JPS58140813A - Position controlling system - Google Patents

Position controlling system

Info

Publication number
JPS58140813A
JPS58140813A JP2242682A JP2242682A JPS58140813A JP S58140813 A JPS58140813 A JP S58140813A JP 2242682 A JP2242682 A JP 2242682A JP 2242682 A JP2242682 A JP 2242682A JP S58140813 A JPS58140813 A JP S58140813A
Authority
JP
Japan
Prior art keywords
pulse
error
servo
simulator
position control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2242682A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takekoshi
竹腰 吉孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Fujitsu Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp, Fujitsu Fanuc Ltd filed Critical Fanuc Corp
Priority to JP2242682A priority Critical patent/JPS58140813A/en
Publication of JPS58140813A publication Critical patent/JPS58140813A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41186Lag
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42155Model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42162Model reference adaptive control MRAC, correction fictive-real error, position

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To compensate a following error, by providing a simulator for the primary delay characteristics of a servo system. CONSTITUTION:A servo motor 13 shows the primary delay characteristics and is unable to have immediate and following revolutions although the distribution pulse CP is produced from an NC device 11. Thus the motor 13 turns with a prescribed delay. Therefore a simulator 17 simulates the transmission characteristics of a servo system and then produces a simulation pulse SP with a time interval approximately equal to the feedback pulse FP. The error between the pulses SP and CP is added to the pulse CP to be supplied to a servo circuit 12. As a result, the delay due to the characteristics of servo system can be compensated. That is, a mobile part 15 moves immediately with generation of the pulse CP and then stops immediately when the generation is discontinued for the pulse CP. Thus it is possible to give compensation to a following error.

Description

【発明の詳細な説明】 本発明は位置制御方式にiシ、特に追従gA差を補正す
ることができる位置制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a position control method, and particularly to a position control method capable of correcting a tracking gA difference.

通常、数値制御ンステムにおける位置制御においては、
指令値と実際の移動量とのta蚤を増幅し、鋏誤差が零
となるようにサーボモータを駆動し、可wJsを指令位
置に位置決めする。第1図はか\る位置制御を説明する
説明図である。図中、11はNo装置でパルス分配器を
内蔵し、移動指令に基いてパルス分配演算を行ない指令
パルスCPを発生する。12は周知のサーボ回路で、指
令パルスCPと後述するフィードバックパルスFPの差
(WA差という)を演算して出力する可逆カウンタ岬よ
りな゛る誤差演算記憶部12mと、咳誤艷に応じたアナ
ログ電圧を発生すゐDA変換器12bと、増幅器12C
岬を有しており、前記誤差が零となるようにサーボモー
タを駆動する。1sは直流モータなどのサーボモータ、
14はポールスクリ為、15は可動部としてのテーブル
、16はテーブルが所定量移動する毎に1個のフィード
バックパルスFPを発生するパルス分配器などの位置検
出器である。このw11図において、NO装置11から
分配パルスOPが発生すれば該分配パルスはサーボ回路
12内の誤差演薯記憶9128に累積される。
Normally, in position control in a numerical control system,
The difference between the command value and the actual movement amount is amplified, the servo motor is driven so that the scissor error becomes zero, and the movable wJs is positioned at the command position. FIG. 1 is an explanatory diagram illustrating such position control. In the figure, 11 is a No. device which has a built-in pulse distributor, performs pulse distribution calculation based on a movement command, and generates a command pulse CP. Reference numeral 12 designates a well-known servo circuit, including an error calculation storage unit 12m consisting of a reversible counter cape that calculates and outputs the difference between a command pulse CP and a feedback pulse FP (referred to as a WA difference), which will be described later; A DA converter 12b that generates an analog voltage and an amplifier 12C
The servo motor is driven so that the error becomes zero. 1s is a servo motor such as a DC motor,
14 is a pole screen, 15 is a table as a movable part, and 16 is a position detector such as a pulse distributor that generates one feedback pulse FP every time the table moves by a predetermined amount. In this diagram W11, when a distribution pulse OP is generated from the NO device 11, the distribution pulse is accumulated in the error calculation memory 9128 in the servo circuit 12.

