(6)はそれぞれ測定電極部(a部)や電解液
溜部(0部)を保持するプラスチック材で、アクリル樹
脂、ポリカーボネイト樹脂、ダイフロンなどが用いられ
る。a部では中央に測定電極(1)を固定し、その上下
両端附近にそれぞれ被測定液流入管(7)および被測定
液流出管(8)が挿入されている。これらの管には普通
内径0.2鯵外径1.51Bのテフロンチューブを用い
、その外面をエツチングしてからエポキシ樹脂で固定す
る。0部もX5部と同様のプラスチック材が用いられ、
多孔性材質也(3)、電解液流入管(9)および電解液
流出管QO(後述)のプラスチック支持板(6)への固
定にはエポキシ樹脂が、また対照電極(2)の固定には
シリコン樹脂が用いられる。なお、上記a部および0部
の互に対面する部分は全面が平面になる様に精密に加工
されている。さて第1図では既述のように電極のネジに
よって密着固定される様になっている。
(6) in FIG. 1 is a plastic material that holds the measurement electrode part (part a) and the electrolyte reservoir part (part 0), and acrylic resin, polycarbonate resin, Diflon, etc. are used. In part a, a measuring electrode (1) is fixed at the center, and a liquid to be measured inflow pipe (7) and a liquid to be measured outflow pipe (8) are inserted near the upper and lower ends, respectively. These tubes are usually Teflon tubes with an inner diameter of 0.2 mm and an outer diameter of 1.51 mm, the outer surface of which is etched and then fixed with epoxy resin. The same plastic material as the X5 part is used for the 0 part,
Epoxy resin is used to fix the porous material (3), electrolyte inflow pipe (9) and electrolyte outflow pipe QO (described later) to the plastic support plate (6), and epoxy resin is used to fix the reference electrode (2). Silicone resin is used. Note that the portions a and 0 that face each other are precisely machined so that the entire surface is flat. Now, in FIG. 1, as described above, the electrodes are tightly fixed by screws.

これらのネジ孔は第1図のa部で示されているが、これ
らの孔はこの図の断面には存在せず、その向う側と手前
とに2本づつ合計6本があるので、その位置を点線で示
しである。
These screw holes are shown in part a of Figure 1, but these holes do not exist in the cross section of this figure, and there are six in total, two on the opposite side and two on the front side, so their positions cannot be determined. is shown by the dotted line.

上記の様にして組立てた装置を2極式回路(後述)で測
定するときには測定電極(1)と対照電fMT2)との
間に必要な電位を加えて使用すればよいが、三極式(後
述)で用いるときにはこのほかに補助′l[極が必要と
なる。このためには第1図の流出管Ql 全白金、ステ
ンレスなどの安定な金属で造ってこれを補助二極として
用いても良いし、また、別に白金線の様なものを電解液
溜めに挿入して用いても良い。このときの電気系との接
続方法は以下に説明する第2図IB+に示されている。
When measuring with a two-electrode circuit (described later) using the device assembled as described above, it is sufficient to apply a necessary potential between the measurement electrode (1) and the reference voltage fMT2), but a three-electrode circuit ( (described later), an auxiliary pole is required in addition to this. For this purpose, the outflow pipe Ql shown in Figure 1 can be made of stable metal such as all-platinum or stainless steel and used as an auxiliary pole, or a separate platinum wire or the like can be inserted into the electrolyte reservoir. It may also be used as The method of connection with the electrical system at this time is shown in FIG. 2 IB+, which will be explained below.

