JPS58141578A - Sun-ray generation set - Google Patents

Sun-ray generation set

Info

Publication number
JPS58141578A
JPS58141578A JP57023552A JP2355282A JPS58141578A JP S58141578 A JPS58141578 A JP S58141578A JP 57023552 A JP57023552 A JP 57023552A JP 2355282 A JP2355282 A JP 2355282A JP S58141578 A JPS58141578 A JP S58141578A
Authority
JP
Japan
Prior art keywords
solar
output
monitoring
panel
panels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57023552A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogawa
清 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57023552A priority Critical patent/JPS58141578A/en
Publication of JPS58141578A publication Critical patent/JPS58141578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To extract a maximum output at all times without the displacement of the operating point of a sun-ray generator by dispersing and arranging monitor circuits monitoring the electromotive force of the generator. CONSTITUTION:Solar-cell panel groups 31, 32, 33 are formed by connecting two pairs of solar-cell panels 2 in series, each panel group is connected in parallel, and the outputs 5 of the panel groups are submitted to the generation of electricity. Solar cells 34, 35, 36 for monitoring each function as the monitoring of the photovoltage of the solar-cell panel groups 31, 32, 33 formed by connecting a plurality of solar-cell plates 1 set up among two pairs of the solar-cell panels 2 of the solar-cell panel groups 31, 32, 33, and outputs 343, 353, 363 are obtained severally at terminals 341 and 342, terminals 351 and 352 and terminals 361 and 362. The outputs 343, 353, 363 of monitoring photovoltage are given as the control signals of transducer 13 so as to maximally extract the electromotive force of the sun-ray generator 11.

Description

【発明の詳細な説明】 (a)夜前分野の説明 不発明は複数の太陽電池パネルから構成ざnる太陽先発
1システムに係り、荷に太湯峨池の起成力をモニタする
に適した太陽光発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Description of the night field The invention relates to a solar system consisting of a plurality of solar panels, which is suitable for monitoring the generative power of the Tayang Pond on a load. It relates to a photovoltaic device.

(o)  便来夜前の説明 太陽光の照射を受けて発電する太I場成池板は第1図に
示すように太陽電池板の日射量と温度を成る;直に一定
としたとさ、−力成流ISが成る一定直以上に増加する
と出力電圧Vsは急激に低下して行き零となる。また、
このような特性ケもつ太+ilj ’ill。
(o) Explanation before the arrival of the flight The solar cell plate that generates electricity by being irradiated with sunlight consists of the amount of solar radiation and temperature of the solar cell plate as shown in Figure 1; , - When the force current IS increases beyond a certain value, the output voltage Vs rapidly decreases to zero. Also,
Ta+ilj 'ill has these characteristics.

池の最大出力−力P+nax は出力覗流が1−、o 
pのときに生じ、−力1直はIopとこのときの出ツノ
r区1’)gVOpの積によって辱えられる。
The maximum output of the pond - force P + nax is the output current of 1 -, o
It occurs when p, and the -force 1 shift is humiliated by the product of Iop and the output power rku 1')gVOp at this time.

太陽ボ池パネルはこの太陽電池板を一枚のバドルに40
〜50の仮数個(■す・Nけだものを的列するいは並列
に接続して構成される。例えば太陽電池パネルの構成は
第2図に示されるように41う成される。
A solar pond panel consists of 40 solar panels in one paddle.
It is constructed by connecting up to 50 mantissas (■su・N animals) in series or in parallel. For example, a solar cell panel is constructed by 41 as shown in FIG.