誤差演算記憶部12aの内容(誤差)FiDA変換器1
2bによりDA変換後、増幅器12cにより増幅されて
サーボモータ15に入力さね、該サーボモーpvtvs
転する。これKよシボールスクリ&14が一転し、テー
ブル15は指令され良方向に移動す為、テーブル15が
所定量移動すれば位置検出器16から1側のフィードバ
ックパルスFPが発生し、このフィードバックパルスは
誤差演算記憶部1taに入力されその内容を減少する。
Contents (error) of error calculation storage unit 12a FiDA converter 1
After DA conversion by 2b, the signal is amplified by amplifier 12c and input to the servo motor 15, and the servo motor pvtvs
Turn around. Since the table 15 is commanded to move in the correct direction, the feedback pulse FP on the 1 side is generated from the position detector 16 when the table 15 moves by a predetermined amount. It is input to the error calculation storage unit 1ta and its contents are reduced.

以後、上記O動作を繰返えし、定常時には誤差演算記憶
部12aK記憶されている誤差Erは一定の定常偏差値
に轡しくな抄、サーボモータ13.可動部15は指令さ
れ大速度で移動することになる。tll、定常偏差値は
位置制御1llll路のゲインをに、指令パルス連駿を
rとすればF/にとなる。そして指令され参勤距離に相
当すゐ数の分配パルス(指令パルス)CPが発生すれば
、4はや該分配パルスは出力されなくなり、以後誤差演
算配憶部121に記憶され九誤差に相当する量だけテー
ブル15が移動すればWIA差Erが零となりテーブル
15は正しく目標位置に位置決めされる。
Thereafter, the above O operation is repeated, and during steady state, the error Er stored in the error calculation storage section 12aK is adjusted to a constant steady deviation value, and the servo motor 13. The movable part 15 is instructed to move at a high speed. tll, the steady-state deviation value becomes F/, where the gain of the position control 1llll path is and r is the command pulse series. When a commanded number of distribution pulses (command pulses) CP corresponding to the distance traveled is generated, the distribution pulses are no longer outputted, and are thereafter stored in the error calculation/storage unit 121 and stored in an amount corresponding to 9 errors. If the table 15 moves by this amount, the WIA difference Er becomes zero, and the table 15 is correctly positioned at the target position.

以上のように、従来の位置側tlnKよればテーブル、
工具郷の可動部を正しく目標位置に位置決めすることが
できる。
As mentioned above, according to the conventional position side tlnK, the table,
The movable part of the tool can be accurately positioned at the target position.

しかしながら、か\る従来の位置制御においては指令と
可動部の移動との間に一定の遅れが生じる。即ち、指令
パルス(第1図では分配パルスCP)が発生してもテー
ブルは直ちに移動せず一定の遅れ時間後に移動を開始し
、又指令パルスの発生を停止して本テーブルは直ちに停
止せず一定の遅れ時間後に停止する。
However, in such conventional position control, a certain delay occurs between the command and the movement of the movable part. In other words, even if a command pulse (distribution pulse CP in Figure 1) is generated, the table does not move immediately but starts moving after a certain delay time, and the table does not stop immediately after the command pulse is stopped. Stops after a certain delay time.

このため、同時2軸、同時3軸制御などによ〉テーブル
或いは工具を移動させる場合、各制御軸のサーボ回路特
性が相違すると、たとえば各サーボ回路のゲインが異な
ると定常偏差値が異なることになシ、可動部は指令通路
上を移動しなくなる。
Therefore, when moving a table or tool using simultaneous two-axis or simultaneous three-axis control, if the servo circuit characteristics of each control axis are different, for example, if the gain of each servo circuit is different, the steady-state deviation value will be different. Otherwise, the movable part will no longer move on the command path.

又、2つのモータを同期して運転するガントリタイプの
工作機械制御或いは大型製図機の移動制御においては、
各モータのサーボ特性が異なると完全な同期がとれない
事態を生じ、機械の破損、精度の良い工作ができなくな
る。
In addition, in gantry type machine tool control that operates two motors synchronously or movement control of large drafting machines,
If the servo characteristics of each motor are different, complete synchronization may not be achieved, resulting in damage to the machine and the inability to perform accurate machining.