第2図IAIおよびIB)は本発明の電極装置に用いる
電気系の概要である。この図では測定電極の参照′#L
極に対する電位は+0.7ボルトになるようにしである
が、これはカテコールアミン類をPH8,5附近で検出
する場合についての値であって、この電位は被検出物質
の種類や液のP[(によって適当な値に変更しなければ
ならない。第2図IA)の二極式では、測定電極と多孔
質液絡(第1図の(3)に相当)の間の間隙を被測定試
料液が流れ、その酸化還元反応(カテコールアミンでは
酸化)によって生じた電解電流は測定を極(1)から多
孔質液絡(3)を経て参照電極(2)の方向へと流れる
ので、この電流を増巾して記録する。第21ans)の
三極式では測定電極(1)の電位が対照電極(2)に対
して一定値に保れたる点は二極式と同様であるが、この
電位維持はオペアンプA′およびA1を通じて行われ、
試料の酸化還元による電解電流は参照電極(2)には流
れずに補助を極QQに流れる様になっている。このため
参照電極(2)の消耗が全くない、という利点を持つが
、オペアンプA′およびA#のノイズがa極電位に影響
して拡大されたノイズとなる欠点がある。特に本発明の
ように大面積の測定電極(作用室FM)を使用する系で
は、二極の容量因子も加わって、このオペアンプに由来
するノイズが著しく拡大されて測定精度が非常に悪くな
りがちである。これは回路部品の選択その他によってか
なりの水準まで改善できる可能性があるが、現段階では
、著しく欽敏な検出を行うためには、大容量の対照電極
を用いて二極式によって測定した方が良い結果を示して
いる。しかし、試料の濃度が高く精度を幾分下げても良
い場合には、三極式を用いる方が対照電極の消耗がない
ので有利である。
FIG. 2 (IAI and IB) is an overview of the electrical system used in the electrode device of the present invention. In this figure, reference for the measuring electrode '#L
The potential with respect to the electrode is set to +0.7 volts, but this is a value for detecting catecholamines at a pH of around 8.5, and this potential depends on the type of substance to be detected and the P[( In the bipolar system shown in Figure 2 IA), the sample liquid to be measured fills the gap between the measurement electrode and the porous liquid junction (corresponding to (3) in Figure 1). The electrolytic current generated by the redox reaction (oxidation for catecholamines) flows from the measurement electrode (1) through the porous liquid junction (3) to the reference electrode (2), so this current is amplified. and record it. The three-electrode type in 21st ans) is similar to the two-electrode type in that the potential of the measuring electrode (1) can be maintained at a constant value with respect to the reference electrode (2), but this potential maintenance is done by the operational amplifiers A' and A1. carried out through
Electrolytic current due to oxidation-reduction of the sample does not flow to the reference electrode (2) but instead flows to the auxiliary electrode QQ. Therefore, there is an advantage that the reference electrode (2) is not consumed at all, but there is a disadvantage that the noise of the operational amplifiers A' and A# affects the a-electrode potential and becomes amplified noise. Particularly in a system that uses a large-area measurement electrode (action chamber FM) as in the present invention, the noise originating from this operational amplifier is significantly amplified due to the addition of the two-pole capacitance factor, and measurement accuracy tends to be extremely poor. It is. It is possible that this can be improved to a considerable level by selecting circuit components and other factors, but at this stage, in order to perform extremely rapid detection, it is recommended to measure using a bipolar method using a large-capacity reference electrode. shows good results. However, when the concentration of the sample is high and the accuracy may be lowered somewhat, it is advantageous to use a triode system because the reference electrode is not consumed.

第8図IA)およびIB+はそれぞれ従来の電極装置と
の基本的構成を示す断面図であるが、ここでは測定1極
(1)、対照を極12’)、補助電極Oqの王者が同−
流路上に配置されている。この構成をとるときには、電
極面上の流量を小さくするために測定電極(1)とこれ
に対面する壁面(プラスチック)との間隙を著しく薄く
すると、液の電電抵抗が増加して被測定液S内に大きな
電位勾配が生じる。この結果、正常な電極反応が行われ
るのは測定電極(1)の対照電極(2)側の周辺部のみ
となって、測定電極面の大部分は反応を行わないか、ま
たは所定の条件とは異なった電位でのiii反応を行う
ことになる。
FIG. 8 IA) and IB+ are cross-sectional views showing the basic configuration of conventional electrode devices, respectively.
placed on the flow path. When adopting this configuration, if the gap between the measuring electrode (1) and the wall (plastic) facing it is made extremely thin in order to reduce the flow rate on the electrode surface, the electrical resistance of the liquid increases and the measured liquid S A large potential gradient occurs within the As a result, a normal electrode reaction occurs only at the periphery of the measurement electrode (1) on the reference electrode (2) side, and most of the measurement electrode surface does not react or does not react under the specified conditions. will carry out reaction iii at different potentials.

