JPS58144328A - Production of alkyl chloride - Google Patents

Production of alkyl chloride

Info

Publication number
JPS58144328A
JPS58144328A JP2459382A JP2459382A JPS58144328A JP S58144328 A JPS58144328 A JP S58144328A JP 2459382 A JP2459382 A JP 2459382A JP 2459382 A JP2459382 A JP 2459382A JP S58144328 A JPS58144328 A JP S58144328A
Authority
JP
Japan
Prior art keywords
alcohol
chloride
reaction
hydrochloric acid
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2459382A
Other languages
Japanese (ja)
Inventor
Isamu Yamamoto
勇 山本
Eiichi Noda
野田 栄一
Yoshiaki Noguchi
野口 良昭
Kenichi Fujii
謙一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2459382A priority Critical patent/JPS58144328A/en
Publication of JPS58144328A publication Critical patent/JPS58144328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The reaction between hydrochloric acid and an alkyl alcohol under pressure gives an alkyl halide easily in very low costs, which is used as a starting material for cationic surface active agents and as an esterification agent for carboxylic and phosphoric acids. CONSTITUTION:The reaction between an alkyl alcohol such as n-butyl alcohol or 2-ethylhexyl alcohol and hydrochloric acid is carried out under pressure of 0.5- 50kg/cm<2>, preferably 1-30kg/cm<2> to give an alkyl chloride such as n-butyl chloride or n-ethylhexyl chloride. The present process does not employ zinc chloride, which makes the process complicated, and thionyl chloride, which is expensive, both of which have been used in conventional methods.

Description

【発明の詳細な説明】 本発明は、塩化アルキルを製造する方法に関する。[Detailed description of the invention] The present invention relates to a method for producing alkyl chlorides.

従来、アルキルアルコールより塩化アルキルを製造する
主な方法は、(1)塩化亜鉛を含むアルコールと塩酸と
の混合液を常圧で加熱するか、または(2)アルコール
を水を含まない塩化水素と混会して加熱し直接反応させ
るか、さらには(6)アルコールと塩化チオニルを反応
させることによるものである。
Conventionally, the main methods for producing alkyl chloride from alkyl alcohol are (1) heating a mixture of alcohol containing zinc chloride and hydrochloric acid at normal pressure, or (2) heating the alcohol with water-free hydrogen chloride. Either by mixing and heating to cause a direct reaction, or (6) by reacting the alcohol with thionyl chloride.

しかし、(1)の方法では塩化亜鉛をアルコールに対し
て当モル以上使用しなければならず、さらに1度使用し
た塩化亜鉛を再使用するときには250゜C以上に強熱
しなければならない。したがって、工業的にこの方法を
用いるには1化亜鉛を多量に用いるので操作が煩雑とな
り、しかも塩化亜鉛の再生を高温で実施するので装置の
材質上困難がある。また(χ)の方法では水を含まない
塩化水素が塩酸に比較して高価であるため工業的に好ま
しくない。さらに(3)の方法では塩化チオニルが塩酸
に比較して高価であるばかりでな(、副生物として塩化
水素と亜硫酸ガスが生じ、これらの処理が必要である。
However, in method (1), zinc chloride must be used in an amount equivalent to or more than the mole of alcohol, and furthermore, when zinc chloride that has been used once is to be reused, it must be ignited to 250°C or higher. Therefore, if this method is used industrially, a large amount of zinc monide is used, making the operation complicated, and furthermore, the regeneration of zinc chloride is carried out at a high temperature, which is difficult due to the material of the equipment. In addition, the method (χ) is industrially unfavorable because hydrogen chloride, which does not contain water, is more expensive than hydrochloric acid. Furthermore, in method (3), not only is thionyl chloride more expensive than hydrochloric acid, but hydrogen chloride and sulfur dioxide gas are produced as by-products, which require treatment.

したがって、この方法では工業的に高価となるばかりで
なく操作が煩雑となり好ましくな℃S。
Therefore, this method is not only industrially expensive but also complicated to operate, making C.S.

そこで本発明者らは、塩酸とアルキルアルコールのみか
ら極めて安価に8塩化アルキルを製造する方法について
鋭意研究し、その結果本発明を完成した。
Therefore, the present inventors conducted intensive research on a method for producing alkyl octachloride from only hydrochloric acid and alkyl alcohol at an extremely low cost, and as a result, completed the present invention.

