JPS58142136A - Controlling circuit for air conditioning - Google Patents

Controlling circuit for air conditioning

Info

Publication number
JPS58142136A
JPS58142136A JP57024055A JP2405582A JPS58142136A JP S58142136 A JPS58142136 A JP S58142136A JP 57024055 A JP57024055 A JP 57024055A JP 2405582 A JP2405582 A JP 2405582A JP S58142136 A JPS58142136 A JP S58142136A
Authority
JP
Japan
Prior art keywords
circuit
heating
output
cooling
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57024055A
Other languages
Japanese (ja)
Other versions
JPS6213577B2 (en
Inventor
Junichi Kondo
純一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON RANKO KK
Original Assignee
NIPPON RANKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON RANKO KK filed Critical NIPPON RANKO KK
Priority to JP57024055A priority Critical patent/JPS58142136A/en
Publication of JPS58142136A publication Critical patent/JPS58142136A/en
Publication of JPS6213577B2 publication Critical patent/JPS6213577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable to remote-control the controlling circuit with a single knob and consequently improve the operational convenience by a method wherein various functions such as temperature regulation, fan speed controlling, change- over of cooling and heating and the like are all integrated into electronic circuits and the electronic circuits are associated with one another so as to collect them into the single controlling circuit. CONSTITUTION:A cooling-heating change-over circuit 5 is so constituted as to switching a four way valve by turning a relay 11 ON/OFF in response to the output of an operational amplifier 9, which is issued by accompanying with the operation of a variable resistor 2. In addition, a fan speed controlling circuit 6 is so designed as to change-over between the high speed side and low speed side of a fan motor 19 by controlling a relay 18 by means of the output of an operational amplifier 13, which compares the output of the variable resistor 2 with the set value determined by semi-fixed resistors 15 and 20 selectable on heating and cooling modes. Furthermore, similarly a compressor controlling circuit 7 is so constituted as to control a compressor motor 27 by controlling a relay 26 in response to the output of the variable resistor 2.

Description

【発明の詳細な説明】 本発明は冷1唆Ntl?!I l111回路に関し、特
に、四方切換1eとコンプレッサと冷温風送風用ファン
とを含む熱ポン1力代冷暖房装置に用いる冷暖房制御回
路に関する。
[Detailed Description of the Invention] The present invention is based on cold stimulation Ntl? ! The present invention relates to the Il111 circuit, and particularly relates to a heating and cooling control circuit used in a heat pump single-power heating and cooling system that includes a four-way switch 1e, a compressor, and a fan for blowing cold and hot air.

F記のよう/よ熱、I?ンデ方式冷暖房装置装は公知Q
あり、それに用いるだめの冷暖房制#1gl路も棹々提
東されている。しかし、冷暖房の制御には、温度調節、
ファン速度制御、冷暖房切換、コ、7)0レツサの再起
動遅延タイマ等の諸機能が含まれる/ノζ、従来の冷暖
房制御におい−(はこれら諸機能が別個シケして設けら
れ一〇いたためそれぞれ別々釦作動させなげればならな
いという不便さがあった。
Like F/Yo fever, I? Nde method air conditioning system is well known Q
There is, and the air-conditioning system #1GL used for it is also completely installed. However, in order to control heating and cooling, temperature adjustment,
It includes various functions such as fan speed control, heating/cooling switching, restart delay timer, etc. In conventional heating/cooling control, these functions are provided separately. Therefore, each button had to be operated separately, which was inconvenient.

本発明の目的は従来の冷暖房制御に16けるこのような
不便さを取除くことQあ−〕で、k:、記諸機能を4−
べて1子回路化し、それぞれυ回路r関連づけて同一つ
の制御回路にまとめあげ、単一のつまみQこり制御回路
を遠隔操作QきるようQてしたことを特徴とする。
The purpose of the present invention is to eliminate such inconveniences in conventional heating and cooling control.
They are all made into one child circuit, each associated with a υ circuit r, and combined into the same control circuit, and the single knob Q stiffness control circuit is Q-shaped so that it can be remotely controlled.

以ド、本発明の好適な実施例を添付した図面分参照しつ
つ説明する。各図で同一の符号は同一の要素τ示rもの
である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The same reference numerals in each figure represent the same elements τ.

第1図は、本発明による遠隔操作用の操作部を示し、つ
まみ1G・こよ・って、冷暖房のdlに産膜・1fと、
風針制岬と、冷暖房動作停止の操作ができるようとによ
り暖房運転が行なわれ、さらに回rはど暖房温度がヒ昇
し、終端の「強]のところま′Q回すとファンスピード
が最強となって風量が増加し室温はさらにF昇する。ま
た図の1OFF」の位置から反時計方向に回すことによ
り冷房運転が行なわれ、暖房運転の時と同様、終端の1
強」のところまで回すと風量が最大となり室温はさらに
ド降する0 第2図は、第1図に示しtこ操作部の内部構造を示すも
のであり、可変抵抗器2の回転軸につまみ1とし・々−
3が取りつけられている。つまみ1が「OFF Jの位
置にあるときはし・マー3がマイクロスイッチ4をオフ
させ、つまみ1が[OFF Jの位置から時計方向また
は反時計方向にHされるとマイクロスイッチ4はオンさ
れる。
FIG. 1 shows the operating unit for remote control according to the present invention.
Heating operation is performed by the wind needle control cape and the ability to stop the cooling/heating operation, and when the heating temperature is turned further, the heating temperature rises to high, and when you turn it to the end of "strong", the fan speed increases to the highest. As a result, the air volume increases and the room temperature further rises by F.Also, cooling operation is performed by turning counterclockwise from the "1OFF" position in the figure, and as with heating operation, the terminal 1
If you turn it all the way to ``HIGH'', the air volume will reach the maximum and the room temperature will drop further.Figure 2 shows the internal structure of the operating section shown in Figure 1. 1 and...
3 is installed. When knob 1 is in the OFF J position, the switch 3 turns off the microswitch 4, and when knob 1 is turned clockwise or counterclockwise from the OFF J position, the microswitch 4 is turned on. Ru.