第8図+B)は本発明の基本構成を示す断面図であるが
、この場合には測定電極(1)が均一な多孔質液絡(3
)と被測定液8の薄層を隔てて対面していて、対照電極
(2)や補助電極QGは多孔質液絡(3)の裏面の電解
液(4)内に配置されている。この電解液(4)内の導
電性は多孔質液絡(3)内に比して十分に大きいから、
測定電極(1)から、対照電極(2)または補助室m(
IGへの導電性は測定電極Oυの全面にわたって均一に
なる。このため測定二極面を如何に大きくしても、また
、被測定流通液の層を著しく薄くしても、その全面が均
一な電極反応を行うことになるので、醒極反応値を大き
くさせながらしかも測定面上の谷積金小さくする(即ち
、鋭敏なモニターを行う)ことがpJ能になる。この結
果、本発明の装置では、局速液体クロマトグラフで梓通
に用いられる流速(111t s+//分)でも、流動
液中の被測定物質の全線または大部分を電解し得る様な
Flt造にすることが出来るので、微量物質からも大き
な出力が得られ、41+定精度が著しく増大する。これ
に対して従来の゛電気化学検出装置では試料中の極く一
部のみを電解しているにすぎないので、測定端が小さく
精度が低くなる。なお、上述のように被測定物質の全一
または大部分を電解する分析法は、一定容器内の試料に
関しては、電量分析法と呼ばれて旧くより行われてきた
方決であるが、本発明のようなfk@液中の試料分析に
行われた例は見当たらない。
FIG. 8+B) is a sectional view showing the basic configuration of the present invention, in which the measuring electrode (1) is a uniform porous liquid junction (3).
) and facing each other across a thin layer of the liquid to be measured 8, and the control electrode (2) and auxiliary electrode QG are arranged in the electrolytic solution (4) on the back side of the porous liquid junction (3). Since the conductivity within this electrolyte (4) is sufficiently greater than that within the porous liquid junction (3),
From the measurement electrode (1) to the reference electrode (2) or the auxiliary chamber m (
The conductivity to the IG is uniform over the entire surface of the measurement electrode Oυ. For this reason, no matter how large the measuring bipolar surface is, or even if the layer of the flowing liquid to be measured is made extremely thin, the electrode reaction will be uniform over the entire surface, which will increase the polarization reaction value. However, reducing the valley deposit on the measurement surface (that is, performing sensitive monitoring) improves pJ performance. As a result, the device of the present invention has a Flt structure that can electrolyze all or most of the substance to be measured in the flowing liquid even at the flow rate (111 t s +//min) used in Azusa for local velocity liquid chromatographs. Therefore, a large output can be obtained even from a trace amount of substance, and the accuracy of 41+ is significantly increased. In contrast, conventional electrochemical detection devices electrolyze only a small portion of the sample, resulting in a small measurement end and low accuracy. As mentioned above, the analysis method in which all or most of the substance to be measured is electrolyzed is a method that has been used for a long time and is called coulometric analysis for samples in a certain container. There has been no example of analysis of a sample in an fk@ liquid as in the invention.

第4図1〜.■、IC)はカテコールアミン系ホルモン
の高速液体クロマトグラフ流出液に対して、本発明の電
気化学検出装置と、現在量もよく用いられている光学的
検出装置とを同時に併用して両者の精度を比較したもの
である。本実験ではIK径4襲長さ800mのシリカ系
スルホン型カチオン交換体(東洋ソーダ株式会社の製品
IEliX  510)のカラムに、4種のカテコール
アミン混合物をチャージし、0.2 M Na1lを含
むPH4Jの0.1 M蟻酸緩衝液を1d/−の流速で
流して展開し、流出液をまず光学検出装置(280nm
 吸収法)に通してから引き続いて本発明の!fi化学
検出装置に通してモニターした結果を2ペンレコーダで
記録した。
Figure 4 1-. ■, IC) uses the electrochemical detection device of the present invention and an optical detection device, which is currently commonly used, at the same time to improve the accuracy of the high-performance liquid chromatography effluent of catecholamine hormones. This is a comparison. In this experiment, a silica-based sulfone-type cation exchanger column (IEliX 510, a product of Toyo Soda Co., Ltd.) with an IK diameter and length of 800 m was charged with a mixture of four types of catecholamines, and a PH4J column containing 0.2 M Na1l was charged. 0.1 M formic acid buffer was flowed at a flow rate of 1 d/- for development, and the effluent was first analyzed with an optical detection device (280 nm
Absorption method) and then the method of the present invention! The results were monitored through a fi chemical detector and recorded with a two-pen recorder.