すなわち、本発明はアルキルアルコールと塩酸を加圧下
で反応させることを特徴とする塩化アルキルの製造方法
である。
That is, the present invention is a method for producing alkyl chloride, which is characterized by reacting an alkyl alcohol and hydrochloric acid under pressure.

本発明の方法九おいて原料として用いるアルコールは、
炭素原子数6〜20までの直鎖状または分枝状、環状、
さらにこれらの水素原子がフェニル基で置換したもので
ある。これらのアルコールは一級または二級である。
The alcohol used as a raw material in method 9 of the present invention is:
Straight chain or branched, cyclic, having 6 to 20 carbon atoms;
Furthermore, these hydrogen atoms are substituted with phenyl groups. These alcohols are primary or secondary.

例エバ、?L −フロビルアルコール、  n −7”
 fルアルコール、2−エチルヘキシルアルコール、九
−ノニルアルコール、九−ドデシルアルコール、n−ペ
ンタテヵニルアルコール、n−オフタテシルアルコール
、インプロピルアルコール、sec −7’チルアルコ
ール、2−オクチルアルコール、6−ベンジルアルコー
ル、シクロペンチルアルコール、シクロヘキシルアルコ
ール、2−エチルシクロヘキシルアルコール、ベンジル
アルコール、2−フェニルエチルアルコール等であ6゜
塩酸としては10チ以上であればよく、これ以下でも反
応は進行するが、反応時間が長くなり実用的ではない。
For example, Eva? L-furobyl alcohol, n-7”
f alcohol, 2-ethylhexyl alcohol, 9-nonyl alcohol, 9-dodecyl alcohol, n-pentatecanyl alcohol, n-ophtathecyl alcohol, inpropyl alcohol, sec-7' tyl alcohol, 2-octyl alcohol, 6 - Benzyl alcohol, cyclopentyl alcohol, cyclohexyl alcohol, 2-ethylcyclohexyl alcohol, benzyl alcohol, 2-phenylethyl alcohol, etc. 6° Hydrochloric acid may be 10 or more, and the reaction will proceed even if it is less than this, but the reaction will proceed. It takes a long time and is not practical.

言らに66%以上は塩化水素ガスを使用して加圧下に製
造しなければならず、このため塩酸のみを使用する場合
に比較して高価となり工業的に不利である。したがって
、塩酸の濃度は10〜66%の範囲が好ましい。
In other words, 66% or more must be produced under pressure using hydrogen chloride gas, which is industrially disadvantageous as it is more expensive than when only hydrochloric acid is used. Therefore, the concentration of hydrochloric acid is preferably in the range of 10 to 66%.

塩酸の使用量はアルコールに対し当量以上あればよく、
通常1〜5当量の範囲である。この範囲であれば十分良
好な収率で塩化アルキルを得ることができる。5当量を
越えて使用してもよいが、その必要はない。
The amount of hydrochloric acid used should be at least equivalent to the alcohol.
It is usually in the range of 1 to 5 equivalents. Within this range, alkyl chloride can be obtained with a sufficiently good yield. More than 5 equivalents may be used, but it is not necessary.

本発明の方法において、反応は加圧下におこなう。圧力
としては、反応温度において0.5〜5゜hg/at、
好ましくは1〜50 kq/clである。0.5 kq
/d以下では反応に長時間を必要とし実用的ではなく、
s o ka/cr/I以上では反応装置が高価となる
ので工業的に不利となる。通常は、常温、常圧にてアル
コールと塩酸を反応器に加え、そのまま密閉して所定の
反応温度とし、そのとき上昇した内部圧にて一定時間反
応を続けるか、またははじめにアルコールと塩酸を反応
器に加え、その後窒素等の不活性ガスで区名器内部を所
定の圧力に高めるようにしてから反応させる。
In the method of the invention, the reaction is carried out under pressure. The pressure is 0.5-5゜hg/at at the reaction temperature,
Preferably it is 1 to 50 kq/cl. 0.5 kq
/d or less, the reaction requires a long time and is not practical;
If it exceeds s o ka/cr/I, the reaction equipment becomes expensive, which is industrially disadvantageous. Normally, alcohol and hydrochloric acid are added to a reactor at room temperature and pressure, the reactor is sealed as is, the reaction temperature is set to a specified temperature, and the reaction is continued for a certain period of time under the increased internal pressure, or alcohol and hydrochloric acid are reacted first. After that, the inside of the container is raised to a predetermined pressure with an inert gas such as nitrogen, and then the reaction is carried out.