図中、■は太陽電池板であり、太陽ケ(:の照射を・ン
けると、端子3に正、端子4に負の極1りしの11!2
 ”tl)、 hを発生し、出力5を斗る。・嗅2図の
l+l !+’jの太1場、1シ池パネル2は起電状態
では第:3図に示す回路で再抽的に示される。ここで、
第:3図に小すイ」・号は第2図と同符号のものは、i
”I−機能を小すものである。この太陽電池パネル2は
温度を−・定(例え、・」:、SuOK )として日射
量を変化させたときにV?ける出力゛電流1sと出カイ
圧&sの関係曲線は、第4図に示すように日射量の変化
と共に変化し、最大出力点Frd 1<J中点線でボす
3曲線のように変化する。9tつて今、日射縁が!’l
 O+ni費、4のとき最大出力を収り出しうるよつな
抵抗をL狼荷とし7て太陽電池パネル2に接続して運転
していたとき、例えば天候の変化により日射量が50か
らI00口彫lIに増加したときには、動作点は負荷特
性曲線すと日射量50のときの出力′電流対出力cd圧
の関係曲線との交点Aから、日射量が100+nV’J
/ctAのときの出力電流対出力電圧の関係曲線との交
点13に移り、移り、最早、最大出力を1収り出し得な
くなる。また1日射縁150trWArlから例えば1
0IIA%’/2!に減少したときには、動作点はその
最大出力点から著しくはずれた点Cに移る。
In the figure, ■ is a solar cell plate, and when the solar panel (:) is irradiated, there is a positive pole at terminal 3 and a negative pole at terminal 4.
"tl), h is generated and the output is 5. ・L+l !+'j of the olfactory diagram 2, the 1st field of the pond panel 2 is re-extracted by the circuit shown in Figure 3 in the electromotive state. Here,
Items with the same numbers as in Figure 2 are i.
This solar panel 2 has a V value when the temperature is kept constant (e.g., SuOK) and the amount of solar radiation is changed. As shown in FIG. 4, the relational curve between the output current 1s and the output pressure &s changes as the amount of solar radiation changes, and changes like the three curves marked by the dotted line in the middle of the maximum output point Frd1<J. 9t and now there is solar radiation! 'l
For example, when the solar radiation amount changes from 50 to 100 due to changes in the weather, for example, when driving with a resistor that can obtain the maximum output when O+Ni is 4 and connected to the solar panel 2, the amount of solar radiation may vary from 50 to 100. When the amount of solar radiation increases to 1I, the operating point is determined from the intersection point A of the load characteristic curve with the relational curve of output current versus output CD pressure when solar radiation is 50, and the operating point is 100 + nV'J when solar radiation is 50.
It moves to the intersection point 13 with the output current vs. output voltage relationship curve when /ctA, and it is no longer possible to output the maximum output by one. Also, from 150 trWArl of solar radiation, for example, 1
0IIA%'/2! , the operating point moves to point C, which is significantly away from its maximum output point.

このように日射量の変化に伴い、出力が変動する太陽電
池パネル2を複数個用いて直並列接続することによって
構成される太陽電池パネル群もその出力は日射量の影響
を受は易い。従ってこの壕までは太陽′1池パネル群か
ら能率よく出力を取り出すことができないため、太陽光
発電システムは低効率のものとなる。ここで通常、負荷
としては直流機器であれば定電圧特性を必要とするため
、あるいは交流機器であ汎ば直流を交流に変換する必要
があるため、第5図のように太陽光発電器11の出力に
チョッパあるいはインバータから構成される変換器13
を介して負荷14に接続されるシステムを示f。第5図
で友陽光発′イ1器11は複数個の太陽電池パネル2か
ら構成される太陽′屯池パネル群であり、12は逆流防
止用ダイオードである。前述のような太陽光発電システ
ムの低効率化を防止するため、従来は太陽光発電器11
の起電力を監視するモニタ回路を太陽光発電器11に近
接して設けておき、このモニタ回路の出力で太陽光発電
器11の起電力を最大限取り出すように変換器13を制
御する方法が考えられている。このモニタ回路はM6図
に示すように太陽光発電器11とは別に太陽電池パネル
2又は太陽光の照射を計測できる機器によね構成されて
いた。ところが第6図のような構成は太陽光発電器11
の真の起電力をモニタリングすることはできない。例え
ば図中、太陽光発電(ハ)11が雲等により日射が妨げ
られ、モニタ回路21がト1射を受けている場合はモニ
タ回路21の出力により太陽光発電器】1の起電力を限
界以上に淑りIllすように変換器13を制御するため
、第4図の説明の中で示した動作点を著しくけずれる制
御がされてしまう欠点が生じる。この欠点は太陽光発電
器11の規模が大きくなればなる程、生じ易く、制御を
することが難しくなる。
As described above, the output of a solar panel group constructed by connecting a plurality of solar panels 2 in series and parallel, whose output fluctuates as the amount of solar radiation changes, is also easily affected by the amount of solar radiation. Therefore, it is not possible to efficiently extract output from the solar panel group up to this trench, resulting in a low efficiency solar power generation system. Usually, as a load, if it is a DC device, it requires constant voltage characteristics, or if it is an AC device, it is necessary to convert DC to AC, so as shown in Fig. A converter 13 consisting of a chopper or an inverter at the output of
f shows the system connected to the load 14 via f. In FIG. 5, 11 is a solar cell panel group consisting of a plurality of solar cell panels 2, and 12 is a backflow prevention diode. In order to prevent the aforementioned low efficiency of the solar power generation system, conventionally the solar power generator 11
There is a method in which a monitor circuit for monitoring the electromotive force of the solar power generator 11 is provided close to the solar power generator 11, and the converter 13 is controlled so as to extract the maximum electromotive force of the solar power generator 11 using the output of this monitor circuit. It is considered. As shown in Fig. M6, this monitor circuit was configured with a solar cell panel 2 or a device capable of measuring sunlight irradiation, in addition to the solar power generator 11. However, the configuration shown in Figure 6 is the solar power generator 11.
It is not possible to monitor the true emf of For example, in the figure, if the solar power generation (C) 11 is blocked by clouds etc. and the monitor circuit 21 is receiving solar radiation, the output of the monitor circuit 21 will limit the electromotive force of the solar power generator 1. Since the converter 13 is controlled in such a manner as described above, there arises a drawback that control is performed that significantly deviates from the operating point shown in the explanation of FIG. The larger the scale of the solar power generator 11, the more likely this drawback will occur, and the more difficult it will be to control it.