第6図は電源部ケ示す回路図であって、変圧器Tの1次
巻線がマイクロスイッチ4を介して外部交流(源Vに接
続され、交流覗)J出カシ、′M子v−vがやはりマイ
クロスイッチ4ケ介して外部交流14源vK接続されC
いる。また変圧器゛rの2つの2次巻線には整流装置R
工、R2がそれぞれ接続されている。θl−θl、θ2
−82はそれぞれこれら整流装置R工、R2の直流出力
端子であり直流這圧Bl、 x2を出力する。
FIG. 6 is a circuit diagram showing the power supply section, in which the primary winding of the transformer T is connected to the external AC (connected to the source V, looking into the AC) through the microswitch 4. v is also connected to 14 external AC sources vK via 4 microswitches, and C
There is. In addition, the two secondary windings of the transformer R are equipped with a rectifier R.
and R2 are connected to each other. θl−θl, θ2
-82 are the DC output terminals of these rectifiers R and R2, respectively, and output the DC creep pressures Bl and x2.

第4図は本発明の冷暖房制御回路を示す1jjl路図で
ある。一点鎖線で囲まれたブロック5は冷暖房切換回路
、ブロック6はファン速度制御回路、ブロック7はコン
プレッサ制御回路、ブロック8はコン戸しツサ再起動遅
延タイマ1ilj@eある。またv’−v’は交/7!
電源入力端子、81’  j1’ 、 82’ −62
’は直流鑞源入力端子でル)ってそれぞれ第6図の出力
端子v−v、eニーe工、θ、−82に接続されCいる
FIG. 4 is a 1jjl road diagram showing the heating and cooling control circuit of the present invention. Block 5 surrounded by a dashed line is a heating/cooling switching circuit, block 6 is a fan speed control circuit, block 7 is a compressor control circuit, and block 8 is an air conditioner door restart delay timer. Also, v'-v' is intersection/7!
Power input terminal, 81'j1', 82'-62
' is a DC brazing source input terminal and is connected to the output terminals v, e, e, θ, and -82 in FIG. 6, respectively.

先ず冷暖房切換回路5について説明する。可変抵抗器2
0回転軸の回転角に比例した直圧が可変抵抗器2の可動
端子から、比較器回路を構成i−ている演算噌幅器9の
←)4子に印加される6IIJ変抵抗器2のつまみ1は
、可変抵抗器20町動端子が第4図ぐみられるようにそ
の移動径路のほぼ中央点に、ジ)るときl−OF’F 
JO位1鋒にあるものとし、一つまみ1を「OFF」の
位置から時計方向に回すと可変抵抗器20町動端子が第
4図でF方に移動し、反時計方向に回rとに方に移!1
11J1−るものとする。
First, the heating/cooling switching circuit 5 will be explained. Variable resistor 2
A direct pressure proportional to the rotation angle of the 0-rotation axis is applied from the movable terminal of the variable resistor 2 to the ←) 4 elements of the variable resistor 9 that constitutes the comparator circuit. Knob 1 is set so that the variable resistor 20 terminal is at approximately the center of its travel path as shown in Figure 4.
Assuming that the JO position is in the 1st position, turning the knob 1 clockwise from the "OFF" position will move the variable resistor 20 terminal in the direction F in Figure 4, and turning it counterclockwise will move it to the F direction in Figure 4. Move on! 1
11J1-.

またげ変抵抗器20可動端子が図示の中央点よりもドの
方の位置に5bるとき、つまりつまみ1が「OFF J
の位置から時計方向に同されて暖房制御の位置に4ある
ときはリレー11が付勢され、中央点より−Fの方の位
置にあるとき、つまりつまみ1が冷房制御の位置にある
ときはリレー11が除勢されるように、半固定抵抗器1
0で比較器回路の動作点を設定して閘〈。リレー11が
付勢されるとその接点11−1が閉じて四方弁12が暖
房モードに切換えられ、除勢されると接点11−1が開
ぎ四方弁12が冷房モードに切換えられる。
When the movable terminal of the straddle resistor 20 is at a position 5b closer to the center point than the illustrated center point, that is, when the knob 1 is set to OFF
When the knob 1 is in the heating control position clockwise from the 4 position, the relay 11 is energized, and when it is in the -F position from the center point, that is, when the knob 1 is in the cooling control position, the relay 11 is energized. Semi-fixed resistor 1 so that relay 11 is deenergized
Set the operating point of the comparator circuit at 0 and lock. When the relay 11 is energized, its contact 11-1 is closed and the four-way valve 12 is switched to the heating mode, and when it is de-energized, the contact 11-1 is opened and the four-way valve 12 is switched to the cooling mode.

次にファン速度制御回路6に、つ1いて説明する。Next, the fan speed control circuit 6 will be explained in detail.