反応温度としては、110〜180’Oでありこれ以下
では反応に長時間を必要とし、一方、1800C以上で
はオレフィン、エーテル等の削生物が生じるので好まし
くない。
The reaction temperature is from 110 to 180'O, and if it is lower than this, the reaction will take a long time, while if it is higher than 1800C, it is not preferable because it will result in the formation of abrasives such as olefins and ethers.

反応時間は用いる塩酸の濃度により異なるが、1〜20
時間で十分である。1時間以下の短時間の反応では十分
な収率を得られず、一方、20時間を越えるような長時
間の反応をおこなっても、すでに十分に達成されている
収率を更に向上させる効果は期待できない。
The reaction time varies depending on the concentration of hydrochloric acid used, but is 1 to 20
Time is enough. A short reaction time of 1 hour or less will not yield a sufficient yield, while a long reaction time of over 20 hours will not have the effect of further improving the already sufficiently achieved yield. I can't wait.

以上のようにして反応をおこなった後、冷却し常圧にも
どす。このとき反応液は、生成物が常温において液体な
らば、二層に分離しているので分液操作により、また、
生成物が常温において固体ならば濾過により、生成物を
取り出すことができる。このような単離操作のみで十分
な純度の塩化アルキルを得られる。しかし、使用目的に
よりさらに高純度のものを必要とするときは、蒸留、再
結晶等の通常の方法により目的を達することができ、ま
た、原料であるアルコールが水または塩酸に可溶であれ
ば単離後の生成物中に混入した未反応の原料アルコール
を、水または塩酸により洗滌することにより蒸留と同程
度の高純度の塩化アルキルを得ることができる。
After the reaction is carried out as described above, it is cooled and returned to normal pressure. At this time, if the product is liquid at room temperature, the reaction solution is separated into two layers, so by liquid separation operation,
If the product is solid at room temperature, it can be removed by filtration. Alkyl chloride of sufficient purity can be obtained only by such isolation operations. However, if higher purity is required depending on the purpose of use, the purpose can be achieved by ordinary methods such as distillation and recrystallization.Also, if the raw material alcohol is soluble in water or hydrochloric acid, By washing the unreacted starting alcohol mixed in the isolated product with water or hydrochloric acid, alkyl chloride can be obtained with a purity comparable to that obtained by distillation.

本発明の方法によれば、収率よく、しかも従来の方法の
ように後処理が煩雑となる燻化亜鉛を、または高価であ
る塩化チオニルを用いることなく簡単に極めて安価に塩
化アルキルを製造することができる。
According to the method of the present invention, alkyl chloride can be easily and extremely inexpensively produced in a high yield, without using zinc fumedide, which requires complicated post-treatment, or using expensive thionyl chloride, as in conventional methods. be able to.

得られた塩化アルキルは、カチオン系の界面活性剤の原
料として、またはカルボン酸、リン酸のエステル化剤と
して用いることができる。
The obtained alkyl chloride can be used as a raw material for a cationic surfactant or as an esterifying agent for carboxylic acid or phosphoric acid.

以下、実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 n−ブチルアルコール22.2.9(0,5モル)と1
21%塩酸365g(1,2モル)を5[]Omlの圧
力計の付いたガラス製オートクレーブに加え密閉しその
まま120°Cのオイルバスに7)す°た。圧力計はO
kq /crlよりt o &9 /crlとなった。
Example 1 n-butyl alcohol 22.2.9 (0.5 mol) and 1
365 g (1.2 mol) of 21% hydrochloric acid was added to a 5 [] Oml glass autoclave equipped with a pressure gauge, the autoclave was sealed, and the autoclave was placed in an oil bath at 120°C (7). Pressure gauge is O
kq /crl became to &9 /crl.

このまま18時間無攪拌で放置した。反応終了後、冷却
し、反応液を分液漏斗に加え上層である塩化孔−プチル
の層を取り出した。収量243g、ガスクロマトグラフ
ィーの分析より純度は97チであり、3係は原料である
九−ブチルアルコールであった。収率は85fOであっ
た。これを12%塩酸30gで2回洗滌しn−ブチルア
ルコールを除いた。収量26゜05.lit、純度は9
98係、収率85%であった。
This was left as it was without stirring for 18 hours. After the reaction was completed, it was cooled, the reaction solution was added to a separatory funnel, and the upper layer of spore-butyl chloride was taken out. The yield was 243 g, and the purity was 97% according to gas chromatography analysis, and the third component was 9-butyl alcohol, the raw material. The yield was 85 fO. This was washed twice with 30 g of 12% hydrochloric acid to remove n-butyl alcohol. Yield 26°05. lit, purity is 9
The yield was 85%.