以上から、本発明は定常偏差値の差にもとず〈誤動作を
防止できる、換盲すれは追従誤差を補正することがでI
ゐ位置制御方式を提供することを■釣とする。
From the above, the present invention is based on the difference in steady-state deviation values.
The purpose is to provide a position control system.

以下、本発明の実施例を図面に従って詳細に説明すゐ。Embodiments of the present invention will be described in detail below with reference to the drawings.

第21eは本発−の黄施例を示すプElyり図であ伽 
*来例と同一部分には同一符号を付している。
Part 21e is a diagram showing the yellow example of this invention.
*The same parts as in the previous example are given the same symbols.

11中s 1yはシミル−タである0通常、サーボ篭−
タ(直111モータとする)15は一次遅れ時働を示し
、分配パルスCPが発生しても直ちに該分配パルスOP
K追従して回転で鼻ず、所定の遅れをもって回転する。
s 1y in 11 is a similator 0 Usually, a servo cage
The motor (direct 111 motor) 15 exhibits first-order lag time operation, and even if the distribution pulse CP is generated, the distribution pulse OP is immediately activated.
It follows K and rotates with a predetermined delay.

シミル−タ17はか\るt−ポ系の伝達特性を模擬しフ
ィードバックパルxFFと#′!埋同−の時間間隔で模
擬パルスSPを11!1!すゐ。
Similter 17 simulates the transfer characteristics of the t-po system and uses the feedback pulse xFF and #'! Simulated pulse SP at the same time interval as 11!1! Wow.

第1図はか\ゐシミエレータ17のブロック図−e&j
、17ad分配パルスCPをカウントアツプし、模擬パ
ルス8Pを減算する可逆カウンタ。
Figure 1 is a block diagram of the simulator 17 - e&j
, 17ad A reversible counter that counts up the distributed pulse CP and subtracts the simulated pulse 8P.

17bIIiアキニームレータ、17cFi一定周波数
のパルスPsを発生する発振器、17dは発番器17c
よりパルスPsが発生する毎に可逆カウンタ17mの計
数値をアキュームレータ17bの累積値に加算する加算
回路である。冑、アキュームレータ17bのビット数を
nとすれば、累積値が2a以上になるとオm /(70
−ハルスカ発生り、、とのオーバフローパルスが模擬パ
ルスSPとなって出力される。命。
17bIIi Akinimulator, 17cFi oscillator that generates a constant frequency pulse Ps, 17d is a generator 17c
This is an addition circuit that adds the count value of the reversible counter 17m to the cumulative value of the accumulator 17b every time a pulse Ps is generated. If the number of bits of the accumulator 17b is n, then if the cumulative value is 2a or more, then m/(70
- The overflow pulse generated by Haruska is output as a simulated pulse SP. life.

可逆カウンタ17mの内容をC1発振!117cから発
生、するパルスのパルス速度をfo、分配パルスcPの
パルス速度をFl 、模擬パルスSPのパルス速度Fo
とすれば次式が成立する。
C1 oscillation of the contents of reversible counter 17m! The pulse speed of the pulse generated from 117c is fo, the pulse speed of the distribution pulse cP is Fl, and the pulse speed of the simulated pulse SP is Fo.
Then, the following formula holds true.

a −−−= Fi −Fo             (
11t )・。”−” 、e = ke 211               (2)(1)、
(2)式より、e、Foはそれぞゎ1 e = −、(1−exp (−k t ))    
    (31Fo = Fl (1−exp (−k
l ))        f41となシ、シミエレータ
17はサーボ系の一次遅れ特性を模擬する。
a ---= Fi −Fo (
11t)・. "-", e = ke 211 (2) (1),
From equation (2), e and Fo are respectively ゎ1 e = -, (1-exp (-k t ))
(31Fo = Fl (1-exp (-k
l)) f41 and the simulator 17 simulate the first-order delay characteristics of the servo system.