この回路の演算増幅器13の(−)4子にもまた、可変
抵抗器20可動端子からの出力4圧が印加される。この
演X、増幅器13の動作点は半固定抵抗器15.20で
設定されるが、先ずつまみ1により暖房モート゛が選択
されたときについて考える。この場合は北述したように
リレー11 /)!−付勢され、J要点1l−2(υb
接点が開きa接点が閉じているので半固定抵抗器20は
短絡されて1.・る。つ塘み1を暖房モーPの「強」の
位置においたとき、つまり、可変抵抗器20町動暗点を
第4図で最上端においたときの演算増幅器13の出力が
ハイレベルであり、つまみ1をそれより少L Qも反時
計方向に回゛「と演算増幅器13の(→端f−への印加
、枕圧がト昇しその出力が反転してローレベルになるよ
う、先ず暖房モードにおける演算増幅器13の動作点な
半固定抵抗器15により設定する。演算増幅器13の出
力がハイレベルにあるとき、つまりつまみが暖房「強」
の位置にあるとぎは、排他的ノア回路160両入力がと
もにハイレベルとなりその出力カハイレベルになるのC
トランジスタ17がオンされリレー18が付勢される。
The four output voltages from the movable terminal of the variable resistor 20 are also applied to the (-) four terminals of the operational amplifier 13 in this circuit. In this operation, the operating point of the amplifier 13 is set by the semi-fixed resistors 15 and 20, but let us consider the case where the heating mode is selected by the knob 1 first. In this case, as mentioned above, relay 11/)! - energized, J point 1l-2 (υb
Since the contact is open and the a contact is closed, the semi-fixed resistor 20 is shorted and 1.・Ru. When the switch 1 is placed in the "strong" position of the heating mode P, that is, when the variable resistor 20 and the moving dark spot are placed at the top end in FIG. 4, the output of the operational amplifier 13 is at a high level. Turn the knob 1 less than that and turn the LQ counterclockwise, and apply the voltage to the (→ end f-) of the operational amplifier 13. The operating point of the operational amplifier 13 in the mode is set by the semi-fixed resistor 15.When the output of the operational amplifier 13 is at a high level, that is, the knob is set to heating "strong".
In the case of the switch at position C, both inputs of the exclusive NOR circuit 160 become high level, and its output becomes high level.
Transistor 17 is turned on and relay 18 is energized.

〕fンモータ19の高速側巻線がリレー18の接点18
−1のa接点側、低速側巻線がb接点側に接続されてい
るので、リレー18が付勢され接点18−1のa接点が
閉じるとファンモータは高速となる。つまみ1を暖房「
強」から反時計方向に少し回すと。
] The high-speed side winding of the motor 19 is connected to the contact 18 of the relay 18.
Since the A contact side of -1 and the low speed side winding are connected to the B contact side, when the relay 18 is energized and the A contact of contact 18-1 is closed, the fan motor becomes high speed. Turn knob 1 to heating
Turn it slightly counterclockwise from "High".

演算増幅器13の出力がローレベルになるので排他的ノ
ア回路16の出力がローレベルとなり、トランジスタ1
7はオフされてリレー18が除勢され、その接点18−
1のa接点が開かれb接点が閉じるのでファンモータ1
9は低速となる。
Since the output of the operational amplifier 13 becomes low level, the output of the exclusive NOR circuit 16 becomes low level, and the transistor 1
7 is turned off, the relay 18 is deenergized, and its contacts 18-
Since the a contact of 1 is opened and the b contact is closed, the fan motor 1
9 is low speed.

次につまみ1によって冷房モードが選択されたときにつ
いて考える。冷房モー1が選択されると上述したように
リレー11が除勢され接点11−1が開かれて西方弁1
2が冷房モードに切換えられる。またもう一つのリレー
要点11−2はa接点が開きb接点が閉じるので半固定
抵抗器20の短絡は解除され、このb1妾点に接続され
た排他的ノア回路16の一方入力はローレベルとなる。
Next, let us consider the case where the cooling mode is selected by knob 1. When cooling mode 1 is selected, relay 11 is deenergized and contact 11-1 is opened to open westward valve 1 as described above.
2 is switched to cooling mode. In addition, in another relay point 11-2, the a contact opens and the b contact closes, so the short circuit of the semi-fixed resistor 20 is released, and one input of the exclusive NOR circuit 16 connected to this b1 concubine point becomes a low level. Become.

また半固定抵抗器20の短絡が解除されたので演算増幅
器13の(+)4子への人力4圧が上昇し、暖房モーp
においてはそのI11力がローレベルをとっていたよう
なつまみ1の位置においても・・イレベルをとるように
なる。そこで冷房モードにおいては、つまみ1を「強」
の位置においたとき、つまりri丁変抵抗器2の町動羨
点な第4図で最]二肩に1.sい−(演算増幅器13の
(づ入力への印加醒圧を液入に(またときにはじめて演
算増幅器13の出力がIJ−レベルになり、つまみ1を
「強」の位置から反時計方向に少しでも回転させると、
つまり、可変抵抗器20可動接点を第4図でみて最上端
からドの方へ少しひも移行させると、演算増幅器13の
(→入力へり印加1圧が減少して演算増幅器13の11
.i力はハイレベルになるように、冷房モードにおける
演算増幅器13の動作点を半固定抵抗器20によって設
定する。この場合さきに調節した半固定抵抗器15を動
かさないのは当然である。このようにすることによって
、つまみ1が[強Jに位置されたときは排他的ノア回路
16の2人力が共にローレベルとなるのでその出幻はハ
イレベルとなり、トランジスタ17がオンしファンモー
タ19は高速となる。つまみ10位IWを1強]より少
しQも反時計方向に戻4−と、I:水を−たように演算
増幅器13σ−)出力が−・イレベルとなるので、排他
的ノア回路1602つの入力の一方がローレベル、他方
がハイレベルとな()のひその出力はローレベルとなり
トランジスタ17がオンし、ファンモータ19は低速に
変る。
In addition, since the short circuit of the semi-fixed resistor 20 has been released, the human power 4 voltage to the (+) 4 terminal of the operational amplifier 13 increases, and the heating mode p
In this case, even in the position of knob 1, where the I11 force was at a low level, it becomes a high level. Therefore, in cooling mode, set knob 1 to "strong".
In other words, when placed in the position shown in Figure 4, where the movement of the transformer resistor 2 is at its highest point, 1. When the output of the operational amplifier 13 reaches the IJ- level, turn the knob 1 counterclockwise from the "Strong" position. If you rotate it even a little,
In other words, when the movable contact of the variable resistor 20 is moved slightly from the uppermost end to the lower end as shown in FIG.
.. The operating point of the operational amplifier 13 in the cooling mode is set by the semi-fixed resistor 20 so that the i power is at a high level. In this case, it is natural to not move the semi-fixed resistor 15 that was adjusted earlier. By doing this, when the knob 1 is set to [strong J], both of the two inputs of the exclusive NOR circuit 16 become low level, so the output becomes high level, the transistor 17 is turned on, and the fan motor 19 is faster. Turn the knob at position 10 IW to a little over 1] and return the Q a little counterclockwise to 4-, and the output of the operational amplifier 13σ-) becomes - level as if the water was turned on, so the two inputs of the exclusive NOR circuit 160 One of them is at a low level and the other is at a high level, and the output of () becomes a low level, the transistor 17 is turned on, and the fan motor 19 changes to a low speed.

