JPS58142296A - Method of measuring inside pressure of nuclear fuel rod - Google Patents

Method of measuring inside pressure of nuclear fuel rod

Info

Publication number
JPS58142296A
JPS58142296A JP57024536A JP2453682A JPS58142296A JP S58142296 A JPS58142296 A JP S58142296A JP 57024536 A JP57024536 A JP 57024536A JP 2453682 A JP2453682 A JP 2453682A JP S58142296 A JPS58142296 A JP S58142296A
Authority
JP
Japan
Prior art keywords
fuel rod
nuclear fuel
pressure
pressurized
atmospheric gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57024536A
Other languages
Japanese (ja)
Inventor
貴志 泰忠
松本 晋介
野田 恭準
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP57024536A priority Critical patent/JPS58142296A/en
Publication of JPS58142296A publication Critical patent/JPS58142296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明#i核燃料棒主として軽水炉J@O核燃料棒の
内部加圧量の測定法Eelする。
DETAILED DESCRIPTION OF THE INVENTION This invention describes a method for measuring the amount of internal pressurization of a nuclear fuel rod #i, mainly a light water reactor J@O nuclear fuel rod.

沸騰水1Mまたは加圧水量の原子炉いわゆる軽水炉に用
いられる核燃料棒鴨は第illのようにジルコニウム合
金で作られた被覆管l中に多数の燃料ペレット2を装填
し、この燃料ペレット8の移動防止のために上方空間1
14に所畳強さのコイルバネ3を嵌挿し、被覆管10両
端には同じくジルコニウム合金製の端@5m、5bを施
し、これらをTlll1i(タングステン不活性ガス溶
接)等により被覆管2に気密に固着している。
Nuclear fuel rods used in so-called light water reactors with 1M of boiling water or pressurized water are loaded with a large number of fuel pellets 2 in a cladding tube l made of zirconium alloy, as shown in Figure 1, to prevent the movement of the fuel pellets 8. upper space 1 for
A coil spring 3 of the required strength is fitted into the cladding tube 14, and ends @5m and 5b made of zirconium alloy are applied to both ends of the cladding tube 10, and these are airtightly attached to the cladding tube 2 by Tllll1i (tungsten inert gas welding) or the like. It's stuck.

i走、その製造時に#i、燃料ペレット2に発生する熱
を被覆管2に効率よく伝達しその結果として燃料ペレッ
ト2の温度を低く押えておくために、上方空間郁4なら
びに積層ベレット2と被覆管1間の空隙部Kfl!に伝
導度の高いヘリウム等の不活性な雰囲気ガスを加圧状態
に剤入するのが普通である。
In order to efficiently transfer the heat generated in the fuel pellet 2 to the cladding tube 2 and, as a result, to keep the temperature of the fuel pellet 2 low, the upper space 4 and the laminated pellet 2 are Gap Kfl between cladding tubes 1! Usually, an inert atmospheric gas such as helium, which has high conductivity, is charged under pressure.

そのヤシ方としては、上方の端栓51に予めベントホー
ル6を穿孔しておくか、あるいは端栓5aを被覆管IK
溶接した後にレーザ加工勢によってベントホール6を穿
孔し、112図のようにそのベントホール6を設は九端
4&5畠の部分が加圧室a内に存在するようにして燃料
棒路をセットし、吸気手段(図示せず)によって燃料棒
路および加圧室畠中に残留する空気を排除し、その後に
おいて高圧ボンベb(150気圧程度)から減圧弁Cを
介して雰囲気ガスを加圧室7に導き、室内を所定圧力(
約3s気圧1ij[)に維持し、その状態でベントホー
ル6を通じて雰囲気ガスを燃料棒路中に一層6を気密に
する。この場合、軽水炉では雰囲気ガスの加圧量が少な
いと、被分裂反応が進行した後の燃料寿命後期の段階に
おいて、燃料ペレット2から雰囲気ガスよりも熱伝導度
の小さい植分袈生威ガスや揮発性の成分が放出され、こ
れが初期の寥−気ガスと混合してペレット2と被覆管1
との閾のギャップ熱伝達率を下け、その績釆として燃料
ペレット2の温度が高くなシ、被分曇生威物O放出が一
層増加し、熱伝達率が更に低下し、ベレット温度扛なお
上昇するといういわゆる「サーiルフィードバック」現
象を起こすととになる。
To do this, either punch a vent hole 6 in the upper end plug 51 in advance, or insert the end plug 5a into the cladding tube IK.
After welding, a vent hole 6 is drilled by laser machining, and the fuel rod path is set so that the vent hole 6 is located in the pressurizing chamber a, as shown in Fig. 112. , the air remaining in the fuel rod path and the pressurizing chamber is removed by an intake means (not shown), and then atmospheric gas is introduced into the pressurizing chamber 7 from the high pressure cylinder b (approximately 150 atm) via the pressure reducing valve C. to bring the room to a specified pressure (
The atmospheric pressure is maintained at about 3 s atmospheric pressure 1ij[), and in this state, atmospheric gas is introduced into the fuel rod path through the vent hole 6 to make the fuel rod passage 6 more airtight. In this case, in a light water reactor, if the pressurized amount of atmospheric gas is small, in the late stage of the fuel life after the fission reaction has progressed, the fuel pellet 2 will be transferred to the vegetative gas, which has a lower thermal conductivity than the atmospheric gas. Volatile components are released, which mix with the initial main gas and form pellets 2 and cladding tube 1.
As a result, when the temperature of the fuel pellet 2 is high, the release of cloudy organic matter O is further increased, the heat transfer coefficient is further reduced, and the temperature of the pellet 2 is lowered. In addition, if the so-called "circle feedback" phenomenon occurs, it will increase.