第4図IA)は流出液を光学検出装置でモニターしれ結
果であり、第4図IB)は同じ液を本発明の°電気化学
検出装置でモニターしたものである。第4図IAJのグ
ラフの縦軸は280 nm吸光度(単位A b s A
−ancθ:A)で、そのスケールは図の右肩附近に示
されている。横軸は時間であるが液の流出速度(i*/
si*)が一定であるので、これは同時に流出液量を示
し、その1分またはl−に相当するスケール巾は第4図
IBJの右下に示されている。この実験ではエピネフリ
ン(アドレナリン)、ノルエピネフリン(ノルアドレナ
リン)、ドーパ、ドーパミン4神のカテコールアミン’
Q100ピコモル(IO−’°七ル)づつ混合した試料
を用いた。グラフ内の工はこのカテコールアミン混合物
ヲチャージした位置時間を示し、■はカラムのボイド容
積り位置(吸着せずに素通りする物質の出る位置)を示
し、14 D 、 F、、 N 、 p はそれぞれド
ーパ、エピネフリン、ノルエピネフリン、ドーパミンの
流出ピークを示す。第41:、41A)かられかる様に
上記の量(IQOピコモル)のカテコールアミンでは、
光学θ11定によって得た分離曲線はかなり大きなノイ
ズを伴っている。
FIG. 4 IA) shows the results of monitoring the effluent with an optical detection device, and FIG. 4 IB) shows the same solution monitored with the electrochemical detection device of the present invention. The vertical axis of the graph in Figure 4 IAJ is the absorbance at 280 nm (unit: A b s A
-ancθ:A), the scale of which is shown near the right shoulder of the figure. The horizontal axis is time, and the flow rate of the liquid (i*/
Since si*) is constant, it also indicates the volume of effluent, the scale width of which corresponds to 1 minute or 1- is shown in the lower right corner of FIG. 4 IBJ. In this experiment, the four catecholamines 'epinephrine (adrenaline), norepinephrine (noradrenaline), dopa, and dopamine'
A sample was used in which 100 pmol (IO-'°7) of Q was mixed. 14 in the graph indicates the position time when this catecholamine mixture was charged, ■ indicates the void volume position of the column (position where substances that pass through without being adsorbed appear), and 14 D, F, , N, and p are the dopa , showing the efflux peaks of epinephrine, norepinephrine, and dopamine. 41:, 41A), in the above amount (IQO picomole) of catecholamine,
The separation curve obtained by optical θ11 constant is accompanied by quite large noise.

第4111B)は上述のクロマトグラフ流出液を本発明
の電気検出装置でモニターした結果であるが、この場合
の縦軸は電解電流量を示し、IQOnA当りの巾が図の
右肩に示されている。横軸やグラフのI 、V、D、J
N、Pなどは第4図IAIの場合と同様である。この図
より明らかな様に本発明の検出装置貞による記録曲線に
は全くノイズが含まれておらず、極めて正確に検出パタ
ーンがモニターされている。
No. 4111B) is the result of monitoring the above-mentioned chromatographic effluent using the electrical detection device of the present invention, in which the vertical axis shows the amount of electrolytic current, and the width per IQOnA is shown on the right shoulder of the figure. There is. I, V, D, J on the horizontal axis or graph
N, P, etc. are the same as in the case of IAI in FIG. 4. As is clear from this figure, the curve recorded by the detection device of the present invention contains no noise at all, and the detection pattern is monitored extremely accurately.

