JPS5814461A - Battery - Google Patents

Battery

Info

Publication number
JPS5814461A
JPS5814461A JP56112436A JP11243681A JPS5814461A JP S5814461 A JPS5814461 A JP S5814461A JP 56112436 A JP56112436 A JP 56112436A JP 11243681 A JP11243681 A JP 11243681A JP S5814461 A JPS5814461 A JP S5814461A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
plated layer
fluorinated graphite
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112436A
Other languages
Japanese (ja)
Inventor
Ryoji Okazaki
良二 岡崎
Kenichi Morigaki
健一 森垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56112436A priority Critical patent/JPS5814461A/en
Publication of JPS5814461A publication Critical patent/JPS5814461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To decrease surface energy of the surface of a battery container comprising a battery case and a sealing plate to make difficult to get wet with an electrolyte and suppress electrolyte creepage and increase electrolyte leakage resistance by forming a plated layer obtained by codeposing solid fluorinated graphite in the part connecting with a gasket. CONSTITUTION:In a cross section figure of a button type silver oxide battery, 1 shows a stainless steel sealing plate which has nickel plated layer 1' obtained by codepositing fluorinated graphite on its outer surface and tin plated layer 1' on its inner surface. 8 shows a battery case having nickel plated layer 8' obtained by codepositing fluorinated graphite in both surfaces of stainless steel. The nickel plated layer obtained by codepositing fluorinated graphite has electric conductivity, small surface resistance, water repellent property of fluorinated graphite, and property difficult to get wet with an electrolyte compared with the surface of usual nickel plated layer. In the case of electrolyte leakage from the sealing part, codeposited plating applied in at least one part of the outer surface of the battery container is more effective to prevent extending of wetting by electrolyte creepage.

Description

【発明の詳細な説明】 本発明は電池の耐漏液性の向上を図ることを目的とした
ものである。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to improve the leakage resistance of a battery.

電池の密封方法として一般的にはガスケツトラ介して電
池ケースと封口板とを接合する、いわゆるクリンプ方式
が採られており、その中でもガスケツトラはじめ各種部
品の形状寸法、材質、封口条件、シーラントの選択など
によって、より信頼性の高い密封を行うための方法が種
々検討されている。一方、最近では電子ウォッチ、電卓
をはじめ長期の使用に耐える耐漏液性、貯蔵性にすぐれ
た電池の要望が特に強く、これらに対して十分に対応す
るため、電池の密封技術の向上にょる耐漏液、長期信頼
性の向上に一層の努力が必要とさnている。
Generally speaking, the so-called crimp method is used as a battery sealing method, in which the battery case and sealing plate are joined through a gasket tracker. Among these, the shape and dimensions of the gasket tracker and various other parts, materials, sealing conditions, sealant selection, etc. Various methods have been studied to achieve more reliable sealing. On the other hand, recently there has been a particularly strong demand for batteries with excellent leakage resistance and storage stability that can withstand long-term use, including electronic watches and calculators. Further efforts are needed to improve the long-term reliability of liquids.

特に水酸化カリウム、水酸化ナトリウムなどのアルカリ
系電解液を用いる酸化銀電池、水銀電池。
In particular, silver oxide batteries and mercury batteries that use alkaline electrolytes such as potassium hydroxide and sodium hydroxide.

アルカリマンガン電池に於いては電池容器の金属表面へ
の電解液のはい上り、いわゆるクリープ現象が大きいた
め、単に機械的な密封技術では耐漏液性に限界がある。
In alkaline manganese batteries, the leakage of the electrolyte onto the metal surface of the battery container, the so-called creep phenomenon, is significant, so there is a limit to leakage resistance with mere mechanical sealing technology.

またこの電解液のクリープ現象は電池容器に印加されて
いる電位にも大きく支配され、アルカリ系電解液の場合
、亜鉛の電位を有する負極側のはい上りが著しく、負極
側で漏液し易いっこnらの問題に対し、未だ決定的な解
決策がないのが現状である。
In addition, this electrolyte creep phenomenon is largely controlled by the potential applied to the battery container. In the case of alkaline electrolytes, the negative electrode side, which has a zinc potential, creeps up significantly, and the negative electrode side tends to leak. At present, there is still no definitive solution to these problems.

本発明は、電池ケースおよび封口板からなる電池容器表
面の表面エネルギーを小さくして電解液で濡れ難くし、
クリープ現象を抑制し、耐漏液性を向上させる手段を提
供するものである。
The present invention reduces the surface energy of the surface of a battery container consisting of a battery case and a sealing plate to make it difficult to wet with electrolyte,
This provides a means for suppressing the creep phenomenon and improving leakage resistance.