を友、加圧水Il原子炉では・、過電冷却水圧が約1!
s7気圧にも達するため、燃料賛嵩農の内外圧力差によ
る被覆管lの変形が問題であ夛、過去において非加圧燃
料棒(III造時内時内部圧力圧)を用いたために、燃
焼中に高い冷却材圧力によって押潰される全屈現象を起
こしたことがある。
In a pressurized water reactor, the overcharge cooling water pressure is approximately 1!
Since the pressure reaches up to s7 atm, deformation of the cladding tube l due to the pressure difference between the inside and outside of the fuel tank is a problem. There was a case where a full flexion phenomenon occurred where the pipe was crushed by high coolant pressure.

このため、製造された燃料棒ル中における雰囲気ガスの
加圧状態を確認することが重要なことであるが、従来で
杜IIz図における加圧室1に加圧歓視計f(ブルドン
管方式の圧力針)を連結し、雰囲気ガスの導入中に燃料
棒ル中の空間部4と連通ずる加圧室a内の圧力をモニタ
ーしたり、あるいは集音器を用いて加圧器aから燃料棒
ル内部へ雰囲気ガスを導入する際の吹込み音をモニター
したりするに過ぎず、直接燃料棒路内部の圧力を確認で
きるものでなく、特に密封S接によって燃料棒Aと加圧
!1&との連通が切られた後には燃料棒A内部の圧力を
糊定しiimすることができない。
For this reason, it is important to check the pressurized state of the atmospheric gas in the manufactured fuel rod. pressure needle) to monitor the pressure inside the pressurizing chamber a communicating with the space 4 in the fuel rod during the introduction of atmospheric gas, or use a sound collector to connect the fuel rod from the pressurizer a. It only monitors the blowing sound when atmospheric gas is introduced into the inside of the fuel rod A, and cannot directly check the pressure inside the fuel rod passage. After the communication with 1 & is cut off, the pressure inside fuel rod A cannot be fixed and iim.

そこで、これまでに圧力によって変形する部材を空間部
4に挿入することが提案されたが、イ。
Therefore, it has been proposed to insert a member that deforms under pressure into the space 4;

燃料棒外部より部材の変形量を精度よく測定することが
困難である、口、精度よく測定するためのシステムを準
備するのに相当の費用がかかる、ハ、空間部の有効容積
が減って核分裂生成ガス等O収容容積が不足する、等の
理由によって実現していない。
It is difficult to accurately measure the amount of deformation of a member from outside the fuel rod; (2) It costs a considerable amount of money to prepare a system to accurately measure; (3) The effective volume of the space decreases, resulting in nuclear fission. This has not been realized due to reasons such as the lack of O storage capacity for generated gas, etc.

一方、物体に張力をかけ九場合、その物体の固有振動数
が変化することが一般に知られている。
On the other hand, it is generally known that when tension is applied to an object, the natural frequency of that object changes.

そこで、この発明は上記のような実情に−み案出したも
ので、物体に張力をかけるとその固有振動数が変化する
現象を利用して、雰囲気ガスを加圧下に封入した核燃料
棒の加圧量を外部から大がかりな設備を要することなく
、容易、lI[1IKIi鐵できるようにした糊定方法
を提供するものである。
Therefore, this invention was devised in view of the above-mentioned circumstances, and utilizes the phenomenon that when tension is applied to an object, its natural frequency changes to apply pressure to a nuclear fuel rod filled with atmospheric gas under pressure. The present invention provides a method for gluing that allows the pressure to be easily adjusted from outside without requiring large-scale equipment.