次にコンプレッサ制御回路7について説明する。Next, the compressor control circuit 7 will be explained.

今、所定の室温のもとで、つまみ1をl−OFF Jの
位置から少しだけ反時計方向に回して冷房モーPを選択
したときを考える。この状態では、−ト述したように、
リレー11が除勢され、その接点11〜1が開放され、
四方弁12が冷房モードに切換えられる。またリレー接
点11−3もa接点が開かれb接点が閉lコ、る。この
状態では演算増幅器22の出77がローレベルになるが
それより少しでも演算増幅器22の←)入力への印加1
圧がFると出力がハイレベルになるように半固定抵抗器
23′Q演算増幅器22の動作点を設定する。このよう
にして演算増幅器22の出力がローレベルをとるとき、
排他的ノア回路2402人力がともに1 0−レベルになるのでその出力は・・イレベルとなり、
トランジスタ252オンさせCリレー26を伺勢し、こ
のリレーの接点26−1ヶ閉じ、後で述・′\るリレー
42の常閉要点42−1 &介してコン7°レツザ27
を回転させ冷房運転が行なわれる。
Now, consider a case where the cooling mode P is selected by turning the knob 1 slightly counterclockwise from the l-OFF J position at a predetermined room temperature. In this state, as mentioned above,
Relay 11 is deenergized and its contacts 11-1 are opened,
The four-way valve 12 is switched to cooling mode. Also, in the relay contact 11-3, the a contact is opened and the b contact is closed. In this state, the output 77 of the operational amplifier 22 is at a low level, but even if the output 77 of the operational amplifier 22 is at a low level, the voltage applied to the ←) input of the operational amplifier 22 is low.
The operating point of the semi-fixed resistor 23'Q operational amplifier 22 is set so that the output becomes high level when the voltage is F. When the output of the operational amplifier 22 takes a low level in this way,
Exclusive NOR circuit 2402 human power both become 1 and 0- level, so its output becomes...I level,
The transistor 252 is turned on and the C relay 26 is activated, the contact 26-1 of this relay is closed, and the normally closed point 42-1 of the relay 42, which will be described later
Cooling operation is performed by rotating the .

この状態で1冷房運転によって室温がドるとサーミスタ
28の抵抗値が尺きくなり、点29の1位7Qζドるの
で演算増幅器22の←)入力への印加イ圧が低−ドし、
その出力が・・イレベルとなる。そうすると排他的ノア
回路2402人力の一方/J″−・・イレベル、他方が
ローレベルとなるのでその出力がローレベルとなり、リ
レー26を除勢してその要点26−1を開くのQコ/7
′ルツサ27は停止する。
In this state, when the room temperature drops due to one cooling operation, the resistance value of the thermistor 28 increases, and the first position of point 29 increases, so the voltage applied to the ←) input of the operational amplifier 22 becomes low.
The output becomes... level. Then, one side of the exclusive NOR circuit 2402 is at /J''-... level, and the other side is at low level, so its output becomes low level, energizing the relay 26 and opening the main point 26-1. Q/7
'Lutusa 27 stops.

参与→演算増幅器22の←)入力への印加1圧がト昇し
てその出力がローレベルとなるのでトv1くシたと同様
に再びコ/″/ルツ丈27が回転することは容易に理解
されよう。コンプレツナ27が回1鰍して室温が低ドし
演算11〃幅器22の出/Jが−・イレベ 9 ルト・′よ一つ−Cコンゾレツリ゛27が停止した時点
Qつまみ1乞今までの位1tかもさらに反時計方向に少
し/こげ回すと演算増幅器22の(−)入力へり印加直
圧がL昇してその出)−Jがローレベルとなり、上述し
たト同様に、コンプレッサ27が回1にされ冷房動作を
再開して室(Inkさらに低Fさせる。このようにして
、′つ筐み1をさらに反時計方向に回して[強]の位i
ffま−ご移動させるとコンプレッサ27のみならず、
ヒポしたようにファンモータ19も同紙するので冷房は
一段と急速にす\み室温は所定の最低温度まC低ドする
。このようにして、つまみ1の位置によ一つ−(冷房温
度を所望直に選択することができる。
It is easy to understand that since the voltage applied to the input of the input → operational amplifier 22 rises and its output becomes a low level, the height 27 rotates again in the same way as when it was turned on. When the compressor 27 is turned on and the room temperature is low, the output/J of the computation unit 22 is - level 9. If the current value is 1 t, if it is turned a little more counterclockwise, the direct pressure applied to the (-) input of the operational amplifier 22 will rise by L, and the output (-J) will become low level, and as in the case of the above-mentioned G, the compressor 27 is set to 1, the cooling operation is resumed, and the room temperature is further lowered.In this way, turn the housing 1 further counterclockwise until it reaches the [strong] position.
If you move ff, not only the compressor 27 but also
The fan motor 19 also operates in the same way as before, so the air conditioner cools down even more rapidly and the room temperature drops to a predetermined minimum temperature. In this way, the cooling temperature can be selected directly depending on the position of the knob 1.