第4図+C)は、上述の第4図IA)およびIB)の場
合のt/loO量のカテコールアミン混合試料、すなわ
ち各成分が1ビコモ)v(1011モル)づつ含まれた
試料をチャージして本発明の電気化学検出装置でモニタ
ーした結果を示す。この様に微量であっても全くノイズ
を含まずに正確に検出されていることがわかる。なお、
この場合も本発明の電気化学的検出装置の前に光学検出
装置を置いて同時モニターを行ったが、ノイズのみが記
録され、試料に由来するピークが全く観察されなかった
ので、図示することを省略した。また、この場合の更に
Figure 4+C) is a sample of the catecholamine mixture of t/loO amount in the case of Figure 4 IA) and IB) described above, that is, a sample containing 1 bicomo)v (1011 mol) of each component. The results of monitoring with the electrochemical detection device of the present invention are shown. It can be seen that even a very small amount is detected accurately without any noise. In addition,
In this case as well, an optical detection device was placed in front of the electrochemical detection device of the present invention for simultaneous monitoring, but only noise was recorded and no peaks derived from the sample were observed. Omitted. Also, further in this case.

10分ノt OO,tビコモlv(10−’ モA/)
づつのカテコールアミン混合試料をチャージした場合で
も、本発明の検出装置を用いるときには、僅かにノイズ
が認められるだけで十分な精度のモニターが可能であっ
た。
10 minutes OO, t bicomo lv (10-'moA/)
Even when different catecholamine mixed samples were charged, monitoring with sufficient accuracy was possible with only slight noise observed when using the detection device of the present invention.

以上の実験結果及び他の多数の実験結果から、本発明に
よる電気化学検出装置は、一般的な光学測定装置のt、
o o o倍以上、従来の電電化学装置の100倍以上
の精度を示すことが明らめになり、高速液体クロマトグ
ラフ流出液のような流液中の倣量酸化還元物質のモニタ
ーに極めて有効であることが確認された。
From the above experimental results and many other experimental results, the electrochemical detection device according to the present invention has the following characteristics:
It has been revealed that the accuracy is more than 100 times higher than that of conventional electrochemical devices, making it extremely effective for monitoring the amount of redox substances in flowing liquids such as high-performance liquid chromatography effluents. It was confirmed that

【図面の簡単な説明】[Brief explanation of the drawing]

渠1図は本発明の装置を示すVfr而図面第2図は本@
明の装置べに適用する1イ気系の概要を示すブロック図
、第3図IAI及びIBIばそれぞれ従来の装置及び本
発明の装置を示す模式図(両者の差異を示す図)、第4
[グIAId被泪11定液を従来の装置でモニターした
結果を表わす図、第4図IBIは第4図+AlO場の1
710 Q mOカテコールアミン混合試料を本発明の
装置でモニターした結果を表わす図である。 (1)・・・411j定電極、(2)・・・対照電極、
(3)・・・多孔質材質の平也、(5)・・・スペーサ
ー、(6)・・・プラスチック支持板、(7)・・・被
ギIj定液流込管、(8)・・・m測定液流出管、(9
)・・・ボ解液流入管、OQ・・・電解液流出管(兼補
助電極)。 代理人 弁理士  東 島 隆 治 第1図 2図(A) 2図(B)
Figure 1 of the drain shows the device of the present invention, while Figure 2 shows the device of the present invention.
IAI and IBI are schematic diagrams showing the conventional device and the device of the present invention, respectively (a diagram showing the differences between the two), and FIG.
[Figure 4 shows the results of monitoring IAId 11 constant solution with a conventional device, Figure 4 IBI is Figure 4 + AlO field 1
FIG. 3 is a diagram showing the results of monitoring a 710 Q mO catecholamine mixed sample using the apparatus of the present invention. (1)...411j constant electrode, (2)...control electrode,
(3)...Hiraya made of porous material, (5)...Spacer, (6)...Plastic support plate, (7)...Given Ij constant liquid inlet pipe, (8)... ...m measurement liquid outflow pipe, (9
)... Bolyte solution inflow pipe, OQ... Electrolyte solution outflow pipe (also serves as auxiliary electrode). Agent Patent Attorney Takaharu Higashishima Figure 1 Figure 2 (A) Figure 2 (B)