核燃料棒ルの内部に雰囲気ガスを加圧して封入すれば、
核燃料棒ルの被覆管1には軸方向の引張応力σtが生じ
るが、その応力は近似的に次の式でここで、  P:内
部圧力(加圧量) γ:被嶺管の半径 t: l の肉、厚 また、上記のように被覆管1に引張応力σtが生じた場
合、核燃料棒路の固有振動数(1%)Sは次のような式
で表わされる。
If atmospheric gas is pressurized and sealed inside a nuclear fuel rod,
An axial tensile stress σt is generated in the cladding tube 1 of the nuclear fuel rod, and this stress can be approximated by the following formula: P: internal pressure (amount of pressurization) γ: radius t of the cladding tube: Also, when tensile stress σt is generated in the cladding tube 1 as described above, the natural frequency (1%) S of the nuclear fuel rod path is expressed by the following equation.

ここで、f島:加圧前の核燃料棒の固有振動数Am:被
覆管の断面積 E: l のヤング率 l: l の断面積 そこで、先ず全内部空間に大気ま友はこれと同圧の不活
性1kf81気ガスを封入した基準核燃料棒rht用意
して、その中央部に第3図のように鉄片11をバンド等
により着脱自在に順付け、これを所要の間隔をおいて二
点ム、Bにおいて支持し、鉄片11の下側に電磁石12
を配設してこの電磁石12を発振器13に@続しh ま
た電磁石120反対側上方には非接触型の変位計14を
配設してこれをシグナルアナライザー15に接続し、更
にシグナルアナライザー15と発振器13とを接続する
Here, f island: Natural frequency of the nuclear fuel rod before pressurization Am: Cross-sectional area of the cladding tube E: Young's modulus of l: Cross-sectional area of l Therefore, first of all, the atmosphere in the entire internal space has the same pressure as this. A reference nuclear fuel rod rht filled with inert 1kf81 gas is prepared, and as shown in Fig. 3, a steel piece 11 is removably attached to the center of the rod using a band, etc. , B, and an electromagnet 12 on the underside of the iron piece 11.
The electromagnet 12 is connected to the oscillator 13, and a non-contact displacement meter 14 is installed above the electromagnet 120 and connected to the signal analyzer 15. Connect with the oscillator 13.

そして、発振器13にょ9周波数が連続的に変化するよ
うに電磁石12を作動し、鉄片11を介して核燃料棒路
に強制振動を与える。
Then, the electromagnet 12 is operated so that the frequency of the oscillator 13 changes continuously, and forced vibration is applied to the nuclear fuel rod path via the iron piece 11.

そのときの核燃料棒路の振幅を変位針14により検出し
、その信号をシグナルアナライザー15に送り、ここに
おいて電磁石12すなわち発振器13−IIX付与する
強制振動と核燃料棒ルの出力振動との共振点を探知して
基準核燃料棒路の■有振動数f%を検出する。
The amplitude of the nuclear fuel rod path at that time is detected by the displacement needle 14, and the signal is sent to the signal analyzer 15, which detects the resonance point between the forced vibration applied by the electromagnet 12, that is, the oscillator 13-IIX, and the output vibration of the nuclear fuel rod. Detect the frequency f% of the reference nuclear fuel rod path.

次いで、上記の測定部材中から基準核燃料棒港を取外す
と共にこれから鉄片11を取外し、この鉄片11を全内
部空間に雰囲気ガスを加圧して新入した加圧型核燃料棒
iの中央部に付轄直し、これを上記−足部材中に配設し
て同じ<A、B二点で支持し、上述したと同じ手順によ
って加圧11核燃料棒がの固有振動数(fs) sを測
定する。
Next, remove the reference nuclear fuel rod port from the above measurement member, remove the iron piece 11 from it, pressurize the atmosphere gas in the entire internal space, and reassign this iron piece 11 to the center of the newly inserted pressurized nuclear fuel rod i. This is placed in the leg member and supported at the same two points A and B, and the natural frequency (fs) s of the pressurized nuclear fuel rod 11 is measured using the same procedure as described above.

しかして、雰囲気ガスの圧力すなわち加圧量は前記(2
畠)式を組み替えることにより、と表わすことができ、
この(3)式に基準核燃料棒路の固有振動数f、および
加圧型核燃料棒ル′の固有振動数(fs) sの測定結
果を当て嵌めることにより、雰囲気ガスの加圧量Pを容
易に算出することができる。
Therefore, the pressure of the atmospheric gas, that is, the amount of pressurization is
By rearranging the equation (Hata), it can be expressed as,
By applying the measurement results of the natural frequency f of the reference nuclear fuel rod path and the natural frequency (fs) s of the pressurized nuclear fuel rod to this equation (3), the pressurization amount P of the atmospheric gas can be easily determined. It can be calculated.