次に暖房モードの場合についてコンプレッサ制御回路7
の動作を説明する。先ず所定の温度ドで演算増幅器22
の動作点乞設ポする。つまみ1が[OFF Jの位置か
ら少しだけ時計方向に回転され−C暖房モードが選択さ
れると、上述したよう圧リレー11が付勢され四方IP
12がオンされる。またリレー11の接点11−3のa
要点が閉じ、b接点が開かれ半固定抵抗器30の短絡が
解除される。半固定抵抗器30が半固定抵抗器23に直
列に挿入されるので演算増幅器22の(−1→入カヘ(
ノー)印加直圧は、(−)入力への印加覗圧がつまみ1
0時計方向への移動により低ドしたのに対応して低−ド
−rる。この状態で、演算増幅器220川力が・・イレ
ベルとなるが増幅器22の(−)入力へり印加(圧がそ
れより少しでもヒ昇するとローレベルになるように、半
固定抵抗器30を調節して演算増幅器22の動作点を設
定する。このときさきに調節した半固、を抵抗器23を
動かさないのは当然のことである。演算増幅器22の出
力が・・イレベルなとると、排他ノア回路24への2人
力/)tともに・・イレベルとなるのでその出力もハイ
レペ・しとなり、トランジスタ25をオンさせ、リレー
26愛付勢し、コンブレラす27を回転させて暖房運:
吸乞行なわせる。暖房運妖により室内温度が一ヒ昇し−
(サーミスタ28の抵抗値が減少し点2901位がト昇
すると、演算増幅器22の(→入力への印加1圧がL昇
しその出〕7がローレベルとなり、排他的ノレベルとな
るのでその出力はローレベルとなりトランジスタ25が
オフされ、従ってリレー26が除勢されてコンプレッサ
27が停止する。この状態でつまみ1乞さらに時計方向
にu丁と1.ト他的ノア回路24の出力がハイとなって
さらに室温な高めるようにコンプレッサ27の暖房連転
が竹なわれること場合と同様にファンモータ19か高速
となり室温は急速に上昇する。このようにしてつまみ1
の位置によって暖房温度ケ所望値に選択することができ
る。
Next, regarding the case of heating mode, compressor control circuit 7
Explain the operation. First, at a predetermined temperature, the operational amplifier 22
The operating point is determined. When the knob 1 is rotated slightly clockwise from the OFF J position and the -C heating mode is selected, the pressure relay 11 is energized as described above and the four-way IP
12 is turned on. Also, a of contact 11-3 of relay 11
The point is closed, the b contact is opened, and the short circuit of the semi-fixed resistor 30 is released. Since the semi-fixed resistor 30 is inserted in series with the semi-fixed resistor 23, the (-1→input) of the operational amplifier 22 is
No) The applied direct pressure is the applied pressure to the (-) input, which is the knob 1.
0 In response to the lowering of the clockwise movement, the lowering of the current occurs. In this state, the voltage of the operational amplifier 220 becomes low level, but the semi-fixed resistor 30 is adjusted so that if the voltage applied to the (-) input of the amplifier 22 rises even slightly above that level, it becomes low level. Set the operating point of the operational amplifier 22. At this time, it is natural to not move the semi-rigid resistor 23 that was previously adjusted. Two people's power to the circuit 24/)t both become level, so the output also becomes high-rep, turning on the transistor 25, energizing the relay 26, rotating the conbrella 27, and heating operation:
Make them beg. The indoor temperature rises due to the heating spell.
(When the resistance value of the thermistor 28 decreases and the point 2901 rises, the voltage applied to the operational amplifier 22 (→1 voltage applied to the input rises to becomes a low level, turning off the transistor 25, thereby deenergizing the relay 26, and stopping the compressor 27.In this state, turn the knob 1 and then clockwise until the output of the NOR circuit 24 goes high. Then, in order to further raise the room temperature, the continuous heating operation of the compressor 27 is turned off, and as in the case, the fan motor 19 becomes faster and the room temperature rises rapidly.
Depending on the position, the heating temperature can be selected to the desired value.

