JPS58141139A - Ultrasonic wave transmitting and receiving system - Google Patents

Ultrasonic wave transmitting and receiving system

Info

Publication number
JPS58141139A
JPS58141139A JP57022858A JP2285882A JPS58141139A JP S58141139 A JPS58141139 A JP S58141139A JP 57022858 A JP57022858 A JP 57022858A JP 2285882 A JP2285882 A JP 2285882A JP S58141139 A JPS58141139 A JP S58141139A
Authority
JP
Japan
Prior art keywords
transmitting
receiving
aperture
reception
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57022858A
Other languages
Japanese (ja)
Other versions
JPH0375172B2 (en
Inventor
俊雄 小川
景義 片倉
児玉 眞塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP57022858A priority Critical patent/JPS58141139A/en
Publication of JPS58141139A publication Critical patent/JPS58141139A/en
Publication of JPH0375172B2 publication Critical patent/JPH0375172B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は広視野高性能寛子走査形超音波断層装眞の受領
鋏直に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a receiving scissor straightener for a wide-field high-performance Hiroko scanning ultrasonic tomography system.

従来、超ml!&、Ij=7走査方式において配列振動
子の全口径から切換手段により送受波口径を選択し一上
記切侠+#9.を制−することにより超音波ビームを走
食し断層像を得るとさ、込択さnたlt’J −送受波
口径において口径の中心組上に一本の超音波ビームが得
られていた。このため配列振動子の両端はそれぞれ送受
波口径の1/2の幅たけ走査不能な部分が住するため視
野が狭くなるという欠点があった。
Conventionally, super ml! &, Ij=7 In the scanning method, the transmitting/receiving aperture is selected by the switching means from all the apertures of the array transducer, and the above-mentioned selection +#9. When the ultrasonic beam is scanned and a tomographic image is obtained by controlling the aperture, a single ultrasonic beam is obtained on the center set of the aperture at the selected transmitting/receiving aperture. For this reason, each end of the arrayed transducer has a portion that cannot be scanned by a width of 1/2 of the transmitting/receiving aperture, resulting in a disadvantage that the field of view becomes narrow.

特に高分解能化を目的として送波口径位置きくすると上
記欠点が顕著となる。
In particular, when the transmitting aperture position is increased for the purpose of increasing the resolution, the above-mentioned drawbacks become noticeable.

本発明は広視野爾分解能超音波断増鉄重の送受信方式を
提供することt目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wide-field-of-view, high-resolution ultrasonic transmission/reception system.

本発明は切換器により選択さnた同−受数口往において
複数の平行受阪ビームを得ることにより、配列振動子の
全口径についての走査七可舵とし広視野超音波断層像を
得る受傷方式である。
The present invention obtains a plurality of parallel beams at the same number of beams selected by a switch, thereby making it possible to scan the entire diameter of the array transducer and obtain a wide-field ultrasonic tomographic image. It is a method.

ここで平行受波ビームを得るためにはダイナミックフォ
ーカスするように各配列菓子の受改伯号の位相を制(2
)する。一方、受波口径P3t−受波ビームと一致する
位置に送波口径を後動させることにより、送受改ビーム
特性は最適となる。
In order to obtain a parallel receiving beam, the phase of the Ukekai Hakugo of each arrayed confectionery is controlled (2
)do. On the other hand, by moving the transmitting aperture backward to a position that matches the receiving aperture P3t - the receiving beam, the transmitting and receiving beam characteristics are optimized.

第1凶μ本兆明のり=7走食についての説明図でのり・
、視野の領職工は各走皇蛛に対して受波口径移動を移動
させ、整相器制御データは一定の領域(対称受信の領域
)であり、領域■は各走査線に対して受波ロ径位眞−足
で、整相器制御データを変化させる領域(非対称受信の
領域)である。
No. 1 μ Honchoaki Nori = 7 An explanatory diagram about running food.
, the visual field operator moves the receiving aperture for each scanning line, the phaser control data is a constant area (region of symmetrical reception), and the area ■ is the receiving aperture for each scanning line. This is a region (asymmetric reception region) in which the phaser control data is changed at the center of the radius.

なお、18.1.、1.、1.は各領域の境界の走束線
を表わす。またUは配列素子(1〜N個)を、RAは受
波口径を示す。
In addition, 18.1. , 1. , 1. represents the flux line at the boundary of each region. Further, U indicates an array element (1 to N pieces), and RA indicates a receiving aperture.