第4図は基準核燃料棒ルおよび加圧型核燃料棒イの固有
振動数の比と加圧型核燃料棒d内の雰囲気ガスの加圧量
との関係を示すものであり、曲線は雰囲気ガスの圧力を
25ゆ7m、50ゆ/−275kg/d 、 100に
&/−・・・・・・に仮定してその数値を上記(3)式
に代入して両燃料棒の固有振動数の(fル)畠 比、□−を算出しく 1.2 、1.4 、1.55 
、1.7・・・・・・)その点を結んだもので、一方O
印は基準核燃料棒路および内部空間に25′Kg/J 
、 50kl?/、j 、 75ゆ/−(試験後、破壊
検査して内圧を確M)に加圧した雰囲気ガスをそれぞれ
封入し友核燃料棒ぎの固有振動数を前記のようにして実
測した結果をプロットしたもので、計算値と大体一致す
ることが分る。
Figure 4 shows the relationship between the ratio of the natural frequencies of the reference nuclear fuel rod and the pressurized nuclear fuel rod d and the amount of pressurization of the atmospheric gas in the pressurized nuclear fuel rod d, and the curve shows the pressure of the atmospheric gas. Assuming that 25 Yu7m, 50 Yu/-275 kg/d, 100 &/-......, substitute those values into the above equation (3) to calculate the natural frequency (f) of both fuel rods. ) Calculate Hatake ratio, □- 1.2 , 1.4 , 1.55
, 1.7...) connect the points, while O
The mark indicates 25'Kg/J in the reference nuclear fuel rod path and internal space.
, 50kl? /, j, 75 Yu/- (After the test, the internal pressure was confirmed by destructive inspection) Filled with atmospheric gas, the natural frequency of the friendly nuclear fuel rod was actually measured as described above, and the results were plotted. It can be seen that the values roughly match the calculated values.

以上のようにこの発明によれば、内部空間を大気圧とし
た基準核燃料棒の固有振動数と内部空間に不活性の1!
!囲気ガスを加圧して封入し次加圧型核燃料棒の四有振
動数を検出して、両者の固有振動数の比に基づいて雰囲
気ガスの加圧量を検知するようにしたので、加圧型核燃
料棒を何ら損傷することなく外部から雰囲気ガスの圧力
状態を容重に知ることができ、被覆管と燃料ベレット間
のギャップ熱伝達率の低下や全屈現象を未然に防ぐこと
ができ、しかも大がかりな測定手段を必要としない。
As described above, according to the present invention, the natural frequency of the reference nuclear fuel rod with the internal space at atmospheric pressure and the inert 1!
! The surrounding gas is pressurized and sealed, and then the four frequencies of the pressurized nuclear fuel rod are detected, and the amount of pressurization of the atmospheric gas is detected based on the ratio of the two natural frequencies, so the pressurized nuclear fuel It is possible to know the pressure state of the atmospheric gas from the outside without damaging the rod in any way, and it is possible to prevent a decrease in the gap heat transfer coefficient between the cladding tube and the fuel pellet and the phenomenon of total bending. No measuring means required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は核燃料棒の断面図、 第21Elは雰囲気ガスの封入工程の系統IQ0第3図
はこの発明に係る核燃料棒の固有振動数の測定手段の系
統図。 第4tl#i−有揚動数の比と雰囲気ガスの加圧量との
関係を示すぐらふ。 図中、絡・・・基準核燃料棒、ル′−・・加圧Il被燃
料棒、1・・・被覆管、2・・・燃料ペレット、4・−
・空関郁、11・−・鉄片、12・・・電磁石、13・
・・発振器、14・・・変位針、1G・・・シグナルア
ナライザー。
FIG. 1 is a sectional view of a nuclear fuel rod, and 21El is a system IQ0 of the atmospheric gas filling process. FIG. 3 is a system diagram of a means for measuring the natural frequency of a nuclear fuel rod according to the present invention. 4th tl#i - A rough graph showing the relationship between the ratio of the lift frequency and the pressurization amount of the atmospheric gas. In the figure, connection...Reference nuclear fuel rod, Le'... Pressurized Il fueled rod, 1... Cladding tube, 2... Fuel pellet, 4...
・Iku Kusei, 11・-・Iron piece, 12・・Electromagnet, 13・
...Oscillator, 14...Displacement needle, 1G...Signal analyzer.