Claims (6)

【特許請求の範囲】[Claims] (1)被測定液の流路、前記流路の一つの壁面を構成す
るように設けられた平面状の反応面を有する作用電極、
前記作用電極の反応面の何れの方向の巾よりも十分に短
かい距離をもって該反応面と平行に近接対向して設けら
れ前記流路の他の一つの壁面を構成する緻密且つ含水性
で被測定液を流通させないがイオンの導通性をもつ多孔
質材質の平板、前記多孔質材質の平板の前記作用tFM
に対向する面とは反対側の面即ち裏面に接して設けられ
該裏面を一つの壁面とする電解液溜め、及び前記電解液
溜め中の電解液に接触するように設けられた対l!@電
極、を具備したことを特徴とする流液中の酸化・還元物
質検出用の電気化学検出装置。
(1) A flow path for a liquid to be measured, a working electrode having a planar reaction surface provided so as to constitute one wall of the flow path;
A dense, water-containing, and water-containing layer is provided parallel to and close to the reaction surface of the working electrode at a distance sufficiently shorter than the width of the reaction surface in either direction, and constitutes another wall surface of the flow path. a flat plate made of a porous material that does not allow the measurement liquid to flow through it but has ion conductivity, and the action tFM of the flat plate made of the porous material;
an electrolytic solution reservoir provided in contact with the surface opposite to the surface facing the electrolytic solution reservoir, that is, the back surface, and having the back surface as one wall surface; and a pair l! provided so as to be in contact with the electrolytic solution in the electrolytic solution reservoir. An electrochemical detection device for detecting oxidizing and reducing substances in a flowing liquid, characterized by comprising an @electrode.
(2)@起流路が高速液体クロマトグラフのカラム出口
に接続された流路であることを特徴とする特許請求の範
囲第(1)項記載の電気化学演出装置。
(2) The electrochemical production device according to claim (1), wherein the flow path is a flow path connected to a column outlet of a high performance liquid chromatograph.
(3)  前記対向する作用電極の反応面と、多孔質材
質の平板との距離が0.O1〜0.2(+111)であ
シ且っ前記反応面の面積が10〜2000(−)である
特許請求の範囲第(1)項または第(2)項記載の電気
化学検出装置。
(3) The distance between the reaction surfaces of the opposing working electrodes and the flat plate made of porous material is 0. The electrochemical detection device according to claim 1 or 2, wherein the reaction surface is O1 to 0.2 (+111) and has an area of 10 to 2000 (-).
(4)被測定液の流路、前記流路の一つの壁面を構成す
るように設けられた平面状の反応面を有する作用電極、
前記作用電極の反応面の何れの方向の巾よりも十分に短
かい距離をもって該反応面と平行に近接対向して設けら
れ前記流路の他の一つの壁面を構成する緻密且つ含水性
で測定液を流通させないがイオンの導通性をもつ多孔質
材質の平板、前記多孔質材質の平板の前記作用電極に対
向する面とは反対側の面即ち裏面に接して設けられ該裏
面を一つの壁面とする電解液溜め、前記電解液溜りに設
けられた補助電極、を具備したことを特徴とする流液中
の酸化・遺元物質検出用の電気化学検出装置。
(4) a flow path for a liquid to be measured, a working electrode having a planar reaction surface provided to constitute one wall of the flow path;
Measurement is performed on a dense and water-containing layer that is provided parallel to the reaction surface of the working electrode, close to and opposite to the reaction surface at a distance sufficiently shorter than the width of the reaction surface in either direction, and that constitutes another wall surface of the flow channel. A flat plate made of a porous material that does not allow liquid to flow through it but has ion conductivity, and is provided in contact with the surface of the flat plate of the porous material opposite to the surface facing the working electrode, that is, the back surface, and the back surface is one wall surface. 1. An electrochemical detection device for detecting oxidation/elementary substances in a flowing liquid, comprising: an electrolyte reservoir; and an auxiliary electrode provided in the electrolyte reservoir.
(5)@記流路が高速液体クロマトグラフのカラム出口
に接続された流路であることを特徴とする特許請求の範
囲第(真跡記載の電気化学検出装置。
(5) An electrochemical detection device according to claim 1, wherein the flow path is a flow path connected to a column outlet of a high-performance liquid chromatograph.
(6)前記作用電極の反応面と、これに対向する前記多
孔質材質の平板との距離が0.O1〜0.2(gl)で
あり且つ前記反応面の面積が10〜gooo(−)であ
る特許請求の範囲第(4)項または第(5)項記載の電
気化学検出装置。
(6) The distance between the reaction surface of the working electrode and the flat plate of the porous material facing it is 0. 1 to 0.2 (gl), and the area of the reaction surface is 10 to gooo(-), the electrochemical detection device according to claim 4 or claim 5.
JP57028000A 1982-02-22 1982-02-22 Electrochemical detector Granted JPS58144739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028000A JPS58144739A (en) 1982-02-22 1982-02-22 Electrochemical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028000A JPS58144739A (en) 1982-02-22 1982-02-22 Electrochemical detector

