JPS58141349A - Production of high purity calcium - Google Patents

Production of high purity calcium

Info

Publication number
JPS58141349A
JPS58141349A JP2123782A JP2123782A JPS58141349A JP S58141349 A JPS58141349 A JP S58141349A JP 2123782 A JP2123782 A JP 2123782A JP 2123782 A JP2123782 A JP 2123782A JP S58141349 A JPS58141349 A JP S58141349A
Authority
JP
Japan
Prior art keywords
calcium
distillation
temp
low
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2123782A
Other languages
Japanese (ja)
Other versions
JPS6136057B2 (en
Inventor
Kenichi Sakagami
健一 坂上
Mitsunobu Tanaka
光信 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2123782A priority Critical patent/JPS58141349A/en
Publication of JPS58141349A publication Critical patent/JPS58141349A/en
Publication of JPS6136057B2 publication Critical patent/JPS6136057B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce high purity calcium of low Mg content inexpensively by subjecting crude metallic calcium to preliminary distillation under a specific temp. range then to vacuum redistillation. CONSTITUTION:Crude metallic calcium is subjected to preliminary distillation for about >=10hr, more preferably >=12hr at about 630-700 deg.C under vacuum, preferably about 10<-2>-10<-3>Torr, then the temp. is increased to about 900-920 deg.C and the crude metallic calcium is subjected to regular distillation under the reduced pressure, whereby the high purity calcium of an extremely low Mg content is obtained in high yields. If the temp. of the above-mentioned preliminary distillation is >=700 deg.C, the performance for separating Mg is low and if the temp. is <=630 deg.C, sufficiently high rate of distillation is unobtainable. A higher effect is obtained if the crude metallic calcium is subjected to the preliminary distillation for a long time at a relatively low temp.

Description

【発明の詳細な説明】 本発明は蒸留法によって金属カルシウム(Ca)中のマ
グネシウムを除去し、高純度カルシウムを製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-purity calcium by removing magnesium from metallic calcium (Ca) by a distillation method.

金属カルシウムは通常CaOと、AI!またFiAl!
合金を真空レトルト中で加熱する真空熱還元法によって
製造されている。真空熱還元法によるカルシウム中には
Mg、AI!、Mn、 Fe、 Si  等の不純物が
含まれるのは避けられない。これらの不純物を低減させ
る方法としては、純度の高い原料を厳選して使用する方
法、コンデンサ一部にバッフルを設置し不純物を吸着除
去する方法、粗メタルを再蒸留する方法等がおこなわれ
て−る。しかしながらいずれの方法を用いてもCaに近
い蒸気圧を持つMgを低減させることは困難である。
Calcium metal is usually CaO and AI! FiAl again!
It is produced by a vacuum thermal reduction method in which the alloy is heated in a vacuum retort. Calcium produced by vacuum thermal reduction contains Mg and AI! , Mn, Fe, Si, and other impurities are unavoidable. Methods for reducing these impurities include carefully selecting and using highly pure raw materials, installing a baffle in a part of the condenser to absorb and remove impurities, and redistilling crude metals. Ru. However, no matter which method is used, it is difficult to reduce Mg, which has a vapor pressure close to that of Ca.

