JPS58143264A - Detection of weld defect by acoustic release - Google Patents

Detection of weld defect by acoustic release

Info

Publication number
JPS58143264A
JPS58143264A JP57025984A JP2598482A JPS58143264A JP S58143264 A JPS58143264 A JP S58143264A JP 57025984 A JP57025984 A JP 57025984A JP 2598482 A JP2598482 A JP 2598482A JP S58143264 A JPS58143264 A JP S58143264A
Authority
JP
Japan
Prior art keywords
sensor
sensors
welding
slave
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57025984A
Other languages
Japanese (ja)
Other versions
JPS6351505B2 (en
Inventor
Koji Ishihara
石原 耕司
Koji Yamada
浩司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57025984A priority Critical patent/JPS58143264A/en
Publication of JPS58143264A publication Critical patent/JPS58143264A/en
Publication of JPS6351505B2 publication Critical patent/JPS6351505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect high-temp. cracks and the positions thereof non-destructively in real time, by moving master and slave ultrasonic sensors having prescribed relative positions with a welding torch integrally with said torch and detecting and deciding weld defects. CONSTITUTION:A welding torch 3 and a master sensor M are fixed in relative positions in such a way as to correspond to the timing when the temp. range vulnerable to generation of defects is attained in the cooling stage of weld zones according to welding speeds. Slave sensors S1, S2 are provided respectively before and behind the sensor M, and the sensors M, S1, S2 move integrally with the torch 3. The ultrasonic detection outputs by the sensors S1, M, S2 are applied to a comparator 11 for time difference, and the arrival sequence of signals is compared. The detected output of the sensor M is taken in as a defect detection signal only when the output detected by the sensor M is faster than the detection outputs of the sensors S1, S2. Said signal is evaluated in an evaulation circuit 11 for the degree of harmness and the position is recorded with a recorder 7 and is marked with a marker 16, whereby the high-temp. cracking by welding and the position thereof is detected non-destructively in real time.

Description

【発明の詳細な説明】 この発明は音響放出による溶接欠陥の検知方法に関し、
特に溶接中のアークの後方で冷却中の溶接金属中から生
ずる音響放出音を検出することによシ、内部欠陥とその
位置を検知する方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for detecting welding defects by acoustic emission,
In particular, the present invention relates to a method for detecting internal defects and their locations by detecting acoustic emissions generated from cooling weld metal behind an arc during welding.

サブマージアーク溶接やMIG溶接など、大電流溶接で
溶は込みの深い溶接をする場合、溶接欠陥として高温割
れを生じやすいことは周知の通υである1、この高温割
れは溶接金属の凝固温度範囲またはその直下の温度で発
生し、縦割れ、横割れ、ルート割れ、あるいは顕微鏡で
認められるような微細なもの捷で各種あるか、いずれも
機械的性質の低下を招く極めて危険なものである。この
高温割れは溶接金属だけでなく、それに隣接した熱影響
部の結晶粒粗大域にも生ずることがあり、これらの部分
での内部欠陥は外観検査では発見が困難でおる。
It is a well-known fact that when welding with deep penetration using high current welding such as submerged arc welding or MIG welding, hot cracking is likely to occur as a welding defect.1 This hot cracking occurs within the solidification temperature range of the weld metal. Or there are various types of cracks that occur at temperatures just below that temperature, such as vertical cracks, horizontal cracks, root cracks, or minute cracks that can be seen under a microscope, all of which are extremely dangerous and cause a decline in mechanical properties. These hot cracks may occur not only in the weld metal but also in coarse grain areas in the heat affected zone adjacent to the weld metal, and internal defects in these areas are difficult to detect by visual inspection.

この発明は溶接中においてアークの後方で溶接欠陥、特
に高温割れをその程度と位置について非破壊的に且つリ
アルタイムで検知する方法を提供することを目的とする
ものであシ、それによって溶接継手の品質の向上を果そ
うとするものである。
An object of the present invention is to provide a method for non-destructively and real-time detection of welding defects, particularly hot cracks, regarding their extent and location behind the arc during welding. The aim is to improve quality.

すなわちこの発明は溶接欠陥の発生をそれに伴々う音響
放出音の検知によって認識するもので、欠陥の程度と発
生位置をアークノイズやフラックス割れ音或いは浴接金
属の変態前などに邪魔されずに適確に実時間で検知する
ことを可能とするものである。
In other words, this invention recognizes the occurrence of a welding defect by detecting the accompanying acoustic emitted sound, and the extent and location of the defect can be determined without being disturbed by arc noise, flux cracking noise, or before the transformation of the bath weld metal. This enables accurate detection in real time.