次にタイマ回路8の動作について説明する。一般的Ki
iって、コンプレッサは6分以内の間隔でオン・オフを
行なうとその機能に悪影響を与える。従って6分以内の
間隔でオン・オフを行なうことを禁止する回路が必要と
なる。今、コンプレッサ27をオンささせるための信号
、すなわち排他的ノア回路24のノーンしタイマ回路8
への1源ケ供給rる。−rなわち、トランジスタ31が
オンすると、コンrンリー340光イが開始されるので
、演算増幅器32の(=)入力への印加d圧は一旦はぼ
ダイオード33の准圧降ド分まひ低ドし、コンデンサ3
4の充イが終rすると抵抗35,36.37およびグイ
オーl533の関係で決まる一定値まで上昇「る。聾だ
、演算増幅a32の(利入力への印加イ圧は、トランジ
スタ31のオンした瞬間にほぼ抵抗38.39による分
割直圧とlより、コンデンサ40の充這終rと共にトチ
ぼ1源イ圧E2と同じ大きさとなる。
Next, the operation of the timer circuit 8 will be explained. General Ki
However, if the compressor is turned on and off at intervals of less than 6 minutes, its performance will be adversely affected. Therefore, a circuit is required that prohibits turning on and off at intervals of 6 minutes or less. Now, the signal for turning on the compressor 27, that is, the exclusive NOR circuit 24 is turned on, and the timer circuit 8
One source of supply to the. -r In other words, when the transistor 31 is turned on, the Connley 340 light starts, so the d voltage applied to the (=) input of the operational amplifier 32 is temporarily lowered due to the quasi-voltage drop of the diode 33. and capacitor 3
When the charging of 4 is finished, the voltage increases to a certain value determined by the relationship between the resistors 35, 36, 37 and the power input 533. Instantly, due to the direct voltage divided by the resistors 38 and 39 and 1, when the capacitor 40 finishes charging, it becomes equal in magnitude to the source pressure E2 of the concave 1.

今、トランジスタ31がオンした瞬間、演算増幅器32
の(→入)Eの方が(+)入jJより低いfjl #S
rになるように抵抗38.39を選定して繍くと、トラ
ンジスタ31がオンした瞬間には演算増幅器32の、出
力が・・イレベルとなり、サイリスタ41をオフさせて
リレー42紫付勢しコンプレッサ27を回転させる。こ
の時リレー」要点42−2もa11妾が閉じてコンデン
サ40、抵抗39の直列回路を短絡するので演:J1幅
器32”l]−〇入力は(→人J)Lす6 低1位となり、その出力は口・−レベルとなるがサイリ
スタ41はオンしたままである。次に排他的ノア回路2
4の出力が一旦ローレベルとな・)でコンプレッサ27
乞停止させ、その後所定時間、例えば6分、以内に再び
ハイレベルになったと仮定しよう。排他的ノア回路24
の出力がローレベルになると同時にトランジスタ31が
オフし従つ′Cサイリスタ41もオフしてリレー42が
除勢され、リレー1妾点42−2の6点が開きa要点が
閉じるのでコンデンサ34が抵抗37を介して放電を開
始するが、6分以内に再びトランジスタ31がオンした
瞬間に演算増巾器320出力か−・イレベセになるほど
には放置を終了しないようにその放電時定数を選定して
おけば演算増巾器32の出力はローレベルを維持してサ
イリスタ41をオンさせず従ってリレー42を付勢しな
いのでコンプレッサ27は回転しない。このままの状態
で3分が経過するとコンデンサ34.40の光重がとも
に終了し−(演算)曽巾器32の出力が・・イレベルと
なり、サイリスタ41をオンさせリレー42な付勢し、
コノブレラIJ−27の回転をh午セ。
Now, at the moment when the transistor 31 turns on, the operational amplifier 32
(→in)E is lower than (+)injJ #S
If the resistors 38 and 39 are selected and installed so that the voltage is r, the moment the transistor 31 is turned on, the output of the operational amplifier 32 becomes . Rotate 27. At this time, relay 42-2 also closes A11 and short-circuits the series circuit of capacitor 40 and resistor 39, so act: J1 width device 32"l]-〇 input is (→Person J) L6 Low 1st place The output becomes - level, but the thyristor 41 remains on.Next, the exclusive NOR circuit 2
Once the output of 4 is low level, the compressor 27
Let's assume that it stops and then returns to a high level within a predetermined period of time, say 6 minutes. Exclusive NOR circuit 24
Simultaneously, the output of the transistor 31 is turned off, and the thyristor 41 is also turned off, and the relay 42 is deenergized, and the six points 42-2 of the relay 1 are opened and the point a is closed, so that the capacitor 34 is turned off. Discharge begins via the resistor 37, but the discharge time constant is selected so that the discharge does not end to the point where the output of the operational amplifier 320 becomes irregular at the moment the transistor 31 is turned on again within 6 minutes. If this is done, the output of the operational amplifier 32 will maintain a low level and will not turn on the thyristor 41 and therefore will not energize the relay 42, so the compressor 27 will not rotate. When 3 minutes pass in this state, the light weights of the capacitors 34 and 40 are both terminated, and the output of the (calculation) widening device 32 becomes the level, which turns on the thyristor 41 and energizes the relay 42.
I watched the rotation of Konobrera IJ-27 in the afternoon.

このようにしC、タイマ回路への、E源供給、すなわち
トランジスタ31の導通がオフしてから所5時間、例え
ば6分間、以内にオンに切り換以:場合にはタイマ回路
8は作動ぜず、従っ−Cコノデレツサ27の回転を許さ
ず、3分経過後にf、IJめC回転を許tことになる。
In this case, the timer circuit 8 does not operate if the E source supply to the timer circuit, that is, the conduction of the transistor 31 is turned off and then turned on within 5 hours, for example, 6 minutes. Therefore, rotation of the C connector 27 is not allowed, and after 3 minutes, f, IJ and C rotations are allowed.