本発明は上記の問題を解決するために、電池容器のうち
、少なくともガスケットと接合する一部”分に固体状フ
ッ化黒鉛を共析させたメッキ層を設けることを特徴とす
るものである。
In order to solve the above problem, the present invention is characterized in that a plating layer in which solid fluorinated graphite is eutectoid is provided on at least a portion of the battery container that is connected to the gasket.

固体状フッ化黒鉛は非水電解液系電池の正極活物質とし
て用いられるほか、表面エネルギーが極めて小さいこと
がら撥水剤としても用いらn、熱的ツ化学的に安定で潤
滑性が良いので、潤滑剤としても使われぞいる。本発明
は、固体状フッ化黒鉛が化学的には酸、アルカリ、有機
溶媒等に安定な上、4oo℃〜600’Cの高温でも分
解せず、しかも表面エネルギーが小さく電解液に濡扛に
くいという性質テ有し、しかも後述するようにメッキ層
にフッ化黒鉛を共析させる方法が見出さnていることに
着目し、該メッキ層を電解液のクリープ防止を必要とす
る電池容器の表面の一部あるいは全部に形成させて、電
池の漏液防止手段として応用したものである。
Solid fluorinated graphite is used as a positive electrode active material in non-aqueous electrolyte batteries, and because it has extremely low surface energy, it is also used as a water repellent, and because it is thermally and chemically stable and has good lubricity. It is also used as a lubricant. In the present invention, solid fluorinated graphite is chemically stable to acids, alkalis, organic solvents, etc., does not decompose even at high temperatures of 40°C to 600'C, and has low surface energy and is difficult to wet with electrolyte. We focused on the fact that we have discovered a method of eutectoiding fluorinated graphite onto the plating layer, as described below, and applied the plating layer to the surface of the battery container that requires prevention of creep of the electrolyte. It is applied to a battery by forming it in part or in whole as a means for preventing liquid leakage in a battery.

フッ化黒鉛をニッケルメッキ層に共析させる方法として
、通常のニッケルワット浴中にフッ化黒鉛全けん濁ある
いは分散させて攪拌しながら電気メッキを行うが、フッ
化黒鉛に親水性と正電荷を与えるためカチオン系界面活
性剤を加える。
As a method for eutectoiding fluorinated graphite onto the nickel plating layer, electroplating is performed by suspending or dispersing the fluorinated graphite completely or dispersing it in a normal nickel-watt bath and stirring it. Add a cationic surfactant to give

被メツキ母材は電池容器に通常用いら【る鉄。The base material to be plated is iron, which is commonly used for battery containers.

ステンレススチールの場合、密着性の良好なメッキ層が
得らnる。この場合、例えば電流密度2〜8人膚程度で
メッキすnは約49/1以上のフッ化黒鉛の添加で3〜
6チの重量比率でニッケルメッキ層にフッ化黒鉛が共析
する。メッキ液中のフッ化黒鉛量が4 f/1未満の場
合は、メッキ層中のフッ化黒鉛は3%未゛満となる。
In the case of stainless steel, a plating layer with good adhesion can be obtained. In this case, for example, at a current density of 2 to 8 human skin, plating n is 3 to 3 with the addition of fluorinated graphite of about 49/1 or more.
Graphite fluoride is eutectoid on the nickel plating layer at a weight ratio of 6. When the amount of fluorinated graphite in the plating solution is less than 4 f/1, the fluorinated graphite in the plating layer is less than 3%.

このフッ化黒鉛を含むメッキ層はメッキ後常法により水
洗乾燥して異物を除去するのみでも良いが、特に表面に
残存している界面活性剤をより完全に除去するために、
温水や溶剤での超音波洗滌などの方法を併用することも
必要に応じて行うことができる。フッ゛化黒鉛を共析し
たニッケルメッキ層はニッケル本来の電気的導電性を有
し、表面抵抗もニッケルと殆んど変らない程度に小さく
、しかもフッ化黒鉛の有する撥水性を兼ね備え、通常の
ニッケルメッキ層の表面に較べて著しく電解液で濡nK
<いという性質を持っている。
After plating, the plating layer containing graphite fluoride can be simply washed and dried with water to remove foreign matter, but in particular, in order to more completely remove the surfactant remaining on the surface,
If necessary, methods such as ultrasonic cleaning with warm water or a solvent may be used in combination. The nickel plating layer with fluorinated graphite eutectoid has the electrical conductivity inherent to nickel, has a surface resistance that is almost as low as nickel, and also has the water repellency of fluorinated graphite, making it superior to ordinary nickel. Compared to the surface of the nickel plating layer, it is significantly wetter with the electrolyte.
<It has the characteristic of being ugly.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

