JPS5814411A - Condenser - Google Patents

Condenser

Info

Publication number
JPS5814411A
JPS5814411A JP11202081A JP11202081A JPS5814411A JP S5814411 A JPS5814411 A JP S5814411A JP 11202081 A JP11202081 A JP 11202081A JP 11202081 A JP11202081 A JP 11202081A JP S5814411 A JPS5814411 A JP S5814411A
Authority
JP
Japan
Prior art keywords
capacitor
complex salt
resin
dielectric
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11202081A
Other languages
Japanese (ja)
Inventor
向井 貞喜
英敏 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP11202081A priority Critical patent/JPS5814411A/en
Publication of JPS5814411A publication Critical patent/JPS5814411A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はコンデンサに関する。[Detailed description of the invention] This invention relates to capacitors.

近時電気機器の小型化にともない、そこに使用されるコ
ンデンサとしても小型化、高性能化が要求されるように
なってきた。従来のコンデンサでは、たとえばポリプロ
ピレン、ポリスチレン等の高分子材料が薄葉誘電体とし
て広く使用されているが、誘電率が2〜4といつ転低い
値であるため、これをもってしては、コンデンサの充分
な小鑞化は果し得ない。
As electrical equipment has become smaller in recent years, the capacitors used there have also been required to be smaller and have higher performance. In conventional capacitors, polymeric materials such as polypropylene and polystyrene are widely used as thin dielectric materials, but their dielectric constants are low, ranging from 2 to 4, so they are not sufficient for capacitors. It is impossible to become a small person.

この発明は上述の事柄に鑑み″C−業゛されたもので、
誘電率が太番な高分子誘電体を用いた新規なコンデンサ
である。
In view of the above-mentioned matters, this invention was made by "C-operation".
This is a new capacitor that uses a polymeric dielectric material with a large dielectric constant.

乙の発明はイミニウムダイカチオンーススa8−テトラ
シアノキノジメタン複雑塩を、絶縁性ポリマーに分散し
てなる高分子−電体を備えた仁とを特徴とする。
The invention of B is characterized by a polymer-electrolyte-containing polymer obtained by dispersing an iminium dicationic acid a8-tetracyanoquinodimethane complex salt in an insulating polymer.

前記イミニウムダイカチオン−7,7,8,8−テトラ
シアノキノジメタン複雑塩(以下これを単に複雑塩と略
称する。)の一般式を示せば次の通りである。
The general formula of the iminium dication-7,7,8,8-tetracyanoquinodimethane complex salt (hereinafter simply referred to as complex salt) is as follows.

ただし、帽よH又はOHsを、lは2又は3を、mは5
又は4を、又’1’CNQは一般式゛を表わす。
However, H or OHs is used for hat, l is 2 or 3, and m is 5.
or 4, and '1'CNQ represents the general formula.

ブレンドする絶縁性ポリマーとしては、熱可謹 ′性又
は熱硬化性III!1のいずれでもよい、熱可盟性樹脂
としては、ポリスチレン、ポリプロピレン等のポリオレ
フィン樹脂、4リエチレンテレフタレ−ト、ポリエチレ
ンナフタレート等のポリエステル樹脂或いはポリ塩化ビ
ニル、ポリビニルアルコール、lリビニルブチラール、
ポリスチレン、ナイロン、lリメチルペンテン、ポリス
ルホン等力使用できる。又熱硬化性樹脂としてはポリエ
ステル樹脂、フェノール樹脂、工Iキシ樹脂等が使用で
きる。
Insulating polymers to be blended include thermoplastic or thermosetting III! Examples of the thermoplastic resin, which may be any one of 1, include polyolefin resins such as polystyrene and polypropylene, polyester resins such as 4-ethylene terephthalate and polyethylene naphthalate, or polyvinyl chloride, polyvinyl alcohol, 1-rivinyl butyral,
Polystyrene, nylon, l-lymethylpentene, polysulfone, etc. can be used. Further, as the thermosetting resin, polyester resin, phenol resin, polyurethane resin, etc. can be used.

複雑塩を熱可閣性樹脂にブレンドするには、複雑塩のみ
を溶解する溶剤を用い熱可閣性樹脂の溶融物あるいは溶
解物と混合してもよいし、又両者を溶解し得る溶剤を用
い、両者の所定量を混合しキャスト法、インフレーシ寵
ン法、チンター法等によりフィルム状の高分子誘電体を
得ればよい。
In order to blend a complex salt into a thermoplastic resin, it is possible to use a solvent that dissolves only the complex salt and mix it with the melt or molten material of the thermoplastic resin, or a solvent that can dissolve both may be used. A film-like polymeric dielectric may be obtained by mixing predetermined amounts of the two and using a casting method, an inflating method, a tintering method, or the like.