しかしトランジスタ31がオフしてから3分以上経過し
た陵に再びオンした場合はコンデンサ34はその期間に
抵抗31を介して十分放心完了しており、上水したよう
に、トランジスタ31がオンしtこ瞬間の演算増11】
器32の←)人力は(+)入力より低′dLIeとなる
のでその出力はハイレベルとなり直ちにサイリスタ41
をオンさせリレー42を付勢してコン7°レツサ27ゆ
て一体的にまとめた回路とrることにより、遠隔操作部
のつまみ1つを操作することによ−〕C電源のオン・オ
フを初め1−記諸操作を「べて行なうことができるとい
う利点が、ちる。
However, if the transistor 31 turns on again after 3 minutes or more have passed since it turned off, the capacitor 34 has been sufficiently disconnected through the resistor 31 during that period, and the transistor 31 turns on as if it were water. Increased calculation at this moment 11]
Since the ←) human power of the device 32 becomes lower dLIe than the (+) input, its output becomes high level and immediately turns off the thyristor 41.
By turning on the relay 42 and integrating the circuit with the controller 27, the power can be turned on and off by operating one knob on the remote control unit. It has the advantage of being able to perform all of the operations listed in section 1-1 above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による冷暖房制御回路の操作部の一実施
例を示す概略iF視図、第2図は第1図に示した操作部
の内容を示を倒立面図、第6図は本発明による冷暖房制
御回路の1源装置の一実施例を示す回路図1.J4図は
本発明による冷暖房制御回路の一実施例を示す回路図ひ
ある。 符号の説明 1・・・・つまみ、2・・・0T変抵抗器、4・・・踵
源開閉器(マイクロスイッチ)、5・・・冷暖房切換回
路、6・・ファン速度割岬回路、1・・コンプレッサ制
御回路、8・・・遅延タイマ回路、12・・・四方切換
片、19・・ファンモータ、27・・コンブレラ丈モー
タ、28・・サーミスタ、34・・コンデンリー代理人
  浅 栂  皓 外4名 9
FIG. 1 is a schematic iF view showing an embodiment of the operation section of the air conditioning control circuit according to the present invention, FIG. 2 is an inverted view showing the contents of the operation section shown in FIG. 1, and FIG. Circuit diagram 1 showing an embodiment of a one-source device for a heating and cooling control circuit according to the invention. Figure J4 is a circuit diagram showing one embodiment of the heating and cooling control circuit according to the present invention. Explanation of symbols 1... Knob, 2... 0T resistor, 4... Heel source switch (micro switch), 5... Air conditioning/heating switching circuit, 6... Fan speed ratio cape circuit, 1 ... Compressor control circuit, 8 ... Delay timer circuit, 12 ... Four-way switching piece, 19 ... Fan motor, 27 ... Combbrella length motor, 28 ... Thermistor, 34 ... Condenry agent Tsuga Asahi 4 people 9

Claims (1)

【特許請求の範囲】 四方切換弁とコンプレッサと冷風温風送風用ファンとを
含む熱ボンデ方式冷暖房装量に用、・る冷暖房制御回路
に名いて、冷暖房動i’¥ k切換えるための冷暖房切
換回路と、前記冷暖房切換回路の動作状態に応じて前記
コンプレッサD運転?オン・オフ制御するコンプレッサ
制御回路と、前記嗜暖房切換回路の動作状態て応じて前
記ファンの回転速、虻?制御するファン速度制御回路と
、前記コンプレッサ制御回路の動作状態で応じて前弓己
コノデレツサの運転のオン動作開始ぞ所定時間票示する
遅延タイマ回路と、上記各回路に遁力乞供給する戒源回
路と?投げ、前記冷暖房切換回路・ま冷房最強と指示す
る第1.り位置と暖房最強と指示する第2D位置り間で
移動可能なつまみぞ備え該つまみの位置に応じて抵抗値
と変化する可変抵抗器と、前記つまみに関連づげられそ
れが前記第1と第2の位置の中間の46位置に置かれた
ときは+gfJ記1d源回路をオフするがその他の位置
Qvまオンする五源開閉器と、前11ピ町変抵抗器に関
連つけられ前記つまみが第1と第6位置の間↓)ろいし
ま・81位1dにあるときは前記四方切換弁を冷房モー
ト9に保時I2第2と第6位置の間あるいは第21s’
L iiイK rb+ イrとぎは暖房モードに保持す
るl毬気信弓4・出)J夕る第1の磁気回路とを含み、
前記ファン速(B、制御回路(/(i前記つまみが第1
、第2および第6荀置11]、外の位1碌に昼)るとき
は前記ファンを駆動4−るモータの低速巻線を付勢し第
1−または第2位置に・し)乙と身は高速巻線な付勢す
る這気倍号を用力仁る第2・ノ)1匠気回路を含み、前
記コンプレッサ制御N路は冷暖房制御される室内の温度
に依存して抵抗値/I−(化するよう配装置されたサー
ミスタと、該ナーミ(りと前記可変抵抗器とに関連づけ
られ前記・)−まみが第1と第6位置の間あるいは第1
位−にル)るときは前記サーミスタの抵抗値により0人
わされイン室内温度が前記つ塘みの指示する冷房温度請
より篩いときのみ用力信号を川し第2と@3 fQ +
置の間ル。 るいは第2位If&こ、6るときは前目ピサーミλりの
抵抗値Vこよって表わされる室内温度が前記′〕まみの
指示する暖房温度値より低いとぎのみ出力信弓を出r第
6の電気回路とを含み、前記遅延タイマ回路は前記第6
の1h1気回路の出力信号に応答し該出ノ〕信号が存在
するときには第1の時定数をもって光重され存在しない
ときには第2の時ポ数をもって放心するコンビ、7リー
と、該コンCノリ゛の放成量が所宇景を越えているとき
に前記第6の磁気回路の出力信号が発生するど出力信号
を出すが放′成が前記所装置に達していないうちに前記
第3の電気回路の出力信号が発生し−(も出力信号乞出
さない/A4の電気回路とを旨み、前記第6、第4の電
気回路の出力信号が両方とも同時に存在するときに前記
コンプレツリーがオンされるよう構成したことを特徴と
する前記冷暖房制御回路。
[Claims] A heating and cooling control circuit for use in a thermal bonding type air conditioning system including a four-way switching valve, a compressor, and a fan for blowing cold and hot air. The compressor D operates according to the operating state of the circuit and the heating/cooling switching circuit? The rotational speed of the fan changes depending on the operating state of the compressor control circuit that controls on/off and the heating/cooling switching circuit. A fan speed control circuit for controlling a fan speed, a delay timer circuit for indicating a predetermined period of time to start the operation of the front compressor depending on the operating state of the compressor control circuit, and a power source for supplying force to each of the above circuits. With the circuit? First, the air conditioning/heating switching circuit indicates that the air conditioner is the strongest. a variable resistor whose resistance value changes depending on the position of the knob; When placed in the 46th position between the second position, the +gfJ mark 1d source circuit is turned off, but in other positions Qv is turned on. is between the 1st and 6th positions ↓) When it is at Roishima 81st position 1d, the four-way switching valve is set to the cooling motor 9.
L ii K rb + Ir sharpener includes a first magnetic circuit that maintains the heating mode.
The fan speed (B, control circuit (/(i) when the knob is the first
, second and sixth positions 11], when the fan is in the first or second position, the low speed winding of the motor driving the fan is energized to the first or second position. The body includes a second circuit that uses a high-speed winding to energize the air pressure circuit, and the compressor control N path has a resistance value / a thermistor arranged so as to correspond to the variable resistor;
When the temperature is set to -, the resistance value of the thermistor causes the power signal to be output only when the indoor indoor temperature is higher than the cooling temperature indicated by the temperature control.
Okinoma Ru. If the second position is 6, the output signal is output only when the indoor temperature represented by the resistance value V of the previous Pisami λ is lower than the heating temperature value instructed by the above 6 and the delay timer circuit includes the sixth electric circuit.
In response to the output signal of the 1h1 air circuit, when the output signal is present, the light is weighted with the first time constant, and when it is absent, the light is focused with the second time constant. When the output signal of the sixth magnetic circuit is generated when the amount of radiation of When the output signal of the electric circuit is generated and the output signal of the electric circuit A4 is generated, and the output signals of the sixth and fourth electric circuits are both present at the same time, the completion tree is turned on. The heating and cooling control circuit is characterized in that it is configured so that:
JP57024055A 1982-02-17 1982-02-17 Controlling circuit for air conditioning Granted JPS58142136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024055A JPS58142136A (en) 1982-02-17 1982-02-17 Controlling circuit for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024055A JPS58142136A (en) 1982-02-17 1982-02-17 Controlling circuit for air conditioning