沸点は78.5°Cであった。The boiling point was 78.5°C.

元素分析  0.H2O2としての CH04 理論値(451,919,8038,30実測値((イ
)  51.80  9.91  38.01実施例2 2−エチルヘキシルアルコール65g(0,5モル)と
22チ塩酸248.9g(1,5モル)を500m1の
ガラス製反応管を入れた圧力計、攪拌棒のついたステン
レス製オートクレーブに入れ密閉した後、窒素にて圧力
計が1ohq/c−++1となるまで加圧した。このも
のをオイルバスにより内温を150°Cまで加熱した。
Elemental analysis 0. CH04 as H2O2 Theoretical value (451,919,8038,30 Actual value ((a) (1.5 mol) was placed in a stainless steel autoclave equipped with a pressure gauge and a stirring bar containing a 500ml glass reaction tube, and the autoclave was sealed, and then pressurized with nitrogen until the pressure gauge read 1ohq/c-++1. This product was heated to an internal temperature of 150°C in an oil bath.

このときの圧力計は13#/dとなった。このまま10
時間攪拌した。
The pressure gauge at this time read 13 #/d. 10 as is
Stir for hours.

反応終了後冷却し常圧にもどし分液操作により塩化2−
エチルヘキシルの層を分離した。収量71.3g、ガス
クロマトグラフィーの分析より純度は97チであった。
After the reaction is completed, it is cooled and returned to normal pressure, and the chloride 2-
The ethylhexyl layer was separated. The yield was 71.3 g, and the purity was 97% according to gas chromatography analysis.

収率は93チ。これを減圧蒸留により精製した。Yield: 93 cm. This was purified by vacuum distillation.

収量66.99(63°c/ 18try44g )、
収率90%。
Yield 66.99 (63°c/18try44g),
Yield 90%.

元素分析  08H1701 0H(J 理論値(□□□  64.63  11.53  23
.84実測値(@   64.51  11.60  
23.71実施例3 2−フェニルエチルアルコール122g(1,0モル)
と36%塩酸152.1g(1,5モル)を500m/
!の圧力計の付いたガラス製オートクレーブに入れ密閉
し160°Cのオイルバスにつけた。
Elemental analysis 08H1701 0H (J Theoretical value (□□□ 64.63 11.53 23
.. 84 actual value (@ 64.51 11.60
23.71 Example 3 2-phenylethyl alcohol 122 g (1.0 mol)
and 152.1 g (1.5 mol) of 36% hydrochloric acid at 500 m/
! The mixture was placed in a glass autoclave equipped with a pressure gauge, sealed, and placed in an oil bath at 160°C.

圧力計はohg/criより3. Oko /7となっ
た。このまま無攪拌で2時間放置した。反応終了後冷却
し、分液操作により塩化2−フェニルエチルの層を分離
した。収量1264I、ガスクロマトグラフィーの分析
により純度は98%であった。収率86チ。
The pressure gauge is 3. from ohg/cri. Oko became /7. This was left as it was for 2 hours without stirring. After the reaction was completed, the mixture was cooled and the 2-phenylethyl chloride layer was separated by a liquid separation operation. The yield was 1264I, and the purity was 98% as determined by gas chromatography. Yield: 86 cm.

これを減圧蒸留により精製した。収量115.3.9(
92°C/16NfnHfI)収率82チ。
This was purified by vacuum distillation. Yield 115.3.9 (
92°C/16NfnHfI) Yield: 82cm.

元素分析 0   、HC1 理論値(qQ   6Bろ4  6.45  25.2
1実測値(%)    68,21  6.51  2
5.23実施例4 九−オクタデシルアルコールB i g (0,5モル
)と30%塩酸164.6g(1g5モル)を500m
1のガラス製反応器を入れた圧力計、攪拌棒のついたス
テンレス製オートクレーブに入れ密閉した後、窒素によ
り圧力計が2okq/dとなるまで加圧した。このもの
をオイルノくスにまり内温を17000まで加熱した。
Elemental analysis 0, HC1 theoretical value (qQ 6B filter 4 6.45 25.2
1 Actual value (%) 68,21 6.51 2
5.23 Example 4 9-octadecyl alcohol B i g (0.5 mol) and 164.6 g (1 g 5 mol) of 30% hydrochloric acid in 500 m
The glass reactor No. 1 was placed in a stainless steel autoclave equipped with a pressure gauge and a stirring bar, and the autoclave was sealed, and then pressurized with nitrogen until the pressure gauge read 2 okq/d. This material was heated to an internal temperature of 17,000 ℃ by soaking it in oil gas.