第2図は本発明のセクタ走査についての説明図であり、
領域I、I[は第1図と同様な領域を示す。
FIG. 2 is an explanatory diagram of sector scanning of the present invention,
Areas I and I[ indicate areas similar to those in FIG.

なお、第2図において、0は偏向角を示す。ここでリニ
ア走査の場合にりφて、領域I、I[の相違ヶ第3図を
用いて説明する。図においてP、は受波口径(配列T、
1〜14まで)の中心巌上の任意の反射音−1P、“は
中心線以外の反射音源である。
In addition, in FIG. 2, 0 indicates the deflection angle. Here, in the case of linear scanning, the difference between regions I and I[ will be explained using FIG. 3. In the figure, P is the receiving aperture (array T,
1 to 14) on the center line -1P, ``is a reflected sound source other than the center line.

A、 B、 C,Dは各反射音源と配列素子を結ぶ1組
と等位相面VV、、W!との交点である。
A, B, C, and D are equal phase planes VV, W! It is the intersection with

領域lにおいては常に口径の中心線上に反射音隊かめる
と牟なし整相器制御データ位各走査線に対し一定でめゐ
。一方領域■においてに口往の中心線以外の走皇趣に反
射音源がめるとみなし聚相器制御データは各走査線に対
しそnそれ真なるデータを持つものである。
In region l, if the reflection band is always placed on the center line of the aperture, the constant phaser control data level should be constant for each scanning line. On the other hand, in region (2), it is assumed that a reflected sound source is located in a direction other than the center line of the front and back lines, and the phaser control data has true data for each scanning line.

+7 =7走査の場合、領域lでは整相器?!111j
卸データは、受波口径の中心に対して対称IA(配列素
子と交点Aとの距離)、−14B(llel素列14と
交点Bとの距離)となり領域且では非対称丁で〉14D
となる。
+7 = In the case of 7 scans, is there a phaser in region l? ! 111j
The wholesale data is symmetrical IA (distance between array element and intersection point A) and -14B (distance between llel element array 14 and intersection point B) with respect to the center of the receiving aperture, and the area is 14D with asymmetrical dimensions.
becomes.

非対称受信の指向特性は対称受信のそnに対し劣化する
が表に示すように高々40%@度であり実用上問題とな
らないことが判った。
Although the directivity characteristics of asymmetrical reception are degraded compared to those of symmetrical reception, as shown in the table, it is at most 40%, which is not a practical problem.

セクタ走査の場合、領域lにおいても偏向データカミ必
要のため・!径の中心に対して対称とはならない仁とは
明らかでるる。
In the case of sector scanning, deflection data is also required in area l. It is clear that the diameter is not symmetrical about the center of the diameter.

第4図は本発明の一拠施控のIil成會示すブロック図
でめり1は384%子からなる配列伽動子、2は送受波
切換器、3は送波駆動回路、4は前直増暢器、5は受波
整相器、6は圧縮回路、7は検R閏路、8は六示器、9
は制御部、lOは非対称父佃用データメモIJ、11は
対称受信用データメモリである。
FIG. 4 is a block diagram showing the implementation of the first embodiment of the present invention, in which 1 is an array shifter consisting of 384% children, 2 is a transmitting/receiving switch, 3 is a transmitting drive circuit, and 4 is a front panel. Direct amplifier, 5 is receiver phaser, 6 is compression circuit, 7 is detection R jump, 8 is six indicator, 9
1 is a control unit, IO is an asymmetrical data memo IJ, and 11 is a symmetrical reception data memory.

ここでデータメモリとはリニア走査の場合はフ”T力3
チー′・灯′走食の場合は7”−力7テータおよび偏向
データである。
In the case of linear scanning, the data memory is
In the case of Chi' and Light' running, it is 7''-force 7 theta and deflection data.

いわゆるダイ、ナミックフォーカスをする必要がめるの
で深度に応じて複数のフォーカステータを待つ必要がめ
る。12は反転回路、13はスイッチで制御信号有のと
きON、無のときOFF。
Since it is necessary to perform so-called die, namic focus, it is necessary to wait for multiple focusators depending on the depth. 12 is an inverting circuit, and 13 is a switch that is ON when a control signal is present and OFF when there is no control signal.