(C)  発明の目的 本発明はこの点にかんがみ、為されたものでモニタ回路
を分散配置−rることにより太陽光発電の規模の大小に
拘らず太陽光の照射状態により太陽光発電器11の動作
点がずれないよう常に最大出力を取り出せる太陽光発電
装置を提供するために為されたもので、ある。
(C) Purpose of the Invention The present invention has been made in view of this point, and by distributing monitor circuits, the solar power generator 11 can be adjusted according to the sunlight irradiation state regardless of the scale of the solar power generation. This was done in order to provide a solar power generation device that can always produce maximum output so that the operating point of the solar power generator does not shift.

(d)  発明の構成 以下本発明の一実施例を第7図、第8図を参照して説明
する。第7図は本発明の構成図であり、第8図は第7図
の等価回路である。第7図、第8図では第2図、第6図
と同符号のものは同一機能であるからそれらの説明は省
略する。本発明の特徴は・、n6図の太陽光発電器11
の起電力を監視するF= ニタ回路21を太1′M’4
池パネル群に分散配置したことにある。図中、31,3
2.33は太陽電池パネル群、3、i、35.36はモ
ニタ用太陽電池、341,342,351,352゜3
61.362はモニタ用太陽電池の端子である。太陽電
池パネル群、31,32.33は太陽電池パネル2を2
組直列接続したものであり、各々のバネ/l: t+f
−は第8図に示すように並列に接続され、その出力5(
・1発電に供される。モニタ用太陽電池34.35.3
6はそれぞれ、太陽′離池パネル群a1,32.33の
2組の太陽電池パネル2の間に設置された複数個の太1
i1 ′It池板1を直列に接続してなる太陽電池パネ
ル群31゜32.33の光起電力モニタであり、端子:
341と342゜端子351と352、端子361と3
62にぞの出力343゜353.363が個別に得られ
る。この光起イカモニタの出力343.353.363
 が第5図に示す太陽光発電器11の起電力を最大限取
り出すように変換器13の制御信号として与えられる。
(d) Structure of the Invention An embodiment of the present invention will be described below with reference to FIGS. 7 and 8. FIG. 7 is a block diagram of the present invention, and FIG. 8 is an equivalent circuit of FIG. 7. In FIGS. 7 and 8, the same reference numerals as in FIGS. 2 and 6 have the same functions, so their explanation will be omitted. The features of the present invention are: Solar power generator 11 in the n6 diagram
Monitoring the electromotive force of F= monitor circuit 21
This is because they are distributed across the pond panel group. In the figure, 31,3
2.33 is a solar panel group, 3, i, 35.36 is a monitor solar cell, 341, 342, 351, 352°3
61.362 is a terminal of a monitor solar cell. Solar panel group, 31, 32, 33 is solar panel 2
They are connected in series, each spring /l: t+f
- are connected in parallel as shown in Fig. 8, and the output 5 (
・Used for 1 power generation. Solar cell for monitor 34.35.3
6 are a plurality of solar panels installed between two sets of solar panels 2 of the solar panel groups a1, 32 and 33, respectively.
i1 'It is a photovoltaic power monitor of a solar panel group 31°32.33 formed by connecting panel plates 1 in series, and the terminals:
341 and 342° terminals 351 and 352, terminals 361 and 3
62 outputs of 343°353.363 are obtained individually. The output of this photovoltaic squid monitor is 343.353.363
is given as a control signal to the converter 13 so as to maximize the electromotive force of the solar power generator 11 shown in FIG.