この発明の検知方法のひとつの態様では、予じめ定めら
れた溶接速度で移動する溶接トーチのアーク直下点よシ
後方で溶着部の冷却過程において欠陥の発生し易い時期
に相当する位置にマスターセンサを配置し、このマスタ
ーセンサの前方で且つ溶接トーチの後方位置に第1のス
レーブセンサを配置し、また前記マスターセンサの後方
位置に第2のスレーブセンサを配置し、溶接中にマスタ
ーセンサおよび第1と第2のスレーブセンサを前記溶接
トーチと一体的に且つ相互位置関係を変えずに移動させ
つつ母材と溶接金属中を伝播してくる溶接金属の冷却中
の音響放出音をこれら3つのセンサで検出し、マスター
センサによる検出信号と第1および第2のスレーブセン
サによる検出信号との信号到着順位とを比較し、マスタ
ーセンサによる検出信号が第1到着順位であるときのみ
信号をと9こみ、このようにしてマスターセンサ近傍で
発生した音響放出音だけをとり出して、そのエネルギ、
リングダウンカウント、或いは電圧実効値の値から第1
のスレーブセンサとマスターセンサとの中点位置から第
2のスレーブセンサとマスターセンサとの中点位置まで
の範囲内に相当する溶接ビード内の欠陥の大きさとその
位置を判定する。
In one embodiment of the detection method of the present invention, a welding torch is moved at a predetermined welding speed, and the welding torch is located at a position directly behind the arc that corresponds to a time when defects are likely to occur during the cooling process of the welded part. a first slave sensor is located in front of the master sensor and rearward of the welding torch, and a second slave sensor is located rearward of the master sensor so that the master sensor and While moving the first and second slave sensors integrally with the welding torch without changing their mutual positional relationship, the acoustic emission sound during cooling of the weld metal propagating through the base metal and the weld metal is detected by these three slave sensors. The detection signal from the master sensor is compared with the signal arrival order of the detection signals from the first and second slave sensors, and the signal is detected only when the detection signal from the master sensor is in the first arrival order. In this way, only the acoustic emission sound generated near the master sensor is extracted, and its energy,
From the ringdown count or the effective voltage value,
The size and position of a defect within the weld bead corresponding to the range from the midpoint between the second slave sensor and the master sensor to the midpoint between the second slave sensor and the master sensor are determined.

またこの発明の検知方法のもうひとつの態様では、予じ
め定められた溶接速度で移動する溶接トーチのアーク直
下点よシ後方の第1の位置に第1のマスターセンサを配
置し、前記第1の位置よシ更に後方の第2の位置に第2
のマスターセンサを配置し、更に前記第1のマスターセ
ンサの直前に第1のスレーブセンサを配置し、前記第2
のマスターセンサの直後に第2のスレーブセンサを配置
して、溶接中に第1と第2のマスターセンサおよび第1
と第2のスレーブセンサを前記溶接トーチと一体的に且
つ相互位置関係を変えずに移動させつつ母材と溶接金属
中を伝播してくる溶接金属の冷却中の音響放出音をこれ
ら4つのセンサで検出し、第1および第2のマスターセ
ンサによる検出信号と第1および第2のスレーブセンサ
による検出信号との信号到着順位を比較し、第1および
第2のマスターセンサの検出信号の信号到着順位が第1
および第2のスレーブセンサのそれよりも早い場合のみ
信号をとりこむことによシ、第1と第2のマスターセン
サの間の範囲内に相当する溶接ビード内で生じた音響放
出音のみをとシ出してその大きさと発生位置を検知する
ものである。
Further, in another aspect of the detection method of the present invention, the first master sensor is arranged at a first position behind the point directly below the arc of the welding torch moving at a predetermined welding speed, The second position is located further back than the first position.
A master sensor is arranged, a first slave sensor is arranged immediately before the first master sensor, and a first slave sensor is arranged immediately before the first master sensor, and a first slave sensor is arranged immediately before the first master sensor.
A second slave sensor is placed immediately after the master sensor to connect the first and second master sensors and the first slave sensor during welding.
While moving the and second slave sensor integrally with the welding torch without changing their mutual positional relationship, these four sensors detect the acoustic emission sound during cooling of the weld metal that propagates through the base metal and the weld metal. The signal arrival orders of the detection signals from the first and second master sensors and the detection signals from the first and second slave sensors are compared, and the signal arrival order of the detection signals from the first and second master sensors is compared. Ranked first
By capturing the signal only earlier than that of the second slave sensor, it is possible to simulate only the acoustic emission sound generated within the weld bead corresponding to the range between the first and second master sensors. It is used to detect the size and location of occurrence.