14はスイッチで制御信号有のとき非対称受信メモリ1
OIIllへ、無のとき対称受信メモリ111allへ
ONN聴感なるものとする。
14 is a switch and when a control signal is present, the asymmetric reception memory 1
It is assumed that the symmetric reception memory 111all is ONN auditory sensation when there is no signal to OIIll.

aに送波口径移動用制御信号、bは受波口径移動の1無
t−1IIJIilllする制御iIm号でめ9、肩の
とき日経移動し、無のとき口径移動しない。Cは対称受
信、非対称受git−迦択するll11#偏号でめり、
有のとき非対称、無のとき対称受信となるものとする。
A is a control signal for moving the transmitting aperture, and b is a control signal for moving the receiving aperture. C is symmetrical reception, asymmetrical reception is determined by ll11# polarization code,
When it is present, the reception is asymmetrical, and when it is absent, it is symmetrical reception.

このような構成において、配列振動子1゜384個の全
素子から、切換器2により48素子の込阪口性および1
92素子の受波口径がそれぞれ制御15号a、bにより
−M択さnる。次元の振幅、位相tもつ48木子の送線
駆動回路3の出力が切換器21rへて配列振動子1 t
、l18mする。
In such a configuration, from a total of 384 elements in one array transducer, the switching device 2 switches between 48 elements and 1.
The receiving apertures of the 92 elements are selected by -M by control numbers a and b, respectively. The output of the 48-wire transmission drive circuit 3 having the dimension amplitude and phase t is sent to the switching device 21r to the array oscillator 1 t.
, l18m.

一方、192素子の各受波便号は前置増−器4により増
幅された後、データメそりlOまたは11により制御さ
れた受波整相器5により整相加算される。その後は圧縮
回路6、検波回路7t−へて表示118に1本の走査線
に対応する超音波反射信号が表示される。次に制御部9
0制御傷号a。
On the other hand, each receiving signal number of 192 elements is amplified by a preamplifier 4, and then phased and summed by a receiving phaser 5 controlled by a data memory 10 or 11. Thereafter, the ultrasonic reflection signal corresponding to one scanning line is displayed on the display 118 through the compression circuit 6 and the detection circuit 7t. Next, the control section 9
0 control flaw number a.

′b、Cにより順次、走査線が得らn1表示器8上に超
曾波断層諏が表示される。
'b and C, scanning lines are sequentially obtained and a supersonic tomogram is displayed on the n1 display 8.

ここで、11111@偏号a、b、cについてさらに説
明する。
Here, 11111@ polarization codes a, b, and c will be further explained.

対称受信のときは割碑値号Cは0で、スイッチ14は対
称受信用データメモリ11がONとなる。
During symmetrical reception, the divider value C is 0, and the switch 14 turns on the data memory 11 for symmetrical reception.

同時に反転回路12の出力はlとなゐのでスイッチ13
はONとなる。したがって、各走*Ii!Slに対して
受波整相器のデータメモリは一定で、切換器2により受
波口径が移動する。
At the same time, the output of the inverting circuit 12 is l, so the switch 13
becomes ON. Therefore, each run *Ii! The data memory of the receiving phaser is constant with respect to Sl, and the receiving aperture is moved by the switch 2.

一方1非対称受偏のと1!は側111Ll値号Cはlで
、スイッチ14は非対称受信用データメそり10がON
となり、スイッチ13はOFFとなる。したがって、谷
走査巌に対し、受波口径は移動せず、テータメモリlO
の内容が史新さnることになる。
On the other hand, 1 is asymmetrical and 1! The side 111Ll value C is l, and the switch 14 turns on the data memory 10 for asymmetric reception.
Therefore, the switch 13 is turned off. Therefore, the receiving aperture does not move with respect to the valley scanning range, and the data memory lO
The contents of this will be completely new.

ここで第4図の切換器2の構成について第5図(a)及
び(b)を用いて説明する。
Here, the configuration of the switching device 2 shown in FIG. 4 will be explained using FIGS. 5(a) and 5(b).