たとえば、A、H,Wilhelm  らは粗金属カル
シウム75kpをレトルトに装入し、圧力2 Torr
のHe 雰囲気中で900℃XIO時間で再蒸留した結
果につφて報告している。それによるとCa中のAI!
、Mn、 Fe、 S i、 N、0 等の不純物は低
減しているが、Mgは再蒸留前後で0.5 wt%とな
っており、再蒸留法では除去困難であることを示してい
る。 また、Mgの低減法についてはW、J、MeCr
 earyがスライディングコンデンサーを使用し、再
蒸留中に?ンデンサー位置を6段階に移動させ凝縮させ
る方法について報告している。m紬1嘗1←に訟蔽鴫紬
〜8 この方法によればlkpの金属Ca装入においてMg含
有量3 ppm以下の金属Ca が得られるが、収率が
約35優と低く、装置も複雑となり経済的に実施するこ
とは困難である。
For example, A. H. Wilhelm et al. charged 75 kp of crude metal calcium into a retort and heated it to a pressure of 2 Torr.
The results of redistillation at 900° C. for an XIO time in a He atmosphere of φ are reported. According to it, AI in Ca!
Although impurities such as , Mn, Fe, Si, N, and 0 are reduced, Mg is 0.5 wt% before and after redistillation, indicating that it is difficult to remove by redistillation method. . In addition, regarding the reduction method of Mg, W, J, MeCr
Early uses a sliding condenser during re-distillation? This paper reports on a method for condensing by moving the condenser position in six stages. According to this method, metallic Ca with an Mg content of 3 ppm or less can be obtained by charging lkp of metallic Ca, but the yield is as low as about 35%, and the equipment is too low. It is complex and difficult to implement economically.

本発明はこれらの欠点を解消し、Mg含有量の低い高純
度カルシウムを安価に提供することを目的としたもので
ある。
The present invention aims to eliminate these drawbacks and provide high purity calcium with a low Mg content at a low cost.

本発明は金属Ca中のMgを容易に分離する方法として
CaとMgの蒸気圧を検討し、Mgを優先的に蒸留する
条件を明らかにした結果想達したものである。実験の結
果不純物を含む粗Cmの蒸留において、Ca−Mg合金
系でMgの活量係数を1と仮定した場合CaとMgの蒸
発量Wca、WMgは温度の関数として次式で与えられ
る。
The present invention was conceived as a method for easily separating Mg from metallic Ca by studying the vapor pressures of Ca and Mg and clarifying conditions for preferentially distilling Mg. Experimental Results In the distillation of crude Cm containing impurities, when the activity coefficient of Mg is assumed to be 1 in a Ca-Mg alloy system, the evaporation amounts Wca and WMg of Ca and Mg are given by the following equation as a function of temperature.

ここで T; 蒸留温度 0K NMfl x  金属Ca中のMgのモル分率、:1 WMg/WCaの値が大きいほどMgは優先的に蒸発す
るから、上式より温度が低いほどWMg/vCaは高い
値を示し、Mgは優先的に蒸発する。
Here, T: Distillation temperature 0K NMfl x Mole fraction of Mg in metal Ca: 1 The larger the value of WMg/WCa, the more preferentially Mg evaporates, so according to the above equation, the lower the temperature, the higher WMg/vCa. Mg is preferentially evaporated.

しかしながら蒸留温度が低すぎるとMgは蒸発しない。However, if the distillation temperature is too low, Mg will not evaporate.

これらの点を考慮して種々実験を重ねた結果、能率良く
しかもMgを著しく低減させる方法を見出すに至った。
As a result of various experiments taking these points into consideration, we have found a method for efficiently and significantly reducing Mg.

次に図にもとづいて実験結果を説明する。Next, the experimental results will be explained based on the figures.

第1図はMg0.5〜2.0チを含む粗カルシウムメタ
ル6kgを蒸留用レトルト炉に装入し、圧力3XIOT
orr  で再蒸留し、コンデンサーに一方向凝縮させ
た場合の凝縮位置とMg含有重の関係を示す。Mgを優
先蒸発させる為の予備蒸留は600℃〜720℃で16
時間実施し、次いで900℃で4時間にわたりCaの本
蒸留をした。蒸留した金属は一方向から冷却したコンデ
ンサーに凝縮させ回収した。凝縮した金属のうち初期過
程で蒸留されるMgはコンデンサー先端面近傍に析出す
るので、冷却回収後にこの部分を削除することにより、
Mg含有蓋の低い金属カルシウムを得ることができる。
Figure 1 shows that 6 kg of crude calcium metal containing 0.5 to 2.0 Mg is charged into a distillation retort furnace, and the pressure is 3XIOT.
The relationship between the condensation position and Mg content weight when redistilled at orr and unidirectionally condensed in a condenser is shown. Pre-distillation for preferential evaporation of Mg is carried out at 600°C to 720°C.
The main distillation of Ca was carried out for 4 hours at 900°C. The distilled metal was collected by condensing from one direction into a cooled condenser. Among the condensed metals, Mg, which is distilled in the initial process, precipitates near the tip of the condenser, so by removing this part after cooling and recovery,
Metallic calcium with low Mg content can be obtained.