この発明の実施例を図示すれば、第1図において、(1
)は母材、(2)はフラックス層、(3)は溶接トーチ
、(4)はフラックスホッパノズル、<5)ハm接金属
で、この例ではサブマージアーク溶接に適用した場合を
示している。溶接トーチ(3)の直下のアーク点より1
・−チの溶接進行方向(矢印)に関して後方の距離t。
To illustrate an embodiment of this invention, in FIG.
) is the base metal, (2) is the flux layer, (3) is the welding torch, (4) is the flux hopper nozzle, <5) is the hammer welding metal, and this example shows the case where it is applied to submerged arc welding. . 1 from the arc point directly below the welding torch (3)
・- Distance t behind in the welding direction (arrow) of H.

の位置において音響放出音検出用のマスターセンサ(財
)が配置され、このマスターセンサ(財)の直前に間隔
距離1.を隔てて同様の第1のスレーブセンサ(S、)
が配置され、またマスターセンサ(ロ)の後方にも間隔
距離4を隔てて同様の第2のスレーブセンサ(S、)が
配置されている。これらのセンサ(財)(S +) (
SZ)は、母材表面側に継手線に沿って一列に配列され
、溶接の進行に伴ってトーチ(3)と共に相互位置関係
を変えずに一体的に開先αηに沿って移動するようにか
されてい尿。1記距離toの位置すなわちマスターセン
サ(財)が配置されている位置は、溶接トーチよシ稜方
でセンサが溶接アークの熱的悪影響を受けない位置でし
かも予じめ与えられた溶接速度にて溶着部の冷却過程に
おいて欠陥の発生し易い時期に相当する位置である。(
6)はこれらセンサ(財)(S +) (SZ )から
の検出信号を処理する信号処理装置であシ、その出力デ
ータは記録装置(7)によって記録表示される。すなわ
ち信号処理装置(6)内においてスレーブセンサ(St
) (SX)の検出結果に基づく雑音除去とマスターセ
ンサ(財)の検出結果に基づく音響放出音の大きさに関
係する量、例えはリングダウンカウント、電圧実効値、
エネルギーなど、および時間的な判別が行なわれる。
A master sensor for detecting acoustic emitted sound is placed at a position of 1. A similar first slave sensor (S,) across
A similar second slave sensor (S,) is also arranged behind the master sensor (B) at a distance of 4. These sensors (goods) (S +) (
SZ) are arranged in a line along the joint line on the surface side of the base metal, and as welding progresses, they move together with the torch (3) along the groove αη without changing their mutual positional relationship. Fresh urine. The position of the distance to, that is, the position where the master sensor (Incorporated) is placed, is a position on the ridge of the welding torch where the sensor is not affected by the thermal adverse effects of the welding arc, and at a predetermined welding speed. This position corresponds to the time when defects are likely to occur during the cooling process of the welded part. (
6) is a signal processing device that processes detection signals from these sensors (S + ) (SZ ), and its output data is recorded and displayed by a recording device (7). That is, in the signal processing device (6), the slave sensor (St
) Quantities related to noise removal based on the detection results of (SX) and the magnitude of acoustic emission sound based on the detection results of the master sensor (for example, ring down count, effective voltage value, etc.)
Energy, etc., and temporal determinations are made.