このとき圧力計は25 kg /crdとなった。この
まま10時間攪拌した。反応終了後、冷却し常圧にもど
し3000以上で分液操作により塩化n−オクタデシル
層を分離した。収量867g、ガスクロマトグラフィー
の分析より純度は97%であった。収率97係。これを
減圧蒸留により精製した。
At this time, the pressure gauge read 25 kg/crd. The mixture was stirred as it was for 10 hours. After the reaction was completed, the mixture was cooled and returned to normal pressure, and the n-octadecyl chloride layer was separated by a liquid separation operation at 3,000 or more. The yield was 867 g, and the purity was 97% according to gas chromatography analysis. Yield: 97. This was purified by vacuum distillation.

収4482.4.9(185〜190’C/15mmH
y)、収率95%。
Accommodation 4482.4.9 (185-190'C/15mmH
y), yield 95%.

元素分析  018H3tO(1 0HC1 理論値(@    74.82  12.91  12
.27実測値((6)   74.91  12.82
  12.ろ1実施例5 シクロヘキシルアルコール50.(:1g(0,5モル
)と22係塩酸165.9g(10モル)をsooml
の圧力計の付いたガラス製オートクレーブに入れI閉t
、12o°Cのオイルバスにつけた。圧力計はOkg/
crt!より2.okg/crIとなった。
Elemental analysis 018H3tO (1 0HC1 Theoretical value (@ 74.82 12.91 12
.. 27 actual measurement value ((6) 74.91 12.82
12. Filter 1 Example 5 Cyclohexyl alcohol 50. (Sooml: 1g (0.5 mol) and 165.9g (10 mol) of 22nd hydrochloric acid
Place in a glass autoclave fitted with a pressure gauge and close.
, and placed in an oil bath at 12o°C. The pressure gauge is Okg/
crt! From 2. It became OKG/CRI.

このまま無攪拌で5時間放置した。反応終了後、冷却し
分液操作により塩化シクロヘキシルの層を分離した。収
量562g、ガスクロマトグラフィーの分析により純度
は95%であった。収率90チ。これを減圧蒸留により
精製した。収率516g(68°C/62朋Ht)、収
率87係元素分析  06H,□01としての OHOl 理論値(慢  60.76  9.55  29.89
実測値((6)  60,81  9.51  29.
99特許出願人 三井東圧化学株式会社
The mixture was left as it was for 5 hours without stirring. After the reaction was completed, the mixture was cooled and the cyclohexyl chloride layer was separated by a liquid separation operation. The yield was 562 g, and the purity was 95% as determined by gas chromatography. Yield: 90 cm. This was purified by vacuum distillation. Yield 516 g (68°C/62 Ht), Yield 87 Elemental analysis OHOl as 06H, □01 Theoretical value (Long 60.76 9.55 29.89
Actual value ((6) 60,81 9.51 29.
99 Patent Applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)アルキルアルコールと塩酸を加圧下で反応させるこ
とを特徴とする塩化アルキルの製造方法。
1) A method for producing alkyl chloride, which comprises reacting an alkyl alcohol and hydrochloric acid under pressure.
JP2459382A 1982-02-19 1982-02-19 Production of alkyl chloride Pending JPS58144328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2459382A JPS58144328A (en) 1982-02-19 1982-02-19 Production of alkyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2459382A JPS58144328A (en) 1982-02-19 1982-02-19 Production of alkyl chloride

Publications (1)

Publication Number Publication Date
JPS58144328A true JPS58144328A (en) 1983-08-27

Family

ID=12142449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2459382A Pending JPS58144328A (en) 1982-02-19 1982-02-19 Production of alkyl chloride

Country Status (1)