(、 前記溶剤としては、ジメチルホルムア1)ド、ジメチル
アセトアミド系の溶媒、ジクロルメタンなどのハロゲン
系有機溶剤を単独又は混合して用いるとよい。要は前記
両成分を混合できるものであれば何れのものでもよい、
熱硬化性樹脂にブレンドするには、溶剤たとえばジメチ
ルホルムア【ドで前記複雑塩を溶解し、これを樹脂に混
入し、かく拌混合してから、加―減圧で溶剤を飛散除去
し、そのあと樹脂硬化剤を添加して所定の高分子誘電体
を得ればよい。
As the solvent, dimethylformamide, dimethylacetamide-based solvents, and halogen-based organic solvents such as dichloromethane may be used alone or in combination. In short, any material may be used as long as it can mix both of the above components.
To blend into a thermosetting resin, the complex salt is dissolved in a solvent such as dimethylformamide, mixed into the resin, stirred and mixed, and then the solvent is removed by scattering by applying and reducing pressure. A desired polymer dielectric may be obtained by adding a resin curing agent.

なお、複雑塩の混合割合は、ξれとブレンドす的にはα
5〜4wt4の範囲とするのが好ましい。
In addition, the mixing ratio of complex salt is α for blending with ξ.
It is preferable to set it as the range of 5-4wt4.

これは、その混合割合がQ、5wt%未満では誘電率向
上効果が少なく、又4.Qwt%を越えると比抵抗が1
010オームα以下に低下してしまい誘電体として好ま
しくなくなるためである。
This is because if the mixing ratio is less than Q, 5wt%, the effect of improving the dielectric constant is small, and 4. When Qwt% is exceeded, the specific resistance becomes 1
This is because the value decreases to less than 0.010 ohm α, making it undesirable as a dielectric material.

次にこの発明の実施例について説明する。以下に示すよ
うな構造式をもつ複雑塩とポリプロピレン樹脂とを第1
表に示した配合割合で添加し、均一に混合したのち、イ
ンフレーシロン法によ?)作った厚さ25μmの高分子
−電体を3枚重ね合わせて薄葉誘電体層とし、これとア
ルミニウム箔を巻回したコンデンサ素子に、第1表に示
す絶縁油を含浸して電力用のオールフィルムコンデンサ
である供試品(ム1〜6)を製作した。
Next, embodiments of this invention will be described. First, a complex salt having the structural formula shown below and a polypropylene resin are used.
Add in the proportions shown in the table, mix uniformly, and then use the inflator method. ) The three 25-μm-thick polymer-electric materials prepared above were stacked to form a thin dielectric layer, and a capacitor element made by wrapping this and aluminum foil was impregnated with the insulating oil shown in Table 1 to form a power supply. Samples (Mus. 1 to 6), which are all-film capacitors, were manufactured.

第1表の右欄には、前記供試品(41〜6)の―電率、
10′秒後における交流耐電圧電位傾度(ACL)及び
コンデンサ素子の体積比を示す。なお、同表には参考の
ために複雑塩を添加していない従来のポリプロピレンフ
ィルムを用いた電力用のオールフィルムコンデンサ(従
来例)(ム7)の特性も併示した。又、表中のコンデン
サ素子の体積比は、ail″(ただし、Fi=ACL)
で計算した値を求め、従来例(ム7)を100%とし、
前記供試品(41〜6)の比率を明示したものである。
The right column of Table 1 shows the -electricity rates of the samples (41 to 6);
The AC withstand voltage potential gradient (ACL) and the volume ratio of the capacitor element after 10' seconds are shown. For reference, the same table also shows the characteristics of an all-film capacitor for power use (conventional example) (7) using a conventional polypropylene film to which no complex salts are added. Also, the volume ratio of the capacitor element in the table is ail'' (however, Fi=ACL)
Find the value calculated in , set the conventional example (Mu7) as 100%,
The ratios of the samples (41 to 6) are clearly shown.

第1表から理解されるように複雑塩を添加した高分子誘
電体を用いた供試品(41〜46)は、従来例(轟7)
に比ベムCLが低いが、誘電率が大きいことから、コン
デンサ素子の体積を會わめて小さくすることがで會る。
As can be understood from Table 1, the test products (41 to 46) using polymer dielectrics to which complex salts have been added are the conventional examples (Todoroki 7).
Although the Bem CL is low compared to the capacitor element, since the dielectric constant is large, the volume of the capacitor element can be made very small.