音響放出の発生位置については、成る一定の長さくa)
をもって表わされる。つまりこれは第2図に示すように
マスターセンサ(財)とスレーブセンサ(S、)(Sz
)!:の各々の中点からマスターセンサ(財)寄りノ領
域として表わされる1、これらの検知結果が記録装置(
7)によって溶接材毎のデータとして記録されるわけで
ある。さらに欠陥が有害なものと判定された場合にはマ
ーカーaQによって有害欠陥発生位置にマーキングを行
なうようにすれば後工程での手入れに際して便利である
。このマーカーαQはセンサ(財)(81)(82)な
どと共に一体的に移動するものであることは述べるまで
もない。
For the location of the acoustic emission, a certain length consisting of a)
It is expressed as. In other words, as shown in Figure 2, this means that the master sensor (goods) and slave sensor (S,) (Sz
)! 1, these detection results are recorded in the recording device (
7), the data is recorded for each welding material. Furthermore, if the defect is determined to be harmful, it is convenient to mark the position where the harmful defect occurs using a marker aQ, which will be convenient for cleaning in the subsequent process. It goes without saying that this marker αQ moves integrally with the sensors (goods) (81), (82), etc.

第1図において信号処理装置(6)は以下の通シの構成
を備えている。すなわち、センサ(財)(S +)(S
t )がとらえた信号はそれぞれ前置増幅器(8)、フ
ィルタ(9)、主増幅器(ト)に通されて、これらによ
り信号中の必要な周波数成分のみが電気的処理のし易い
ように増幅され、各センサ出力ともに時間差比較回路(
11)に入る。ここでマスターセンサMの検出信号は両
スレーブセンサ(s r Xs”)の検出信号と各々信
号到着順位の比較をなされ、その結果によってマスター
センサ(財)の検出信号が第1到着順位であるときのみ
これを欠陥検知信号としてとり出し、これ以外を雑音と
して除去し、この欠陥信号だけが信号検出回路(6)へ
送られる。信号検出回路α埠では欠陥信号の振幅、継続
時間等々を検出し、有害度評価回路α→へこの検出結果
を送って判定したのち記録装置(7)に出力を送り、同
時に有害欠陥についてはマーカー作動回路αつへマーカ
ーαQの作動を指令するものである。
In FIG. 1, the signal processing device (6) has the following general configuration. That is, the sensor (goods) (S +) (S
The signals captured by t) are passed through a preamplifier (8), a filter (9), and a main amplifier (g), respectively, and these amplify only the necessary frequency components in the signal so that they can be easily processed electrically. The time difference comparison circuit (
Enter 11). Here, the detection signal of the master sensor M is compared with the detection signals of both slave sensors (s r Only this signal is taken out as a defect detection signal, the rest is removed as noise, and only this defect signal is sent to the signal detection circuit (6).The signal detection circuit α detects the amplitude, duration, etc. of the defect signal. , the detection result is sent to the harmful degree evaluation circuit α→ for judgment, and then the output is sent to the recording device (7).At the same time, for harmful defects, the marker operating circuit α is instructed to operate the marker αQ.

第3図はこの発明のもうひとつの実施例を示すもので、
第1図と同一符号は同等のものを示している。
Figure 3 shows another embodiment of this invention.
The same reference numerals as in FIG. 1 indicate equivalent parts.