送波駆動回路の第1チヤンネルは送波用スイッチ5vV
Ti (i+=1.49.97.145・・・) fへ
て、◆1゜49.97,145.・・・の配列素子へ接
続されている。
The first channel of the wave transmission drive circuit is the wave transmission switch 5vV.
Ti (i+=1.49.97.145...) f, ◆1°49.97,145. ... is connected to the array element.

同殊に駆動回路の第24チヤンネルはす24.72゜1
20、・・・の配列素子へ、@48チャンネルは◆48
,96,144.・・・の配列菓子へ接続されている。
In particular, the 24th channel of the drive circuit is 24.72°1
To the array element of 20,..., @48 channel is ◆48
,96,144. ...is connected to an array of sweets.

一方、配列素子は受波用スイッチ8WRiをへて192
チヤンネルの前直増IIa儲と接続されている。
On the other hand, the array element passes through the wave receiving switch 8WRi 192
It is connected to the channel Mae Jokusai IIa.

ここで込歇用スイッチ8WTtと受波用スイッチ谷スイ
ッチ8WTi、8WRiの制御信号は第5図では省略さ
nている。
Here, the control signals for the intermittent switch 8WTt and the wave receiving switch valley switches 8WTi and 8WRi are omitted in FIG. 5.

いま込波用スイッチS貨T1〜5WT48および受波用
スイッチf9VVl−41〜5WR192のみkON状
態とし、配列菓子すl〜す48で送波し、ナl〜す19
2の受波信号を前置増幅器へ接続する。次に速成用スイ
ッチ8WT2〜8WT49および受波用スイッチSWR
,2〜8WR193のみをON状態とし、配列菓子す2
〜す49で送波し、ナ2〜す193の受波信号を前置増
幅器へ接続する。
Only the switches T1 to 5WT48 for imagomi waves and the switches f9VVl-41 to 5WR192 for wave reception are set to the kON state, and the waves are transmitted by the array sweets 1 to 48, and the waves are transmitted by arrays 1 to 19.
Connect the received signal of 2 to the preamplifier. Next, the speed generation switches 8WT2 to 8WT49 and the wave reception switch SWR
, 2 to 8 Only WR193 is in the ON state, and the array sweets 2
-49 transmit the waves, and the received signals of N2-193 are connected to the preamplifier.

ここで切換器8WT iの制御信号発生器としては例え
ば384ビツトのりングカウンタ(48ビツトのみ1、
他は0)を用い、制am号lのとき切換器8WT<をO
N状態とし、0のときOFF状恕とすればよい。
Here, the control signal generator of the switch 8WTi is, for example, a 384-bit ringing counter (48 bits only 1,
Otherwise, use 0), and when the control am number is set, switch 8WT< is set to 0.
It may be set to N state, and when it is 0, it may be set to OFF state.

第5図の切換器の構成により送受波口径の移動が可能と
なる。
The configuration of the switching device shown in FIG. 5 allows the transmitting and receiving aperture to be moved.

ここで、第6図に示すように口性移動にともない、切換
器の入出力のチャンネル査号が変るので送波駆動回路の
振幅重みと位相および受波整相器の位相を変化させ配列
素子上で所期の値となるようにする必要がある。すなわ
ち三角重みの振幅分布と凹面の位相分布を有する送波口
径の移動の場合、配列索子す1〜會48の送波口径のと
き、左側来鍼に示すような振幅分布、位相分布を与え、
配タリ系子す24〜◆72の送波口径のとき、左側点線
に示すような振幅分布、位相分布を与えるように送波駆
動回路の出力を制御する必要がある。受波整相器につい
ても同様である。
As shown in Fig. 6, as the mouth moves, the input and output channel signals of the switch change, so the amplitude weight and phase of the transmitting drive circuit and the phase of the receiving phaser are changed to change the array element. It is necessary to set the above value to the desired value. In other words, in the case of movement of the transmitting aperture having a triangular weighted amplitude distribution and a concave phase distribution, when the transmitting aperture of the array cables 1 to 48, the amplitude distribution and phase distribution are given as shown in the left side acupuncture needle. ,
When the transmitting aperture of the distribution system element 24 to ◆72 is used, it is necessary to control the output of the transmitting drive circuit so as to provide an amplitude distribution and a phase distribution as shown by the dotted line on the left side. The same applies to the receiving phaser.

以上の説明では位相制御により複数受波ビームを得る方
法について述べた。
The above explanation describes a method for obtaining multiple receiving beams by phase control.