Caの蒸留過程ではCaより蒸気圧の低い不純物は残留
メタルを多少残すことにより、その中に濃縮されるので
得られた金属カルシウムはきわめて純度の高いものとな
る。
In the distillation process of Ca, impurities having a vapor pressure lower than that of Ca are concentrated in the residual metal, so that the obtained metallic calcium has extremely high purity.

予備蒸留温度が720℃になるとWMυV(4比が低く
なり、Mgの分離能が劣る結果となり、600℃以下で
は充分な蒸留速度が得られない。
When the preliminary distillation temperature reaches 720°C, the WMυV (4 ratio) becomes low, resulting in poor Mg separation ability, and when it is below 600°C, a sufficient distillation rate cannot be obtained.

第2図は上記と同様の実験において予備蒸留温度を65
0℃とし、処理時間を3時間から16時間のあいだで変
化させた場合の結果を示す。第2図の結果から予備蒸留
時間が長いほどMgの蒸発が進もことがわかる。
Figure 2 shows the preliminary distillation temperature at 65°C in an experiment similar to the above.
The results are shown when the temperature was 0°C and the treatment time was varied from 3 hours to 16 hours. From the results shown in FIG. 2, it can be seen that the longer the pre-distillation time, the more Mg evaporates.

処理時間は少くとも10時間以上、好ましくは12時間
以上予備蒸留温度範囲に保持する必要があり、比較的低
温度で長時間処理するのが効果的である。要求される金
属カルシウムのMg含有蓋と経済的観点から予備蒸留の
適切な温度と時間を選択することができる。
The treatment time must be kept within the preliminary distillation temperature range for at least 10 hours, preferably 12 hours or more, and it is effective to treat at a relatively low temperature for a long time. Appropriate temperature and time of pre-distillation can be selected from the required Mg-containing cap of calcium metal and from economic point of view.

設備条件や反応効率さらには生成したメタルの結晶状態
などを総合的に考慮すると、処理雰囲気は1 f2−1
0−’rorrの減圧状態で処理するのが最も効果的で
ある。
Considering equipment conditions, reaction efficiency, and the crystalline state of the metal produced, the processing atmosphere is 1 f2-1.
It is most effective to process under reduced pressure of 0-'rorr.

この圧力範囲でMgを分離蒸留するには630〜700
℃でなるべくせまい温度範囲に制御する必要がある。
630 to 700 for separate distillation of Mg in this pressure range
It is necessary to control the temperature within as narrow a range as possible.

本発明の方法によれば蒸留温度を変更するだけで、カル
シウム中の不純物、特にマグネシウムを必要に応じて容
易に除去することができる。
According to the method of the present invention, impurities in calcium, particularly magnesium, can be easily removed as necessary by simply changing the distillation temperature.

また、目的とするカルシウムの純度に応じてコンデンサ
一端面部からの距離を選択して切除することにより、純
度の高いカルシウムを収率良く得ることが可能となる。
Furthermore, by selecting and cutting the distance from one end face of the capacitor depending on the desired purity of calcium, it is possible to obtain calcium with high purity in a good yield.

実施例 真空熱還元法で得られた粗金属カルシウム6 kgを再
蒸留用レトルトに装入し、圧力を10−2〜lO″′3
Torr に保ち、650〜670℃の温度で16時間
予備蒸留をおこなった。次いで温度を900℃〜920
℃に上げて4時間本蒸留をおこなった。
Example: 6 kg of crude metallic calcium obtained by vacuum thermal reduction method was charged into a retort for redistillation, and the pressure was adjusted to 10-2 to 1O'''3.
Torr was maintained and preliminary distillation was carried out at a temperature of 650-670°C for 16 hours. Then the temperature was increased from 900℃ to 920℃.
The main distillation was carried out for 4 hours.