この例もサブマージアーク溶接の場合を示しておシ、ト
ーチ直下のアーク点よシトーチの溶接進行方向(矢印)
に関し七後方の距離t0の第1の位置において第1のマ
スターセンサ(M、)が配置され、さらに距離りだけ後
方の第2の位置において第2のマスターセンサ(M、)
が配着され、第1のシスターセンサ(M、)の直前には
間隔距離1.を隔てて第1スレーブセンサ(St)が配
置され、また第2マスターセンサ(M、)の直後にも間
隔距離4を隔てて第2スレーブセンサ(S、)が配置さ
れている。これらセンサ(M+)(M*)(sl)(s
*)は全て溶接金属(5)中において冷却中に生じる割
れに基づ攻音響放出音を検知すべく、母材表面側に継手
線に沿って一列に配列さ′れ、溶接の進行に伴ガつてト
ーチ(3)と共に相対位置関係を変えずに一体的に移動
するようになされそいる1、前記トーチから距離t。の
位置すなわちマスターセ/す(M、)が配置されている
第1位置は、溶接トーチよ)後方でセンサが溶接アーク
の熱的影響を受けない位置であ如、また前記距離りすな
わちマスターセンサ(M2)が配置される第2位置は、
溶接トーチ(3)と連動したフラックス除去装置を使用
する場合はその影響を受けない位置、フラックス除去装
置を使用しない場合は、音響放出音の減衰を考慮した位
置とする。尚、前記距離t1および4はセンサot+X
Mg)(s t)(sz)のレスポンスと後述の信号処
理系の分解能とによって下限を定められ、この下限範囲
内でなるべく小さい値に選ばれるが、通常センザー直径
の2倍程度である。信号処理装[(6) K 1つてス
レーブセンサ(SIXSg)の検出信号に基づく雑音除
去およびマスターセンサ(M 、)(Mz )の検出信
号による音響放出音の大きさと発生位置の検知が行なわ
れ、この検知結果が記録装置(7)によって各溶接材毎
のデータと1で記録される。さらに、有害欠陥の場合は
(2)のマーカーによシ有害欠陥発生位置にマーキング
を行なうことも可能なことは先の実施例と同様である。
This example also shows the case of submerged arc welding, from the arc point directly below the torch to the welding direction (arrow) of the torch.
A first master sensor (M,) is arranged at a first position a distance t0 seven distances rearward with respect to , and a second master sensor (M, ) at a second position further rearward by a distance t0.
are arranged immediately before the first sister sensor (M,) with a distance of 1. A first slave sensor (St) is arranged at a distance of 4, and a second slave sensor (S,) is arranged immediately after the second master sensor (M,) at a distance of 4. These sensors (M+) (M*) (sl) (s
*) are all arranged in a line along the joint line on the base metal surface side in order to detect the acoustic emission sound based on the cracks that occur during cooling in the weld metal (5), and as the welding progresses. 1. The distance t from the torch (3) is such that it moves together with the torch (3) without changing the relative positional relationship. That is, the first position where the master sensor (M,) is located should be at a position behind the welding torch where the sensor is not affected by the heat of the welding arc. The second position where (M2) is placed is
If a flux removal device linked to the welding torch (3) is used, the location will not be affected by the flux removal device, and if no flux removal device is used, the location will take into account the attenuation of the acoustic emission sound. Note that the distances t1 and 4 are sensor ot+X
The lower limit is determined by the response of Mg)(s t)(sz) and the resolution of the signal processing system described below, and the value is selected as small as possible within this lower limit range, but is usually about twice the sensor diameter. The signal processing device [(6) K performs noise removal based on the detection signal of the slave sensor (SIXSg) and detects the magnitude and location of the acoustic emission sound based on the detection signal of the master sensor (M,) (Mz), This detection result is recorded as data and 1 for each welding material by a recording device (7). Furthermore, in the case of a harmful defect, it is also possible to mark the position where the harmful defect occurs using the marker (2), as in the previous embodiment.

信号処理装置(6)においては、まずマスターセンサ(
Ml)(Mz)の検知音のうち第1マスターセンサ(M
l)の位置よシ前方のトーチ寄りで発生した音響成分を
スレーブセンサ(S、)の検知出力との相対的到着順位
の比較によシ除去し、また同様にマスターセ/す(Mj
XMt)の検知音のうち第2マスターセンサ(M2)の
位置よシ稜方で発生した音響成分をスレーブセンサ(S
、)の検知出力との比較によシ除去し、これによ)前者
の音響成分の大半を占めるアークノイズと、後者の音響
成分の大半を占めるフラックスの割れあるいはスラック
スはつり音等を雑音として除去する。さらに信号処理装
置(6)では前記のように雑音を除去したマスターセン
サ(Ml)(Mりの検知信号によシ距離りの範囲内のみ
で発生した音響放出音から欠陥の有害度と位置とを検出
し、これを記録装置(7)へ出力する。この場合、欠陥
の有害度はマスターセンサ出力の振幅と継続時間とによ
り求められ、発生位置は、先にその音響放出音を検知し
た方のマスターセンサからの距離Xとして、x=(L−
Jt−v)/2によシ求められる。
In the signal processing device (6), first the master sensor (
Among the detection sounds of Ml) (Mz), the first master sensor (M
The acoustic component generated near the torch in front of the position of 1) is removed by comparing the relative arrival order with the detection output of the slave sensor (S,), and is similarly removed from the master sensor (Mj).
Of the sound detected by the slave sensor (S
,) is removed by comparison with the detection output of ), and this removes arc noise, which accounts for most of the acoustic components of the former, and cracking of flux or slack crackling, which accounts for most of the acoustic components of the latter, as noise. do. Furthermore, the signal processing device (6) uses the detection signal of the master sensor (Ml) from which noise has been removed as described above to determine the degree of harmfulness and location of the defect from the acoustic emission sound generated only within a certain distance. is detected and outputted to the recording device (7).In this case, the degree of harmfulness of the defect is determined by the amplitude and duration of the master sensor output, and the position of occurrence is determined by the direction in which the acoustic emission sound was detected first. As the distance X from the master sensor, x=(L-
Jt-v)/2.