第2図に戻って、18け分配パルスCPの数と横綱パル
ス8PO数の差に等しいパルス数を有するパルス列を発
生する第1の合成回路、19は分配パルスCPと#11
の合成回路1B(D出力パルスを合成する第20合成回
路である。
Returning to FIG. 2, the first synthesis circuit generates a pulse train having a number of pulses equal to the difference between the number of 18-digit distribution pulses CP and the number of Yokozuna pulses 8PO, 19 is the distribution pulse CP and #11
Synthesizing circuit 1B (this is the 20th combining circuit that combines the D output pulses).

京て、第21!IDq施例においてサーボ回路12OW
A差演算記憶部121に印加される指令パルスは、CP
 + (OF−8P ) となシ、(CP−8P)によシサーボ系の特性に基づく
遍れが補償される。Iaち、分配パルスOFがlI鉋す
れけ直ちに可動部(テーブル)F!移動し、分配パルス
OFの発生が停止すれは直ちに可動部の移動社停止する
Kyoto, 21st! Servo circuit 12OW in IDq example
The command pulse applied to the A difference calculation storage section 121 is CP
+ (OF-8P) and (CP-8P) compensate for deviations based on the characteristics of the servo system. As soon as the distribution pulse OF passes through the plane, the movable part (table) F! As soon as the distribution pulse OF stops generating, the moving part of the movable part stops.

111E4図Hす−ボモータ13のシャツ)Kバルスコ
ーダ郷の位置検出器14を装着し次場合の例で、fIi
f#llと同一部分には同一符号を付している。
111E4 Fig.
The same parts as f#ll are given the same reference numerals.

第BmFi2つo毫−fi 15,1B’を同期させる
ための本発明の応用例であゐ、M、第2 rItJs第
4図と同一部分に#i同一符号を付している。又12,
15゜14はそれぞれ餉4図に示ず1−水回路12、サ
ーボモータ11、位置検出器14に相幽する。
This is an application example of the present invention for synchronizing two BmFi 15 and 1B'. The same parts as in FIG. 4 are given the same symbols #i. Also 12,
15 and 14 are connected to the water circuit 12, the servo motor 11, and the position detector 14, respectively (not shown in the figure).

第5図においてモータ13′は分配パルスOPに対し所
定の追従誤差を持って回転している。しかし、モータ1
5は系に7ミ為レータ17、第1、第2合成回路が組込
まれているためフィードバックパルスFPに遅れること
なく回転する。換言すれはモータ1s’、15は同期し
て回転することになる。
In FIG. 5, the motor 13' is rotating with a predetermined tracking error with respect to the distribution pulse OP. However, motor 1
5 rotates without delaying the feedback pulse FP because the system incorporates a 7-mirror generator 17, first and second synthesis circuits. In other words, the motors 1s' and 15 rotate synchronously.

以上1本発明によりば定常偏差か存在していても追従誤
差をなくすことができ、2台のモータの同期運転を確実
に行なうことが可能であり、更には同時n軸制御におけ
る加工釉度を向上することができる。
According to the present invention, it is possible to eliminate the tracking error even if there is a steady deviation, it is possible to reliably perform synchronized operation of two motors, and furthermore, it is possible to reduce the degree of machining glaze in simultaneous n-axis control. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の位置制御を説明する説明図、第2図は本
発明に係る位置制御を説明する説明図、第5図はシミエ
レータのブロック図、第4図は本発明の別の実施例ブロ
ック図、wIJ5図は本発明の詳細な説明するためのブ
ロック図である。 11・・・NO装置%12・・・サーボ回路、15・・
サーボモータ、14・・・位置検出器、17・・・シj
zレータ。 特許出願人 富士通ファナック株式会社代層人 弁廖士
   辻     實 外2名
Fig. 1 is an explanatory diagram for explaining conventional position control, Fig. 2 is an explanatory diagram for explaining position control according to the present invention, Fig. 5 is a block diagram of a simulator, and Fig. 4 is another embodiment of the present invention. The block diagram, wIJ5 diagram, is a block diagram for explaining the present invention in detail. 11...NO device%12...Servo circuit, 15...
Servo motor, 14...Position detector, 17...Shi
z rate. Patent applicant Fujitsu Fanuc Co., Ltd. Attorney: Mr. Tsuji, 2 persons