一部、送波口径は受波ビーム方向と一部する方向に移動
させることにより最適の送受波ビームを侍よ、とすR’
答へ、6゜ すなわち、第3図に示すように受波口径tす1〜す14
索子とし、21点に収束するように位相市IJ141L
、ダイナミックフォーカスにより得られた受波ビーム方
向t L tとする。一方、送波口径は受阪口性内の一
部す9〜す13とし、22s波口法の中心を受波ビーム
と一部させることにより最適の送父阪ビームを得ること
ができる。
By moving the transmitting aperture in a direction that partially coincides with the direction of the receiving beam, the optimum transmitting and receiving beam can be achieved.
To the answer, 6°, that is, the receiving aperture ts1 to s14 as shown in Figure 3.
Phase city IJ141L to converge to 21 points.
, the direction of the received beam obtained by dynamic focusing is t L t. On the other hand, the transmitting aperture is set to 9 to 13 as part of the receiving beam, and by making the center of the 22s wave opening part part of the receiving beam, an optimum transmitting beam can be obtained.

すなわち、w&4図において、制#偏号すがないとき受
波口径は移動せず、制御信号Cが有のとき、非対称受信
となるが、その状態で杉成延れた受波ビームの位W/L
 L sと一部する方向に送波ビームを構成させるよう
に送改口性移動用wIIJ御値号ak制御し切換器2の
導通状態のスイッチsFt口社方向に移動さぜることに
より送波口径の位置を移IIJJきぜれはよい。
In other words, in Fig. w&4, when the control signal C is not present, the receiving aperture does not move, and when the control signal C is present, asymmetric reception occurs, but in that state, the position W of the received beam extended /L
The transmitting aperture is adjusted by controlling the transmitting port property moving wIIJ reference number ak so as to configure the transmitting beam in the direction that partially forms the transmitting aperture with the conductive state switch sFt of the switching device 2. Move the position of IIJJ and it will be fine.

本発明によれは非対称受信によりN−受波口径で複数受
波ビームを得、かつ受波口径の送波口径移動により超音
波断層装置1を広視野とする効果がある。
The present invention has the effect of obtaining a plurality of receiving beams with an N-receiving aperture through asymmetric reception, and widening the field of view of the ultrasonic tomography apparatus 1 by moving the receiving aperture and the transmitting aperture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図はそnそn本発明の説明図、
第4図は本発明の一実施例の悄戚をがナプロック図、第
5図(a)及びΦ)は切換器の一部り例’、’;” 、
l− 肩 1 図 尺八 市 2 出 L  it     is  Z& )5 5   回 第 4 図 聞 5  口 (a) (b) : ; : = ?! 第6 口
FIG. 1, FIG. 2, and FIG. 3 are explanatory diagrams of the present invention.
Fig. 4 is a naprock diagram showing an example of an embodiment of the present invention, and Fig. 5 (a) and Φ) are examples of a part of a switching device.
l- Shoulder 1 Figure Shakuhachi City 2 Outer L it is Z & ) 5 5th 4th Zumon 5 Mouth (a) (b) : ; : = ? ! 6th mouth

Claims (1)

【特許請求の範囲】[Claims] 1.配列振動子の全口径から切換手段により送受波口径
を選択し、上記切換手段を制御することにより超を阪ビ
ームを走査し断層像を得る超音波断層装置において、選
択され九同−受波ロ径において各配列素子の受波信号の
位相を制御することにより複数の平行受波ビームtり゛
イナミンクフォーカスにより得ることt%黴とする超廿
改送受信装置。 2、、%FF請求の範囲第一項記載の装置において受歇
口住内の一部を送波口径とし、その送波口径位置を受技
ビーム形成位眞に対応して移動賂せることを特徴とする
超を波送受値装置。
1. In an ultrasonic tomography apparatus which obtains a tomographic image by scanning an ultrasonic wave beam by selecting a transmitting and receiving aperture from all the apertures of the array transducer by a switching means and controlling the above-mentioned switching means, the An ultra-convertible transmitting/receiving device which obtains a plurality of parallel received beams by in-focusing by controlling the phase of the received signal of each array element in the radius. 2., %FF In the device according to claim 1, a part of the reception port is made into a transmitting aperture, and the position of the transmitting aperture is moved in accordance with the receiving beam forming position. A super-wave transmitter/receiver device with special features.
JP57022858A 1982-02-17 1982-02-17 Ultrasonic wave transmitting and receiving system Granted JPS58141139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022858A JPS58141139A (en) 1982-02-17 1982-02-17 Ultrasonic wave transmitting and receiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022858A JPS58141139A (en) 1982-02-17 1982-02-17 Ultrasonic wave transmitting and receiving system