この式においてΔ(は両マヌターセンサでの音響放出音
の検出時間差、■は溶接金属ないし母材中の音速でおる
In this equation, Δ( is the difference in detection time of the acoustic emission sound between the two manutar sensors, and ■ is the speed of sound in the weld metal or base material.

第3図において信号処理装置(6)は以下の通シの構成
を備えている。すなわち、センサ(Mθ(MzXs+)
(St )がとらえた信号は、それぞれ前置増幅器(8
)、フィルター(9)、主増幅器(2)により信号中の
必要な周波数成分のみが電気的処理のしやすい様に増幅
され、時間差比較回路aカにはいる。ここでマスターセ
ンサとスレーブセンサへの信号到着順位から欠陥信号か
雑音かの判別を行ない、欠陥信号と認められたものだけ
が信号検出回路(6)と位置標定回路0に送られる。位
置標定回路υでは時間差比較回路09で計測されたマス
ターセ/す(Ml)(Ml)への信号到着時間差Δtか
ら欠陥の発生位置を演算し、その結果を有害度評価回路
へ4に送る。信号検出回路(6)では、欠陥信号の振幅
、継続時間等々を求め、これらの結果を有害度評価回路
α尋に送る。有害度評価回路α4では位置評定回路(2
)と信号検出回路(6)とから送られた情報をもとに、
検出された欠陥の有害度を判定し、記録装置(7)に出
力するとともに手直し必要と判断された欠陥部について
は、マーカー作動回路αQを動作させ、位置評定回路員
で演算された位置にマーカーαQでマーキングを行なう
In FIG. 3, the signal processing device (6) has the following general configuration. That is, the sensor (Mθ(MzXs+)
The signals captured by (St) are transmitted to the preamplifier (8), respectively.
), filter (9), and main amplifier (2), only the necessary frequency components in the signal are amplified so that they can be easily electrically processed, and then enter the time difference comparator circuit a. Here, it is determined whether the signal is a defective signal or noise based on the order in which the signals arrive at the master sensor and the slave sensor, and only those recognized as defective signals are sent to the signal detection circuit (6) and the position locating circuit 0. The position locating circuit υ calculates the location of the defect from the signal arrival time difference Δt to the master cell (Ml) (Ml) measured by the time difference comparison circuit 09, and sends the result to the harmfulness evaluation circuit 4. The signal detection circuit (6) determines the amplitude, duration, etc. of the defective signal, and sends these results to the harmfulness evaluation circuit α-hiro. In the hazard evaluation circuit α4, the position evaluation circuit (2
) and the signal detection circuit (6),
The degree of harmfulness of the detected defect is determined and outputted to the recording device (7), and for defective parts that are judged to require repair, the marker activation circuit αQ is activated to place a marker at the position calculated by the position evaluation circuit member. Mark with αQ.