Country Link
JP (1) JPS58144328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743808A1 (en) * 1996-01-24 1997-07-25 Poudres & Explosifs Ste Nale PROCESS FOR THE PREPARATION OF ALKYL CHLORIDES
CN107602341A (en) * 2017-10-18 2018-01-19 王佳琦 A kind of method from epoxy height boiling extraction trichloropropane
CN109678647A (en) * 2018-08-22 2019-04-26 浙江万盛股份有限公司 A kind of preparation method of high-purity 1- chlorine normal butane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062908A (en) * 1973-10-06 1975-05-29
JPS51118707A (en) * 1975-04-08 1976-10-18 Central Glass Co Ltd Process for preparation of methyl chloride
JPS525702A (en) * 1975-07-01 1977-01-17 Central Glass Co Ltd Process for preparation of methyl chloride
JPS5285110A (en) * 1975-12-17 1977-07-15 Gen Electric Process for preparing and recovering alkylchloride
JPS5334704A (en) * 1976-09-10 1978-03-31 Dow Chemical Co Process for preparing dry halogenated alkyls
JPS549162A (en) * 1977-06-24 1979-01-23 Hitachi Ltd Method of treating filter sludge
JPS56167628A (en) * 1980-04-26 1981-12-23 Hoechst Ag Manufacture of methyl chloride

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062908A (en) * 1973-10-06 1975-05-29
JPS51118707A (en) * 1975-04-08 1976-10-18 Central Glass Co Ltd Process for preparation of methyl chloride
JPS525702A (en) * 1975-07-01 1977-01-17 Central Glass Co Ltd Process for preparation of methyl chloride
JPS5285110A (en) * 1975-12-17 1977-07-15 Gen Electric Process for preparing and recovering alkylchloride
JPS5334704A (en) * 1976-09-10 1978-03-31 Dow Chemical Co Process for preparing dry halogenated alkyls
JPS549162A (en) * 1977-06-24 1979-01-23 Hitachi Ltd Method of treating filter sludge
JPS56167628A (en) * 1980-04-26 1981-12-23 Hoechst Ag Manufacture of methyl chloride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743808A1 (en) * 1996-01-24 1997-07-25 Poudres & Explosifs Ste Nale PROCESS FOR THE PREPARATION OF ALKYL CHLORIDES
EP0786442A1 (en) * 1996-01-24 1997-07-30 Societe Nationale Des Poudres Et Explosifs Process for the preparation of alkylchlorides
US5723704A (en) * 1996-01-24 1998-03-03 Societe Nationale Des Poudres Et Explosifs Process for the preparation of alkyl chlorides
CN107602341A (en) * 2017-10-18 2018-01-19 王佳琦 A kind of method from epoxy height boiling extraction trichloropropane
CN109678647A (en) * 2018-08-22 2019-04-26 浙江万盛股份有限公司 A kind of preparation method of high-purity 1- chlorine normal butane

Similar Documents

Publication Publication Date Title
US3057909A (en) Esterification of terephthalic acid with aqueous glycol
EP0573189A1 (en) Process for the production of acetic acid
EP0064504B1 (en) Preparation of substantially anhydrous iodine compounds
JPS58144328A (en) Production of alkyl chloride
JPS6058739B2 (en) Manufacturing method of dimethyl carbonate
JPH0710811A (en) Production of dialkyl carbonate
US2997495A (en) Preparation of vinyl esters
JPS6241662B2 (en)
JP2723656B2 (en) Method for producing tris- (2-chloro (iso) propyl) phosphate
US6235924B1 (en) Continuous process for preparing benzoic acid esters
US4356321A (en) Production of N,N,N&#39;,N&#39;-tetraacetylethylenediamine
EP0068248B1 (en) Process for the production of dithionites
KR860001889B1 (en) Process for preparation of 2,3-dichloropropionitril
US3590104A (en) Process for preparing 0,0-dialkyl-0-phenyl phosphorothioates
US3644602A (en) Process for producing trialkyl phosphates
US2832803A (en) Manufacture of trichloroacetic acid
US3709934A (en) Method of making carboxylic acid anhydrides
GB2033391A (en) Process for Synthesis of Keto Acids or Esters
JP2747780B2 (en) Method for producing asymmetric diester
KR100440738B1 (en) Di-2-propylheptyl phthalate useful for plasticizer having excellent physical properties and process for producing the same
JPS61118349A (en) Production of dialkyl carbonate
JPS6013022B2 (en) Method for producing dialkylalkanolamine
US2016075A (en) Organic halides
US2840596A (en) Process for the preparation of 4-carbo-alkoxy-2-chlorobutyric acids
US2207611A (en) Purification of alkyl chlorides and formation of esters