Publications (2)

Publication Number Publication Date
JPS58144739A true JPS58144739A (en) 1983-08-29
JPH0222902B2 JPH0222902B2 (en) 1990-05-22

Family

ID=12236536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028000A Granted JPS58144739A (en) 1982-02-22 1982-02-22 Electrochemical detector

Country Status (1)

Country Link
JP (1) JPS58144739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118256U (en) * 1989-03-13 1990-09-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118256U (en) * 1989-03-13 1990-09-21

Also Published As

Publication number Publication date
JPH0222902B2 (en) 1990-05-22

Similar Documents

Publication Publication Date Title
Kissinger et al. An electrochemical detector for liquid chromatography with picogram sensitivity
Wang et al. Thin-layer electrochemical detector with a glassy carbon electrode coated with a base-hydrolyzed cellulosic film
Blaedel et al. Flow electrolysis on a reticulated vitreous carbon electrode
US5131999A (en) Voltammetric detector for flow analysis
Wallingford et al. Separation of serotonin from catechols by capillary zone electrophoresis with electrochemical detection
Štulík et al. Electrochemical detection techniques in high-performance liquid chromatography
Fang et al. Determination of polyhydroxy antibiotics by capillary zone electrophoresis with amperometric detection at a nickel electrode
Blaedel et al. Submicromolar concentration measurements with tubular electrodes
Brett et al. Adsorptive stripping voltammetry of cobalt and nickel in flow systems at wall‐jet electrodes
Kappes et al. Potentiometric detection of inorganic anions and cations in capillary electrophoresis with coated-wire ion-selective electrodes
Polesello et al. Electrochemical detection in the capillary electrophoresis analysis of inorganic compounds
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
Blaedel et al. Study of the steady-state current at tubular electrodes in the micromolar concentration region
Stojanovic et al. Liquid chromatography-electrochemical detection of inorganic arsenic using a wall jet cell with conventional and microsized platinum disk electrodes
EP2534727A1 (en) Electrochemical detection cell for liquid chromatography system
Wang et al. Calixarene-coated amperometric detectors
Du et al. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips
US5160419A (en) Electrode for a coulometric type of electrochemical detector
Lindstrom et al. Evaluation of napp for the underpotential deposition of mercury on gold by flow injection coulometry
Blaedel et al. Rapid pulsed flow voltammetry
Ferslew et al. Capillary ion analysis of potassium concentrations in human vitreous humor
Cao et al. Nafion-coated bismuth film and nafion-coated mercury film electrodes for anodic stripping voltammetry combined on-line with ICP-mass spectrometry
JPS58144739A (en) Electrochemical detector
Hanekamp et al. Electrochemical detectors in flowing liquid systems: an assessment of their use
Matysik et al. Convection independent detection with voltammetric single microdisk electrodes