(e)  発明の作用 従ってモニタ用太陽電池34は太陽電池パネル群31の
中に設置されているため太陽「I池パネル111 :(
lを構成する太陽電池パネル2の一方又は両方の日射と
等しい日射を受けていることになる。すなわち、太陽電
池パネル2の一方が雲等により日射が妨げられるとモニ
タ用太陽電池34の一部も日射を妨げられることになり
、太陽′1池パネル2を2組直列に接続した太陽電池パ
ネル群31の出力は低下するのと同時に、モニタ用太陽
電池34の出力343も低下する。父、この時でも太陽
電池パネル群32が裏等による日射の妨害を免れでいれ
ば、太陽電池パネル群32の出力は日射量に相当する出
力量を得ることができ、そのモニタ用太陽′成池35の
出力353 も太陽電池パネル群32の出力に比例した
出力音を得ることができる。太陽電池パネル群J3につ
いても同様に示される。このモニタ用太陽電池34゜3
5.36の出力343,353,363を一般に知しれ
た図示されない加算器を用いて加算した信号で変換器1
3を制御すれば日射を受けている太陽電池パネル群32
゜3:つから起電力を最大限取り出すことができる。又
、出力343.353.363を直列に接続すれば太陽
′電池パネル群31の日射の妨gはモニタ出力を低下さ
せ、変換器13の出力を抑える」:うに制御することも
できる。すなわち、太陽′電池パネル11イ内に設置さ
れたモニタ用太陽′亀池はその周囲の太陽・1池パネル
群の発′颯′屯力をモニタリングするのに1尚しており
、第6図に示す従来のような太陽光の照射の違いによる
動作点のずれが発生することを防止できる。
(e) Effect of the invention Therefore, since the monitor solar cell 34 is installed in the solar cell panel group 31, the solar cell 34 is installed in the solar panel group 31.
This means that the solar panel receives solar radiation equal to the solar radiation of one or both of the solar cell panels 2 constituting the solar cell panel 1. That is, if one side of the solar panel 2 is blocked from sunlight by clouds or the like, part of the monitor solar cell 34 will also be blocked from sunlight, and the solar cell panel with two solar panels 2 connected in series. At the same time as the output of the group 31 decreases, the output 343 of the monitoring solar cell 34 also decreases. Father, even at this time, if the solar panel group 32 is free from interference with solar radiation from the back etc., the output of the solar panel group 32 can be equivalent to the amount of solar radiation, and the monitoring solar The output 353 of the pond 35 can also provide an output sound proportional to the output of the solar panel group 32. The same is shown for solar panel group J3. This monitor solar cell 34°3
The outputs 343, 353, and 363 of 5.36 are added to the converter 1 using a commonly known adder (not shown).
3, the solar panel group 32 receiving solar radiation
゜3: Maximum electromotive force can be extracted from the tube. In addition, if the outputs 343, 353, and 363 are connected in series, interference with solar radiation from the solar panel group 31 will reduce the monitor output and suppress the output of the converter 13. In other words, the monitoring solar pond installed inside the solar battery panel 11 is used to monitor the output power of the surrounding solar panels, as shown in Figure 6. It is possible to prevent deviations in the operating point from occurring due to differences in sunlight irradiation, as in the conventional case.