Publications (2)

Publication Number Publication Date
JPS58141139A true JPS58141139A (en) 1983-08-22
JPH0375172B2 JPH0375172B2 (en) 1991-11-29

Family

ID=12094410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022858A Granted JPS58141139A (en) 1982-02-17 1982-02-17 Ultrasonic wave transmitting and receiving system

Country Status (1)

Country Link
JP (1) JPS58141139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158843A (en) * 1984-01-27 1985-08-20 横河メディカルシステム株式会社 Ultrasonic diagnostic apparatus
JPS61181450A (en) * 1985-02-06 1986-08-14 横河メディカルシステム株式会社 Sound field scanning method of ultrasonic diagnostic apparatus
JP2012161563A (en) * 2011-02-09 2012-08-30 Canon Inc Subject information acquiring apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588752A (en) * 1978-12-27 1980-07-04 Tokyo Shibaura Electric Co Ultrasoniccwave diagnosis device
JPS55138445A (en) * 1979-04-13 1980-10-29 Yokogawa Electric Works Ltd Method of scanning sound field to be inspected in phaseddarrayysonar
JPS5692481A (en) * 1979-12-25 1981-07-27 Fujitsu Ltd Ultrasonic wave transmission and reception system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588752A (en) * 1978-12-27 1980-07-04 Tokyo Shibaura Electric Co Ultrasoniccwave diagnosis device
JPS55138445A (en) * 1979-04-13 1980-10-29 Yokogawa Electric Works Ltd Method of scanning sound field to be inspected in phaseddarrayysonar
JPS5692481A (en) * 1979-12-25 1981-07-27 Fujitsu Ltd Ultrasonic wave transmission and reception system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158843A (en) * 1984-01-27 1985-08-20 横河メディカルシステム株式会社 Ultrasonic diagnostic apparatus
JPS61181450A (en) * 1985-02-06 1986-08-14 横河メディカルシステム株式会社 Sound field scanning method of ultrasonic diagnostic apparatus
JP2012161563A (en) * 2011-02-09 2012-08-30 Canon Inc Subject information acquiring apparatus
US9364152B2 (en) 2011-02-09 2016-06-14 Canon Kabushiki Kaisha Object information acquiring apparatus

Also Published As

Publication number Publication date
JPH0375172B2 (en) 1991-11-29

Similar Documents

Publication Publication Date Title
EP0642036B1 (en) Ultrasonic diagnostic equipment
US3918024A (en) Ultrasonic array for reflection imaging
USRE40456E1 (en) Acoustic wave imaging apparatus and method
JP2807113B2 (en) Acoustic scanning method and device
US5417219A (en) Ultrasonic diagnostic apparatus
JPS6150621B2 (en)
US4598589A (en) Method of CW doppler imaging using variably focused ultrasonic transducer array
JPH0155429B2 (en)
US5024093A (en) Fan-shape scanning ultrasonic flaw detecting apparatus
JP4334671B2 (en) Ultrasonic diagnostic equipment
JPS58141139A (en) Ultrasonic wave transmitting and receiving system
JP2001104303A (en) Ultrasonograph
JPH05192337A (en) Ultrasonic diagnostic device
JP3934844B2 (en) Ultrasonic diagnostic equipment
JPH0862196A (en) Ultrasonic diagnostic apparatus
JPH08266540A (en) Ultrasonic diagnostic system
JPH02147052A (en) Electronic scanning type ultrasonic diagnosing device
JPH0223285Y2 (en)
JPH06205773A (en) Ultrasonic diagnostic system
JPS639428A (en) Ultrasonic probe
JPH03158144A (en) Ultrasonic diagnostic device
JPH10305032A (en) Ultrasonic diagnostic system
JPS5812022B2 (en) ultrasound imaging device
JPS58333B2 (en) Ultrasound diagnostic equipment
JPH0116393B2 (en)