Publications (2)

Publication Number Publication Date
JPS58142136A true JPS58142136A (en) 1983-08-23
JPS6213577B2 JPS6213577B2 (en) 1987-03-27

Family

ID=12127771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024055A Granted JPS58142136A (en) 1982-02-17 1982-02-17 Controlling circuit for air conditioning

Country Status (1)

Country Link
JP (1) JPS58142136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097285A1 (en) * 2007-02-09 2008-08-14 Arizant Healthcare Inc. A forced air warming unit
US7749261B2 (en) 2003-04-10 2010-07-06 Arizant Healthcare Inc. Forced air warming unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6140102B2 (en) * 2014-05-09 2017-05-31 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505253U (en) * 1973-05-09 1975-01-20
JPS5044049A (en) * 1973-08-13 1975-04-21

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505253B2 (en) * 1972-03-11 1975-03-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505253U (en) * 1973-05-09 1975-01-20
JPS5044049A (en) * 1973-08-13 1975-04-21

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749261B2 (en) 2003-04-10 2010-07-06 Arizant Healthcare Inc. Forced air warming unit
US8328859B2 (en) 2003-04-10 2012-12-11 Arizant Healthcare Inc. Forced air warming unit
WO2008097285A1 (en) * 2007-02-09 2008-08-14 Arizant Healthcare Inc. A forced air warming unit
US7976572B2 (en) 2007-02-09 2011-07-12 Arizant Healthcare Inc. Forced air warming unit
US8470011B2 (en) 2007-02-09 2013-06-25 Arizant Healthcare Inc. Forced air warming unit
AU2007346673B2 (en) * 2007-02-09 2013-07-04 3M Innovative Properties Company A forced air warming unit

Also Published As

Publication number Publication date
JPS6213577B2 (en) 1987-03-27

Similar Documents

Publication Publication Date Title
JPH04295532A (en) Method of adjusting and controlling indoor temperature of air conditioner
KR960010636B1 (en) Control device for air-conditioner
JPS58142136A (en) Controlling circuit for air conditioning
JPS5926860B2 (en) I can't wait to see what's going on.
JPH0642802A (en) Controller for air conditioner
JPS5916185B2 (en) Air conditioner control device
JPS5928827B2 (en) Air conditioner blower speed control device and method of operating the control device
JPS62119360A (en) Warm air room heater
JPH0429943B2 (en)
JPH0617753B2 (en) Air conditioner
JPS6044683B2 (en) temperature control device
KR940006912B1 (en) Method of controlling airflow automatically in air conditioners
JPH01147241A (en) Airconditioner
JPS5832104Y2 (en) Air conditioner control circuit
US3488568A (en) Multiposition control motor
JP3197748B2 (en) Control device for air conditioner
JPS629460Y2 (en)
JPH02106647A (en) Air conditioner
JPS5924334B2 (en) air conditioner
JPS6120451Y2 (en)
JPH0257821A (en) Room temperature control device for hot air heater and the like
JPS6291737A (en) Air-conditioning machine
JPS6215718Y2 (en)
JPS6137527B2 (en)
JPH0239155Y2 (en)