図は本発明を適用したボタン形の酸化銀電池の断面図で
、図中1は外面にフッ化黒鉛を共析させたニッケルメッ
キ層1′、内面にスズメッキ層1′ヲ設けたステンレス
スチール製の封目板、2は氷化亜鉛粉末を加工成型した
負極、3はコツトンファイパー製の保液材、4はポリプ
ロピレンの発泡シート製セパレータ、6は酸化第1銀粉
末を加圧成型した正極、6はステンレススチール製の正
極リング、7はナイロン製ガスケット、8はステンレス
スチールの両面に、フッ化黒鉛量 ッケルメッキ層8′を設けた電池ケースである。
The figure is a cross-sectional view of a button-shaped silver oxide battery to which the present invention is applied. In the figure, 1 is made of stainless steel with a nickel plating layer 1' coated with graphite fluoride eutectoid on the outer surface and a tin plating layer 1' on the inner surface. 2 is a negative electrode made of frozen zinc powder, 3 is a liquid retaining material made of cotton fiber, 4 is a separator made of polypropylene foam sheet, and 6 is a positive electrode made of ferrous oxide powder that is pressure-molded. , 6 is a positive electrode ring made of stainless steel, 7 is a nylon gasket, and 8 is a battery case in which a graphite fluoride nickel plating layer 8' is provided on both sides of the stainless steel.

ニッケルメッキ層1′、8′はいづれも板状の原板にメ
ッキを施したのち、封口板1又社電池ケース8に加工し
たものであり、メッキ浴は硫酸ニッケル280 f/(
1,塩化ニラ’i ル45 f/l e硼酸4ot/1
に(C6F17SO2)fH(02H5)2R)”?−
の構造を持つカチオン性界面活性剤を100’M加え、
さらにフッ黒鉛のメッキ層中の重量比は4チであった。
The nickel plating layers 1' and 8' were plated on a plate-like original plate and then processed into a sealing plate 1 or a battery case 8, and the plating bath was nickel sulfate 280 f/(
1, chive chloride 45 f/l boric acid 4 ot/1
ni(C6F17SO2)fH(02H5)2R)"?-
Add 100'M of a cationic surfactant with the structure of
Furthermore, the weight ratio of fluorographite in the plating layer was 4.

電池に注入されている電解液はso%の水酸化カリウム
に酸化亜鉛を飽和に近く溶解させたもので、保液材3及
び負極2に主として含浸され、若干の遊離液が電池内に
存在している。
The electrolyte injected into the battery is a nearly saturated solution of zinc oxide in so% potassium hydroxide, and is mainly impregnated into the liquid retaining material 3 and the negative electrode 2, with some free liquid remaining in the battery. ing.

このような本発明の電池の効果を実験的に確認するため
、 (IL)従来例として、図に於ける各ニッケルメッ
キ層を通常のワット浴により5柿の電流密度で10μの
厚さに形成させたもの、(b)本発明品の第1の例とし
て図に示した通りのメッキ層を設けたも9、(C)本発
明品の第2の例として、封目板のニッケルメッキは図と
同じ共析メッキ、電池ケースには従来例と同じ通常のニ
ッケルメッキを両面に施したものを用いて直径11・6
朋、高さ6.4Bの構成の電池を試作した。なお(IL
)、 (b)、 (0)とも使用した部品の形状、封口
条件等メッキ層の相違以外は同一条件とした。
In order to experimentally confirm the effects of the battery of the present invention, (IL) As a conventional example, each nickel plating layer in the figure was formed to a thickness of 10 μm in a normal Watt bath at a current density of 5 persimmons. (b) As the first example of the product of the present invention, the plating layer as shown in the figure is provided9.(C) As the second example of the product of the present invention, the nickel plating of the sealing plate is The same eutectoid plating as shown in the figure is used, and the battery case has the same normal nickel plating as the conventional example on both sides, and the diameter is 11.6.
I made a prototype battery with a configuration of 6.4B in height. Furthermore (IL
), (b), and (0) were all under the same conditions except for differences in the shape of the parts used, the sealing conditions, and the plating layer.