Claims (1)

【特許請求の範囲】[Claims] 指令値と実際の移動量との誤差を増嘱し、骸誤差が零と
なるようにサーボモータを駆動して可動部を指令位置に
位置決めする位置制御回路を備なえた位置制御方式にお
いて、前記位置制御回路の伝達lf#性を模擬するシミ
ユレータを設けると共に、腋7ミiレータに指令値を入
力し、シミエレータ出力と指令値との誤差を発生し、該
誤差を前記籟令値に加え合せて位置側4回路に入力する
ことを4I像とする位置制御方式。
In the position control method described above, the method includes a position control circuit that increases the error between the command value and the actual movement amount and drives a servo motor to position the movable part at the command position so that the error becomes zero. A simulator that simulates the transmission lf# characteristic of the position control circuit is provided, a command value is input to the armpit controller, an error between the simulator output and the command value is generated, and the error is added to the command value. A position control method that uses the input to the four position-side circuits as the 4I image.
JP2242682A 1982-02-15 1982-02-15 Position controlling system Pending JPS58140813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2242682A JPS58140813A (en) 1982-02-15 1982-02-15 Position controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242682A JPS58140813A (en) 1982-02-15 1982-02-15 Position controlling system

Publications (1)

Publication Number Publication Date
JPS58140813A true JPS58140813A (en) 1983-08-20

Family

ID=12082357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242682A Pending JPS58140813A (en) 1982-02-15 1982-02-15 Position controlling system

Country Status (1)

Country Link
JP (1) JPS58140813A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201304A (en) * 1985-03-04 1986-09-06 Matsushita Electric Ind Co Ltd Method for controlling position of robot
JPS62256005A (en) * 1986-04-30 1987-11-07 Mitsubishi Heavy Ind Ltd Nc device
JPH0199485A (en) * 1987-10-09 1989-04-18 Toshiba Corp Controlling device for servo motor
JPH0816215A (en) * 1994-06-27 1996-01-19 Mazda Motor Corp Device and method for controlling equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201304A (en) * 1985-03-04 1986-09-06 Matsushita Electric Ind Co Ltd Method for controlling position of robot
JPS62256005A (en) * 1986-04-30 1987-11-07 Mitsubishi Heavy Ind Ltd Nc device
JPH0199485A (en) * 1987-10-09 1989-04-18 Toshiba Corp Controlling device for servo motor
JPH0816215A (en) * 1994-06-27 1996-01-19 Mazda Motor Corp Device and method for controlling equipment

Similar Documents

Publication Publication Date Title
JPH03500101A (en) Robot axis controller using feedback and open-loop control
Ishizaki et al. Cross Coupling Controller for Accurate Motion Synchronization of Dual Servo Systems.
JP2861277B2 (en) Positioning control device and positioning control method
JPS6140602A (en) Control optimization for machine tool driver
JP3301494B2 (en) Method of operating numerically controlled machine tool and machine tool for implementing the method
JPS58140813A (en) Position controlling system
JPS6314363B2 (en)
JPS6346843B2 (en)
JPH02178811A (en) Servo controller
Tan et al. Advanced nonlinear control strategy for motion control systems
JPS58169212A (en) Position controller of servomotor
JPH05216540A (en) Control system for servo motor
JPS6232804B2 (en)
JPH04333105A (en) Robot locus control method
JPS5998216A (en) Servo device
JP2001100819A (en) Position driving control system and synchronizing/tuning position driving control method
JPS59194212A (en) Numerical controller
SU718835A1 (en) Device for programme-control of industrial robot
SU1249483A1 (en) Two-coordinate system for programmed control
JPS62237509A (en) Forming method for control command data for numerical control
de Argandona et al. Improvement of the performance in machine tools by means of state space control strategies
JPH04312106A (en) Servo control method
JP2629758B2 (en) Trajectory correction method
JPS58201113A (en) Positioning servo system of moving body
SU1559328A2 (en) Non-linear servo system