次に乙の発明の他の実施例について説明する。Next, another embodiment of the invention of B will be described.

前記した構造式(11)、(b)の複雑塩とポリプロピ
レン樹脂とを1llZ表に示した配合割合で添加し、均
一゛に混合したのち、インフレーシ冨ン法により作った
厚さ25μmの高分子誘電体を3枚重枠合わせて薄葉誘
電体層とし、これとアルミニウム箔を巻回したコンデン
サ素子にアルキルジフェニルエタンを含浸して直流用の
オールフィルムコンデンサであする供試品(Aへ、?)
、を製作した。
A 25-μm-thick polymer was prepared by adding the complex salts of the structural formulas (11) and (b) described above and polypropylene resin in the proportions shown in the 1 liter Z table, mixing them uniformly, and then using the inflation thickening method. Three dielectrics are stacked together to form a thin dielectric layer, and a capacitor element is wrapped with aluminum foil and impregnated with alkyl diphenylethane to form a DC all-film capacitor. )
, was produced.

#I2表 第2表の右欄には、前記供試品(A a 9. ’)の
誘電率、非振動波形を104回印加時の直流充電電位傾
度(DCL)及びコンデンサのエネルギー密度比を示す
。なお、同表には参考のために複雑塩を添加していない
従来のポリプロピレンフィルムを用いた直流用のオール
フィルムコンデンサ(従来例)の特性も併示した。又、
表中のコンデンサのエネルギー密度比は、113(ただ
し、1=DcL)で計算した値を求め、従来例(jKl
o)を1.0とし、前記供試品(&a9)の比率を明示
したものである。
#I2 The right column of Table 2 shows the dielectric constant of the sample (A a 9.'), the DC charging potential gradient (DCL) when the non-oscillatory waveform was applied 104 times, and the energy density ratio of the capacitor. show. For reference, the same table also shows the characteristics of a DC all-film capacitor (conventional example) using a conventional polypropylene film to which no complex salts have been added. or,
The energy density ratio of the capacitor in the table is calculated using 113 (1=DcL), and the conventional example (jKl
o) is 1.0, and the ratio of the sample (&a9) is clearly shown.

餡2表から理解されるように複雑塩を添加した高分子誘
電体を用いた供試品(48,9)は、従来例(ム10)
に比べてDCLが低いが、誘電率が大巻いことから、コ
ンデンサのエネルギー密度が大巻くなる。避暑ζそのエ
ネルギー密度を従来と同一とすれば、この■コンデンサ
の小型化が図れる。
As can be seen from Table 2, the sample (48, 9) using a polymer dielectric with complex salt added is the conventional example (Mu10).
Although the DCL is lower than that of the capacitor, the dielectric constant is large, so the energy density of the capacitor is large. Heat Relief ζIf the energy density is the same as the conventional one, this ■capacitor can be made smaller.

次にこの発明の更に他の実施例について説明する。前記
した構造式(鳳)、伽)の複雑塩とポリエチレンテレフ
タレート樹贈とを第5表に示した配合割合で添加し、均
一に混合したのち、キャスト法によ、り作った厚さ6μ
mの高分子誘電体にムjを蒸着し、ξれを巻回したコン
デンサ素子からなる金属蒸着コンデンサである供試品(
411,12)を製作した。
Next, still another embodiment of the invention will be described. A complex salt having the above-mentioned structural formula (Otori) and polyethylene terephthalate (G) was added in the proportions shown in Table 5, mixed uniformly, and then cast to a thickness of 6 μm.
The sample is a metal-deposited capacitor (
411,12) were produced.

第3表 の誘電率−ACL及びコンデンサ素子の体積比を示す、
なお、同表には参考のために複雑塩を添加していない従
来のポリエチレンテレフタレートを用いた金属蒸着コン
デン−?(従来例)の特性も併示した。又、表中のコン
デンサ素子の体積比は、C1″(ただし、1−ACL)
で計算した値を求め、従来例(A13)を1004とし
、前記供試品(A I 1゜12)の比率を明示したも
のである。
Table 3 shows the dielectric constant-ACL and the volume ratio of the capacitor element,
For reference, the same table also shows metal-deposited condensate using conventional polyethylene terephthalate without the addition of complex salts. (Conventional example) characteristics are also shown. Also, the volume ratio of the capacitor element in the table is C1'' (1-ACL)
The calculated value is determined, the conventional example (A13) is set as 1004, and the ratio of the sample (A I 1°12) is clearly shown.