げ)他の実施例 本発明の一実施例を第7図、第8図に示したが太陽直池
パネル2は直列接続したものに限らず、並列接続でも良
く、直並列数に限らない。k、モニタ用太陽電池34.
35.36は太陽電池パネル2にλ・jし、縦配置とし
たが、横配(婿で行′、)ても良く、K、特に、縦、横
の自装置にこだわらずCモニタリングt゛べき太陽′電
池パネル群の中、あ4)い(・−1その周囲に配置さ/
’していればkい。又、モニタ用機器(−」実施例の中
で示した太陽電池板に限らJ゛、目04’ +4を検出
するものであればどのような機器でも良い1゜(g) 
 総合的な効果 本発明によれば、太陽光発電のシステムの規模の大小に
拘らず太陽光発電装置の起1力を正確VCモニタリング
でさ、太陽光の照射の違いによる太陽光発電の動作点の
ずれを防止でき、太陽光発電装装置が常に最大出力を取
り出すことができる。
G) Other Embodiments Although an embodiment of the present invention is shown in FIGS. 7 and 8, the solar direct pond panels 2 are not limited to those connected in series, but may be connected in parallel, and the number of solar panels 2 is not limited to series and parallel connections. k, monitor solar cell 34.
35. In 36, the solar panel 2 is placed λ・j and placed vertically, but it may also be placed horizontally (in-law'). In the group of solar panels that should be used, A4) I(・-1 should be placed around it/
'K if you do. In addition, monitoring equipment (-) is limited to the solar cell plate shown in the example, and any equipment that can detect 04'+4 may be used (1° (g)).
Comprehensive Effects According to the present invention, regardless of the scale of the solar power generation system, the operating force of the solar power generation device can be accurately monitored by VC, and the operating point of the solar power generation due to differences in sunlight irradiation can be adjusted. The solar power generation system can always extract maximum output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽電池板の出力電流対出力電圧の関係特性図
、第2図は、太陽電池パネル構成図、第3図は第2図の
等価1!川路、第4図は日射量が変化した時の太陽電池
板の出力′1圧対出力直流特性図、第5図は太陽光発電
システムのブロック図、第6図は従来の太陽光発電装置
Wの構成図、第7図は本発明の一実施例を示す太陽光発
電装置の構成図、第8図Vi第7図の等価回路である。 I・・・太陽電池板  2・・・太陽電池パネル1.3
.4・・端子、     b゛出力11・・太陽光発電
器、12・・逆流防止用ダイオード、13・・・変換器
、   14・・・電荷、21・・モニタ回路、:31
,32.:33・・太陽電池パネル群、:+4,35,
3fj・・ モニタ用太陽′直池、341.342,3
51,361.、’(li2・・・端子、343、35
3.363・・・出力。 (7317)  代理人 弁理士 則 近 憲 佑 (
ほか1名)第1図 第2図 第3図 + 第4図 第5図 第6図 第7図 第8図 →
Figure 1 is a characteristic diagram of the relationship between output current and output voltage of a solar cell plate, Figure 2 is a configuration diagram of a solar battery panel, and Figure 3 is the equivalent of Figure 2! Kawaji, Figure 4 is the output '1 voltage vs. output DC characteristic of the solar cell plate when the amount of solar radiation changes, Figure 5 is the block diagram of the solar power generation system, and Figure 6 is the conventional solar power generation device W. FIG. 7 is a block diagram of a solar power generation device showing one embodiment of the present invention, and FIG. 8 is an equivalent circuit of FIG. 7. I...Solar cell plate 2...Solar cell panel 1.3
.. 4...Terminal, b'output 11...Solar power generator, 12...Backflow prevention diode, 13...Converter, 14...Charge, 21...Monitor circuit, :31
, 32. :33...Solar panel group, :+4,35,
3fj... Sun's direct pond for monitor, 341.342,3
51,361. ,'(li2... terminal, 343, 35
3.363...output. (7317) Agent: Patent Attorney Noriyuki Chika (
1 other person) Figure 1 Figure 2 Figure 3 + Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 →