以上に述べた様に、この発明においては溶接中のトーチ
の後方で冷却中の溶接金属に対しある一定の部分につい
てのみ音響放出の連続監視が可能であシ、この部分では
溶接が正常から本来例等の音響放出も起るものではない
ので、この発明による連続監視で検出された音響放出音
は溶接金属ないし熱影響部の高温割れ等の溶接欠陥に起
因するものとみなすことができ、従ってその発生位置と
大きさとの記録データによって溶接継手部に欠陥発生の
マーキングを施すことが容易であり、さらにこのマーキ
ング個所の早期の補修作業によって溶接継手の品質を著
るしく高めることが可能である。
As described above, in this invention, it is possible to continuously monitor acoustic emissions only in a certain part of the weld metal that is being cooled behind the torch during welding, and in this part, welding changes from normal to normal. Therefore, the acoustic emission sound detected by continuous monitoring according to the present invention can be considered to be caused by a welding defect such as hot cracking in the weld metal or heat affected zone. It is easy to mark welded joints as defects based on the recorded data of their location and size, and it is also possible to significantly improve the quality of welded joints by performing early repair work on the marked locations. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るシステム構成のブロッ
ク図、第2図はマスターセンサによって音響発生位置が
限定される領域を説明するだめの模式図、第6図は本発
明のもうひとつの実施例を示すブロック図である。 (1):母材、(2):フラツクス、(3):溶接トー
チ、(4):フラツクスホッパ、(5):溶接金属、(
6):信号処理装置、(7):記録装置、(8):装置
増幅器、(9):フィルタ、(至):主増幅器、αめ:
時間差比−回路、a埠:信号検出回路、0:位置標定回
路、a4:有害度評価回路、05=マ一カー作動回路、
Q@:マーカー、α′i):溶接開先、(MI)(MI
)(M) :マスターセンサ、(81)(82)ニスレ
ープセンサ。 代理人 弁理士 佐 藤 正 年
Fig. 1 is a block diagram of a system configuration according to an embodiment of the present invention, Fig. 2 is a schematic diagram for explaining the area where the sound generation position is limited by the master sensor, and Fig. 6 is another embodiment of the present invention. It is a block diagram showing an example of. (1): Base metal, (2): Flux, (3): Welding torch, (4): Flux hopper, (5): Weld metal, (
6): Signal processing device, (7): Recording device, (8): Device amplifier, (9): Filter, (to): Main amplifier, αth:
Time difference ratio-circuit, a: signal detection circuit, 0: position locating circuit, a4: hazard evaluation circuit, 05 = marker activation circuit,
Q@: marker, α′i): welding groove, (MI) (MI
) (M): Master sensor, (81) (82) Nislepe sensor. Agent Patent Attorney Masatoshi Sato

Claims (2)

【特許請求の範囲】[Claims] (1)予じめ定められた溶接速度で移動する溶接トーチ
のアーク直下点よりe方位置にマスターセンサを配置し
、このマスターセンサの前方で且つ溶接トーチの後方位
置に第1のスレーブセンサを配置し、また前記マスター
センサの彼方位置に第2のスレープセ/すを配置し、溶
接中にマスターセンサおよび第1と第2のスレーブセン
サを前記溶接トーチと一体的に且つ相互位置関係を変え
ずに移動させつつ母材と溶接金属中を伝播してくる溶接
金属の冷却中の音響放出音をこれらセンサで検出し、マ
スターセンサによる検出信号と第1および第2のスレー
ブセンサによる検出信号との信号到着順位とを比較し、
マスターセンサによる検出信号が第1到着順位であると
きのみ信号をとシこみ、そのエネルギ、リングダウンカ
ウント、或いは電圧実効値の値から第1のスレーブセン
サとマスターセンサとの中点位置から第2のスレーフセ
/すとマスターセンサとの中点位置までの範囲内に相当
する溶接ビード内の欠陥の有無を判定することを特徴と
する音響放出による溶接欠陥の検知方法。
(1) A master sensor is placed at a position e from the point directly below the arc of a welding torch that moves at a predetermined welding speed, and a first slave sensor is placed in front of this master sensor and at a position behind the welding torch. and a second slave sensor is arranged at a position beyond the master sensor, and the master sensor and the first and second slave sensors are integrated with the welding torch and their mutual positional relationship does not change during welding. These sensors detect the acoustic emission sound during cooling of the weld metal that propagates through the base metal and the weld metal while moving the weld metal, and compare the detection signal from the master sensor with the detection signals from the first and second slave sensors. Compare with the signal arrival order,
The signal is input only when the detection signal from the master sensor is in the first arrival order, and from the midpoint position between the first slave sensor and the master sensor to the second 1. A method for detecting a welding defect by acoustic emission, characterized by determining the presence or absence of a defect within a weld bead corresponding to a midpoint position between a slave and a master sensor.
(2)予じめ定められた溶接速度で移動する溶接トーチ
のアーク直下点より彼方の第1の位置に第2のマスター
センサを配置し、前記第1の位置よシ更に彼方の第2の
位置に第2のマスターセンサを配置し、更に前記第1の
マスターセンサの直前に第1のスレーブセンサを配置し
、前記第2のマスターセンサの直後に第2のスレーブセ
ンサを配置して、溶接中に第1と第2のマスターセンサ
および第1と第2のスレーブセンサを前記溶接トーチと
一体的に且つ相互位置関係を変えずに移動はせつつ母材
と溶接金属中を伝播してくる溶接金属の冷却中の音響放
出音をこれらセンサで検出し、第1および第2のマスタ
ーセンサによる検出信号と第1および第2のスレーブセ
ンサによる検出信号との信号到着順位を比較し、第1お
よび第2のマスターセンサへの信号到着順位が第1およ
び第2のスレーブセンサのそれよりも早い場合のみ信号
をとりこむことにより、第1と第2のマスターセンサの
間の範囲内に相当する溶接ビード内で生じた音響放出音
のみをと多山してその発生位置を求めることを特徴とす
る音響放出による溶接欠陥の検知方法。
(2) A second master sensor is placed at a first position beyond the point directly below the arc of the welding torch that moves at a predetermined welding speed, and a second master sensor is placed further away from the first position. A second master sensor is placed at the position, a first slave sensor is placed immediately before the first master sensor, a second slave sensor is placed immediately after the second master sensor, and the welding is performed. The first and second master sensors and the first and second slave sensors are moved integrally with the welding torch and without changing their mutual positional relationship while propagating through the base metal and the weld metal. Acoustic emitted sound during cooling of the weld metal is detected by these sensors, and the signal arrival order of the detection signals by the first and second master sensors and the detection signals by the first and second slave sensors is compared, and the first and by capturing the signal only when the order of arrival of the signal to the second master sensor is earlier than that of the first and second slave sensors, welding corresponding to the range between the first and second master sensors. A method for detecting welding defects by acoustic emission, characterized in that only the acoustic emission sound generated within the bead is multiplied and the position of its occurrence is determined.
JP57025984A 1982-02-22 1982-02-22 Detection of weld defect by acoustic release Granted JPS58143264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025984A JPS58143264A (en) 1982-02-22 1982-02-22 Detection of weld defect by acoustic release