113表から理解されるように複雑塩を添加した高分子
誘電体を用いた供試品(JKll、12)は、従来例(
413)に比べACLが低いが、誘電率が大きいことか
ら、コンデンサ素子の体積をきわめて小さくすることが
で伽゛る。
As can be seen from Table 113, the sample (JKll, 12) using a polymeric dielectric material to which complex salts have been added is different from the conventional example (
Although the ACL is lower than that of 413), since the dielectric constant is large, the volume of the capacitor element can be made extremely small.

以上詳述の通り、この発明によれば複雑塩を絶縁性ポリ
マーに分散してなる高分子誘電体を用いることにより、
この種コンデンサの小型化あるいはエネルギー密度の向
上を図ることができる。
As detailed above, according to the present invention, by using a polymeric dielectric material made of a complex salt dispersed in an insulating polymer,
This type of capacitor can be made smaller or its energy density can be improved.

特許出願人 日新電機株式会社 代表取締役 社 長山脇正勝patent applicant Nissin Electric Co., Ltd. CEO Company: Masakatsu Nagayamawaki

Claims (1)

【特許請求の範囲】[Claims] イミニウムダイカチオン−ススa8−テトラシアノキノ
ジメタン複雑塩を、絶縁性ポリマーに分散してなる高分
子誘電体を備えたコンデンサ。
A capacitor equipped with a polymeric dielectric material made by dispersing an iminium dication-susu a8-tetracyanoquinodimethane complex salt in an insulating polymer.
JP11202081A 1981-07-16 1981-07-16 Condenser Pending JPS5814411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11202081A JPS5814411A (en) 1981-07-16 1981-07-16 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11202081A JPS5814411A (en) 1981-07-16 1981-07-16 Condenser

Publications (1)

Publication Number Publication Date
JPS5814411A true JPS5814411A (en) 1983-01-27

Family

ID=14575967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11202081A Pending JPS5814411A (en) 1981-07-16 1981-07-16 Condenser

Country Status (1)

Country Link
JP (1) JPS5814411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753728A (en) * 1992-10-07 1998-05-19 Rhone-Poulenc Chimie Polymer compositions comprising electroactive amphiphilic organic compounds and electroconductive shaped articles produced therefrom
JP2008163776A (en) * 2006-12-27 2008-07-17 Toyota Motor Corp Lubricating oil supply system for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753728A (en) * 1992-10-07 1998-05-19 Rhone-Poulenc Chimie Polymer compositions comprising electroactive amphiphilic organic compounds and electroconductive shaped articles produced therefrom
JP2008163776A (en) * 2006-12-27 2008-07-17 Toyota Motor Corp Lubricating oil supply system for internal combustion engine

Similar Documents

Publication Publication Date Title
US6544651B2 (en) High dielectric constant nano-structure polymer-ceramic composite
Fu et al. Enhanced breakdown strength and energy storage of PVDF‐based dielectric composites by incorporating exfoliated mica nanosheets
JP3618760B2 (en) Porous polymer film reinforced with microfibers
JPH01205414A (en) Solid electrolytic capacitor
EP2164079A1 (en) Biaxially oriented film for electrical insulation
JPS5814411A (en) Condenser
TW200921710A (en) Dielectric compositions containing coated filler and methods relating thereto
JPS5814409A (en) Condenser
JPS5814410A (en) Condenser
CN109727772A (en) A kind of interlayer composition polymer deielectric-coating and its preparation method and application
JPS58149928A (en) High dielectric film
JPS5915341B2 (en) High dielectric constant film
JPS5814408A (en) Capacitor
JP2021055036A (en) Manufacturing method of polypropylene film, manufacturing method of metal layer integrated polypropylene film, and, manufacturing method of film capacitor
JPS5885514A (en) Film for condenser
JPS59191207A (en) Polypropylene film for electric article
JP3216730B2 (en) Antistatic laminated film
JPH10681A (en) Biaxially oriented rough surface polyester film
JPS58222125A (en) High-dielectric constant film
JP2003327821A (en) Resin composition
JPS6164004A (en) Film for capacitor and capacitor
CN102779651A (en) Preparation method of ultra-thin inorganic/organic composite dielectric layer material for supercapacitor
JP3243027B2 (en) Copper clad laminate
Mishra et al. Study of frequency dependence properties of CCTO-BT/polymer composites
Feng et al. Enhanced dielectric properties induced by the rational design of interfacial buffer layer in MoS2/poly (arylene ether nitrile) composites