Claims (1)

【特許請求の範囲】[Claims] 元起成力太場或池板から反る太44池パネルを複数個用
いて構成さする太陽光発電装置に2・ρて、醸力発シ○
ための太i’ijN域池パネル群の也、ζ、光租電力太
湯戒池叛又(f工太陽成池パネル全前記太1場域池バ坏
ル詳警て分散配置し、谷々の出刃をj当夜単位で直並列
愛玩して出力を緻す=す2)・パこし之ことを特徴とす
る太陽光発電装置。
A solar power generation device constructed using a plurality of thick 44 pond panels warped from a pond board is used to generate brewing power by using 2.rho.
The group of pond panels in the 1st area of the Taiyu Kaiike Pond Panel Group of Koreki Electric Power Co., Ltd. A solar power generation device characterized in that the output is refined by running the blades in series and parallel on a nightly basis.
JP57023552A 1982-02-18 1982-02-18 Sun-ray generation set Pending JPS58141578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023552A JPS58141578A (en) 1982-02-18 1982-02-18 Sun-ray generation set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023552A JPS58141578A (en) 1982-02-18 1982-02-18 Sun-ray generation set

Publications (1)

Publication Number Publication Date
JPS58141578A true JPS58141578A (en) 1983-08-22

Family

ID=12113649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023552A Pending JPS58141578A (en) 1982-02-18 1982-02-18 Sun-ray generation set

Country Status (1)

Country Link
JP (1) JPS58141578A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489131A (en) * 1990-07-31 1992-03-23 Kawasaki Steel Corp Method and device for coiling endless rolling strip
JP2014232770A (en) * 2013-05-28 2014-12-11 三菱電機株式会社 Photovoltaic power generation system device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124062A (en) * 1980-03-05 1981-09-29 Hitachi Ltd Voltage detection method for solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124062A (en) * 1980-03-05 1981-09-29 Hitachi Ltd Voltage detection method for solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489131A (en) * 1990-07-31 1992-03-23 Kawasaki Steel Corp Method and device for coiling endless rolling strip
JP2014232770A (en) * 2013-05-28 2014-12-11 三菱電機株式会社 Photovoltaic power generation system device

Similar Documents

Publication Publication Date Title
Bodur et al. Maximum power point tracking for low power photovoltaic solar panels
Saidi et al. Simulation and control of Solar Wind hybrid renewable power system
CN104516394B (en) A kind of method for regulation power supply
Preethi et al. Real time monitoring and controlling of solar panel using labview
Mhusa et al. Power management in photovoltaic-wind hybrid system based on artificial intelligence
Gaga et al. Design and realization of an autonomous solar system
JPS58141578A (en) Sun-ray generation set
Soni et al. Power Quality Enhancement for PV rooftop and BESS in Islanded mode
JPS6256527B2 (en)
Shyni et al. Fuzzy Logic Controller Based Energy Management (FLCBEM) for a Renewable Hybrid System
Pattnayak et al. Maximum power tracking & harmonic reduction on grid PV system using chaotic gravitational search algorithm based MPPT controller
Ghosh et al. Modelling and Analysis of a Microgrid with Diesel Generator and Battery System
JPH0678473A (en) Equipment for charging system interconnection type storage battery
Belaout et al. Development of real time emulator for control and diagnosis purpose of Photovoltaic Generator
Shanmugavel et al. Harmonic Minimized of Cascaded H-Bridge Multilevel Inverter Using PV system
Malla et al. Neuro-Fuzzy Controller-based Standalone PV-Battery System
JPS55127075A (en) Solar battery power unit
Bhatt et al. Cuk Converter to charge a battery employing ANN Controller based MPPT
Wade et al. Numerical analysis of I–V characteristics and diode currents of a PV module reflected by partial shadow
Epure et al. INTELSIS—Photovoltaic test bench: First experimental results
CN109742806B (en) Converter device with parallel power processing
Srinivas et al. PQ control based grid connected DG systems
JPH0679257B2 (en) Solar power generator
CN108445326B (en) Active reactive island detection method
Spirov Modeling of DC Motor Fed from Photovoltaic Panel