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025984A JPS58143264A (en) 1982-02-22 1982-02-22 Detection of weld defect by acoustic release

Publications (2)

Publication Number Publication Date
JPS58143264A true JPS58143264A (en) 1983-08-25
JPS6351505B2 JPS6351505B2 (en) 1988-10-14

Family

ID=12180974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025984A Granted JPS58143264A (en) 1982-02-22 1982-02-22 Detection of weld defect by acoustic release

Country Status (1)

Country Link
JP (1) JPS58143264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243565A (en) * 1985-08-21 1987-02-25 Nippon Kokan Kk <Nkk> Real time monitoring of welding defect

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027817A (en) * 1988-06-15 1990-01-11 Fuji Electric Co Ltd Gas-sealed container for compressed-gas-insulated switchgear
JP7129490B2 (en) 2018-12-12 2022-09-01 住友精化株式会社 Water Absorbent Resin Particles, Absorbent, Absorbent Article, and Method for Measuring Liquid Suction Force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243565A (en) * 1985-08-21 1987-02-25 Nippon Kokan Kk <Nkk> Real time monitoring of welding defect

Also Published As

Publication number Publication date
JPS6351505B2 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US4144766A (en) Apparatus for the in-situ detection and location of flaws in welds
Sun et al. Sensor systems for real-time monitoring of laser weld quality
JP5028494B2 (en) Automatic testing method for material joints
US9052273B2 (en) Method and installation for ultrasound inspection of butt-welding of two transverse ends of two metal strips
JP6979299B2 (en) Systems and methods for non-destructive evaluation of specimens
CN102294549A (en) welding system and welding method
JPH07185849A (en) Method and laser welding device for effecting process control and/or quality control upon laser butt welding of plate
JPS6243565A (en) Real time monitoring of welding defect
Yang et al. Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network
JPS58143264A (en) Detection of weld defect by acoustic release
JP3015877B2 (en) Dynamic strain measurement method for welds
JP5104247B2 (en) Manufacturing method of continuous cast slab
JPH0763694A (en) Nondestructive inspection apparatus for spot-welded part
JPH0215822B2 (en)
JPS6342744B2 (en)
JPH0215021B2 (en)
JP2526218B2 (en) Inspection method for welding defects
JP4931671B2 (en) Inspection method
JPH05333001A (en) Apparatus for inspecting defective welded part
JP2002210575A (en) Method for discriminating weld condition in laser welding
US4336923A (en) Steel surface inspection apparatus
Vasilev et al. In-process ultrasonic inspection of thin mild steel plate GMAW butt welds using non-contact guided waves
JPS62118994A (en) Quality inspecting instrument for laser butt welding
KR100666793B1 (en) Real-time weld cracking detection method for ship fabrication using single ultrasonic scanning probe
Nakakura On-line inspection of hot slab surfaces and internal defects