蒸留金属はコンデンサー面に一方向から冷却して凝縮析
出させた。冷細後凝縮金属を回収し、コンデンサ一端面
部より1crnのところで切離し、Mg含有量o、os
ts以下の高純度カルシウム5 kgが得られ収率は8
0チであった。再蒸留処理前後の金属カルシウムの品位
は次のとおりであった。
The distilled metal was cooled from one direction on the condenser surface to condense and precipitate. After cooling, the condensed metal is collected and cut off at a distance of 1 crn from one end of the capacitor, and the Mg content o, os
5 kg of high purity calcium of less than ts was obtained with a yield of 8
It was 0chi. The grades of metallic calcium before and after the redistillation treatment were as follows.

またMg含有量0.01%以下の収率は55%であった
Moreover, the yield when the Mg content was 0.01% or less was 55%.

また、Mg含有量0.01%以下の金属カルシウムの収
率は55%であった。
Further, the yield of metallic calcium with an Mg content of 0.01% or less was 55%.

以上のとおシ本発明によればMgをはじめAl1Mn、
 Fe、 Znのきわめて少い高純度カルシウムを収率
良ぐ得ることができる。
According to the present invention, Mg, Al1Mn,
High purity calcium with extremely low Fe and Zn content can be obtained in good yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はコンデンサー内の凝縮位置とMg
含有量の関係を示す図である。 特許出願人 昭和電工株式会社 代理人 弁理士菊地精− 手続補正音(自発) 昭和57年9月lZ日 特許庁長官 名杉 和夫殿 1、事件の表示 昭和57年特許■第21237号 26発明の名称 高純度カルシウムの製造方法 3、補正をする者 事件との関係 特許出願人 住所 東京a場区芝大門−丁目13番9号名称 C20
0)  昭和電工株式会社代表者 洋本 泰延 番1代理人 居所 東京II場区芝大門−丁目13番S号昭和電工株
式会社内 〒105  置 03−432−5111 (代表)(
1) 6、補正の内容 本11111編書の記載を以下のとおり補正します。 (1)第3両9行、「Wca 」をrWc!a  Jと
補正する。 (2)R6N119行、r6kgJをr4 、8 kg
Jと補正する。 (3)11R7142行〜3行を削除する。 (4)87頁9行、「収率は」の後に[粗金属カルシウ
ム6kgに対して」を加入する。 (2)
Figures 1 and 2 show the condensation position and Mg in the condenser.
It is a figure showing the relationship of content. Patent applicant Showa Denko Co., Ltd. agent Patent attorney Sei Kikuchi Procedural amendment (spontaneous) September 1980 IZ Commissioner of the Patent Office Kazuo Nasugi 1 Case indication 1982 Patent ■ No. 21237 No. 26 Invention Name: Process for producing high-purity calcium 3, relationship with the amended case Patent applicant address: 13-9 Shiba Daimon-chome, Aba-ku, Tokyo Name: C20
0) Showa Denko Co., Ltd. Representative Yasunobu Hiromoto No. 1 Agent Address No. 13-S, Shiba Daimon-chome, II-ba-ku, Tokyo Showa Denko Co., Ltd. 105 03-432-5111 (Representative)
1) 6. Contents of amendment The description in Book 11111 has been amended as follows. (1) Line 9 of the third car, “Wca” is rWc! a Correct as J. (2) R6N119 row, r6kgJ to r4, 8 kg
Correct with J. (3) Delete lines 11R7142 to 3. (4) On page 87, line 9, after "yield", add "[based on 6 kg of crude metal calcium]". (2)

Claims (1)