各電池を46℃、相対湿度96チで100日間放置し、
漏液の状況を観察したところ次表の結果を得た。
Each battery was left at 46℃ and relative humidity of 96℃ for 100 days.
When we observed the leakage situation, we obtained the results shown in the table below.

この表で判るように本発明品はいづnも負極電位の印加
される電池容器、即ち、封口板側の漏液は皆無である。
As can be seen from this table, in all the products of the present invention, there was no leakage from the battery container to which the negative electrode potential was applied, that is, from the sealing plate side.

こnは共析メッキ層表面の電解液のクリープ現象が極め
て小さいことによる効果を立証しており、従来例と顕著
な差が見られる。又、電池ケース側は従来例でも比較的
漏液しにくいが、本発明量シでは電池ケース表面の共析
メッキ層の効果τ′より完全に漏液が防止されている。
This proves the effect of the extremely small creep phenomenon of the electrolytic solution on the surface of the eutectoid plating layer, and shows a remarkable difference from the conventional example. Further, although the battery case side is relatively difficult to leak even in the conventional example, in the case of the present invention, leakage is completely prevented due to the effect τ' of the eutectoid plating layer on the battery case surface.

以上の如く本発明の耐漏液効果は絶大であるが、実施の
形態は多様であり、実施例で上述した以外に、部品加工
後、共析メッキを必・要とする封口部分のみにメッキす
る方法、あるいは電池ケースの場合であ扛ば、内面のみ
と共析メッキする方法でも効果があジ、要するに電池容
器のうち少なくとも封口部でガスケットと接合している
面にメッキを施せばよく、これに加えて封口部から液漏
れのあった場合、容器表面に電解液がクリ−’yして濡
れ力玉拡がるのを防止する意味で電池容器の外表面の少
くとも一部に共析メッキを施せばより一層効果75;あ
る。
As described above, the leakage-proof effect of the present invention is tremendous, but there are various embodiments, and in addition to the above-mentioned examples, after the parts are processed, eutectoid plating may be applied only to the sealing parts that require eutectoid plating. In the case of battery cases, eutectoid plating only on the inner surface is also effective.In short, it is sufficient to plate at least the surface of the battery container that is connected to the gasket at the sealing part. In addition, in the event of leakage from the sealing part, eutectoid plating should be applied to at least a portion of the outer surface of the battery container to prevent the electrolyte from creeping onto the surface of the container and spreading wetting force. The more you apply it, the more effective it will be.

また、前例ではフッ化黒鉛の共析メッキについて説明し
たが、電池容器にはニッケル以外にも銅・スズあるいは
そ扛らの合金メッキを施す場合もちす、その代表例とし
てアルカリ系−次電池の封口板内面への銅やスズのメッ
キ、電池容器外表面への銅メッキがある。これらの場合
にも本城明の主旨に従ってフッ化黒鉛の共析メッキ層を
形成させて同様の効果があムこれらのメッキの処理方法
の代表例として、フッ化黒鉛共析銅メツキ全形成する場
合、ニッケルの場合と同じく、カチオン界面活性剤を通
常の硫酸銅メッキ浴に添加し、フッ化黒鉛を分散させた
メッキ浴中で電着できる。このメッキ層中のフッ化黒鉛
量もニッケルメッキの      □場合と同様に3〜
6チの共析が可能であり、表面o濡rtにくさも共析ニ
ッケルメッキの場合と大差ない。
In addition, in the previous example, eutectoid plating of graphite fluoride was explained, but in addition to nickel, there are also cases where battery containers are plated with copper, tin, or other alloys. There is copper or tin plating on the inner surface of the sealing plate, and copper plating on the outer surface of the battery container. In these cases, the same effect can be obtained by forming a eutectoid plating layer of graphite fluoride according to Akira Honjo's idea.As a typical example of the treatment method for these platings, a complete plating of graphite fluoride eutectoid copper plating is used. In this case, as in the case of nickel, a cationic surfactant can be added to a normal copper sulfate plating bath, and electrodeposition can be carried out in a plating bath in which graphite fluoride is dispersed. The amount of graphite fluoride in this plating layer is 3 to 3, as in the case of nickel plating.
Eutectoid nickel plating is possible, and the surface wetting resistance is not much different from that of eutectoid nickel plating.