Claims (1)

【特許請求の範囲】[Claims] 内郁空関を大気圧とし喪核燃料棒に強制振動を付与して
、その固有振動数を検出し、次いで内郁空関に不活性の
雰囲気ガスを加圧して封入し友−圧蓋核燃料棒に強制振
動を付与して七〇ml有振動数を検出し、両核燃料棒の
一有振動数の比に基づいて上記雰囲気ガスの加圧量を検
知することを特徴とする被燃料棒の内部加圧量の纒定法
The inner air barrier is set to atmospheric pressure, forced vibration is applied to the nuclear fuel rod, its natural frequency is detected, and then an inert atmosphere gas is pressurized and sealed in the inner air barrier to create a pressure-covered nuclear fuel rod. The inside of the fueled rod is characterized in that the 70ml frequency is detected by applying forced vibration to the fuel rod, and the pressurized amount of the atmospheric gas is detected based on the ratio of the unique frequency of both nuclear fuel rods. How to determine the amount of pressurization.
JP57024536A 1982-02-19 1982-02-19 Method of measuring inside pressure of nuclear fuel rod Pending JPS58142296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024536A JPS58142296A (en) 1982-02-19 1982-02-19 Method of measuring inside pressure of nuclear fuel rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024536A JPS58142296A (en) 1982-02-19 1982-02-19 Method of measuring inside pressure of nuclear fuel rod

Publications (1)

Publication Number Publication Date
JPS58142296A true JPS58142296A (en) 1983-08-24

Family

ID=12140870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024536A Pending JPS58142296A (en) 1982-02-19 1982-02-19 Method of measuring inside pressure of nuclear fuel rod

Country Status (1)

Country Link
JP (1) JPS58142296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156967A1 (en) * 2022-02-18 2023-08-24 Centrum Vyzkumu Rez S.R.O. Method of fuel rods internal pressure measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156967A1 (en) * 2022-02-18 2023-08-24 Centrum Vyzkumu Rez S.R.O. Method of fuel rods internal pressure measurement

Similar Documents

Publication Publication Date Title
Hofman Irradiation behavior of experimental Mark-II Experimental Breeder Reactor II driver fuel
US4778648A (en) Zirconium cladded pressurized water reactor nuclear fuel element
US4420455A (en) End plug gauging device and method
JPS58142296A (en) Method of measuring inside pressure of nuclear fuel rod
JP3423682B2 (en) Thin-walled cylinder internal pressure sealing method and internal pressure sealed test piece
US3846235A (en) Failure indicator for nuclear reactor fuel element
JPS5853300B2 (en) Method for verifying internal pressure of fuel rods for nuclear reactors
Crocker et al. Nuclear Start-up of the SPERT IV Reactor
Herz et al. Results of the test of the European LCT coil in the TOSKA facility
Duncan et al. THERMAL RESPONSE AND CLADDING PERFORMANCE OF AN INTERNALLY PRESSURIZED, ZIRCALOY--CLAD, SIMULATED BWR FUEL BUNDLE COOLED BY SPRAY UNDER LOSS-OF-COOLANT CONDITIONS.
US3989590A (en) Pressurized fuel elements for nuclear reactors
Marshall et al. YTTRIUM HYDRIDE MODERATOR EVALUATION--IN-PILE THERMAL STABILITY
JPS6087978A (en) Method and device for pressure welding of nuclear fuel rod
KR820000310B1 (en) Method for verifying the pressure in a nuclear reactor fuel rod
Fish Creep-rupture properties of 20% cold-worked Type 316 stainless steel after high fluence neutron irradiation
Mayuzumi et al. The applicability of the strain-hardening rule to creep deformation of Zircaloy fuel cladding tube under dry storage condition
Toole The effects of pressure and flow on room temperature power excursions in SPERT III
Stephan EFFECTS OF CLADDING MATERIAL AND HEAT TREATMENT ON THE RESPONSE OF WATERLOGGED UO $ sub 2$ FUEL RODS TO POWER BURSTS.
Heineman POSTFABRICATION EVALUATION OF INTEGRITY AND SERVICEABILITY OF CANNED GRAPHITE FOR THE EBR-II NEUTRON SHIELD.
Christensen Irradiation testing of gas-release vents in EBR-II
JP2516630B2 (en) Irradiation container having a brazed joint on the inner wall
Louthan Jr Destructive Evaluation of Irradiated Zircaloy Sheathing
JPH0458914B2 (en)
CN104132765A (en) Device and method for measuring pipe-end load of explosion valve
JPH0329731Y2 (en)