【特許請求の範囲】[Claims] 金属カルシウムを減圧再蒸留法によって高純度化する方
法において、630℃〜700℃で予備蒸留をおこなう
ことを特徴とするマグネシウム含有量の低い金属カルシ
ウムの製造方法。
A method for producing metallic calcium with a low magnesium content, which comprises performing preliminary distillation at 630°C to 700°C, in a method for highly purifying metallic calcium by a reduced pressure redistillation method.
JP2123782A 1982-02-15 1982-02-15 Production of high purity calcium Granted JPS58141349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123782A JPS58141349A (en) 1982-02-15 1982-02-15 Production of high purity calcium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123782A JPS58141349A (en) 1982-02-15 1982-02-15 Production of high purity calcium

Publications (2)

Publication Number Publication Date
JPS58141349A true JPS58141349A (en) 1983-08-22
JPS6136057B2 JPS6136057B2 (en) 1986-08-16

Family

ID=12049434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123782A Granted JPS58141349A (en) 1982-02-15 1982-02-15 Production of high purity calcium

Country Status (1)

Country Link
JP (1) JPS58141349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084672A1 (en) 2011-12-07 2013-06-13 Jx日鉱日石金属株式会社 Method for producing calcium of high purity
JP2018059177A (en) * 2016-10-07 2018-04-12 太平洋セメント株式会社 Production device of alkali earth metal and production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049806Y2 (en) * 1986-09-30 1992-03-11

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084672A1 (en) 2011-12-07 2013-06-13 Jx日鉱日石金属株式会社 Method for producing calcium of high purity
CN103958706A (en) * 2011-12-07 2014-07-30 吉坤日矿日石金属株式会社 Method for producing calcium of high purity
EP2740810A4 (en) * 2011-12-07 2015-06-17 Jx Nippon Mining & Metals Corp Method for producing calcium of high purity
US9499877B2 (en) 2011-12-07 2016-11-22 Jx Nippon Mining & Metals Corporation Method for producing high-purity calcium
US10138533B2 (en) 2011-12-07 2018-11-27 Jx Nippon Mining & Metals Corporation Method for producing high-purity calcium
JP2018059177A (en) * 2016-10-07 2018-04-12 太平洋セメント株式会社 Production device of alkali earth metal and production method

Also Published As

Publication number Publication date
JPS6136057B2 (en) 1986-08-16

Similar Documents

Publication Publication Date Title
JP4620694B2 (en) Method for producing high purity trichlorosilane
JPS58141349A (en) Production of high purity calcium
EP0031097A1 (en) Method for distilling ethyl alcohol
US2672435A (en) Acrylonitrile purification process by distillation
US3397056A (en) Separation of aluminum from impure aluminum sources
CN113891877A (en) Method for purifying tricyanohexane
EP0140866B1 (en) Production of high purity alkyl glyoxylate
US3245884A (en) Process for the purification of polyethlene glycols
US5705040A (en) Process for preparing a substantially pure aqueous solution of hydrogen peroxide
US6971276B2 (en) Recovery of purified volatile metal such as lithium from mixed metal vapors
CN114901633A (en) Process for separating tricyanohexane
JPH0425259B2 (en)
US3375265A (en) Production of trialkoxyboroxine
US2013104A (en) Purification of lactic acid
US2860965A (en) Process for producing pure manganese
US3396012A (en) Recovery of silicon from alloys thereof and from silicon sulfides
JPH0545572B2 (en)
US4379026A (en) Process for the purification of benzaldehyde
US3856511A (en) Purification of crude aluminum
US2953503A (en) Method for the purification of n, n-dimethylacetamide
US2425705A (en) Method of removing manganese from calcium
US3155687A (en) Preparation of trimellitic intermolecular double anhydride
US2452415A (en) Concentrating and refining formaldehyde solutions by distillation with hydrocarbon derivatives containing nitrogen and oxygen
US4188497A (en) Purification of 3,5-xylenol
JPS6141497B2 (en)