また、前例ではアルカリ電解液系−次電池により説明し
たが、本発明はニッケルカドミウム電池やリチウムを負
極とする非水電解液系電池、さらには酸性電解液を用い
る鉛蓄電池などにI適用しても効果がある。
Furthermore, although the previous example has been explained using alkaline electrolyte-based batteries, the present invention can be applied to nickel-cadmium batteries, non-aqueous electrolyte-based batteries with lithium as the negative electrode, and even lead-acid batteries that use acidic electrolytes. is also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例における電池の断面図である。 1・・・・・・封目板、1′・・・・・・フッ化黒鉛を
共析させたニッケルメッキ層、1′・・・・・・スズメ
ッキ層、2・・・・・・負極、4・・・・・・セパレー
タ、6・・・・・・正極、8・・・・・・電池ケース、
8′・・・・・・フッ化黒鉛を共析させたニッケルメッ
キ層。
The figure is a sectional view of a battery in an embodiment of the present invention. 1... Sealing plate, 1'... Nickel plating layer eutectoided with graphite fluoride, 1'... Tin plating layer, 2... Negative electrode , 4...Separator, 6...Positive electrode, 8...Battery case,
8'...Nickel plating layer with fluorinated graphite eutectoid.

Claims (1)

【特許請求の範囲】[Claims] 電池容器のうち、少なくともガスケットと接合する表面
にフッ化黒鉛を共析させたメッキ層を設けたことを特徴
とする電池。
A battery characterized in that a plating layer in which fluorinated graphite is eutectoid is provided on at least a surface of the battery container that is bonded to a gasket.
JP56112436A 1981-07-17 1981-07-17 Battery Pending JPS5814461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112436A JPS5814461A (en) 1981-07-17 1981-07-17 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112436A JPS5814461A (en) 1981-07-17 1981-07-17 Battery

Publications (1)

Publication Number Publication Date
JPS5814461A true JPS5814461A (en) 1983-01-27

Family

ID=14586580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112436A Pending JPS5814461A (en) 1981-07-17 1981-07-17 Battery

Country Status (1)

Country Link
JP (1) JPS5814461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411818A (en) * 1993-10-18 1995-05-02 Westinghouse Electric Corporation Perimeter seal on bipolar walls for use in high temperature molten electrolyte batteries
WO2000005437A1 (en) * 1998-07-24 2000-02-03 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery case, method of production thereof, battery case formed by the steel sheet and battery using the case
US20160164052A1 (en) * 2014-12-04 2016-06-09 Samsung Sdi Co., Ltd. Rechargeable battery having case

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411818A (en) * 1993-10-18 1995-05-02 Westinghouse Electric Corporation Perimeter seal on bipolar walls for use in high temperature molten electrolyte batteries
WO2000005437A1 (en) * 1998-07-24 2000-02-03 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery case, method of production thereof, battery case formed by the steel sheet and battery using the case
US6692869B1 (en) * 1998-07-24 2004-02-17 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery case, method of production thereof, battery case formed by the steel sheet and battery using the case
KR100591502B1 (en) * 1998-07-24 2006-06-19 도요 고한 가부시키가이샤 Surface-treated steel sheet for battery case, method of production thereof, battery case formed by the steel sheet and battery using the case
US20160164052A1 (en) * 2014-12-04 2016-06-09 Samsung Sdi Co., Ltd. Rechargeable battery having case
US10957885B2 (en) 2014-12-04 2021-03-23 Samsung Sdi Co., Ltd. Rechargeable battery having case

Similar Documents

Publication Publication Date Title
JPS5848361A (en) Alkaline dry cell
JPS5814461A (en) Battery
JP2743416B2 (en) Zinc plate for rechargeable batteries
US2810006A (en) Electric current producing cell
US2981782A (en) Terminal-depolarizer unit for primary cells
JPS5873952A (en) Battery
JPH0250585B2 (en)
JPS6138585B2 (en)
JP2001307739A (en) Alkaline battery
JPS60182656A (en) Sealed type alkaline battery
JPS6093755A (en) Manufacture of organic electrolyte battery
JPS5911406Y2 (en) silver oxide battery
JP2002198014A (en) Alkaline cell
JPS60207244A (en) Closed type miniature lead storage battery
JP2000251851A (en) Coin type lithium battery
KR800000363B1 (en) Alkaline battery seal and protective coating comprising a fatty acidamide
JPS585963A (en) Sealed battery
JPS58150265A (en) Cylindrical alkaline battery
JPS6412063B2 (en)
JPS5841627B2 (en) alkaline battery
JPS6249701B2 (en)
JPS6141099B2 (en)
JPS59146164A (en) Alkaline battery
JPS6262024B2 (en)
JPS60221958A (en) Alkaline battery with no added mercury