JPS58140639A - Stress measuring method of concrete - Google Patents

Stress measuring method of concrete

Info

Publication number
JPS58140639A
JPS58140639A JP2372982A JP2372982A JPS58140639A JP S58140639 A JPS58140639 A JP S58140639A JP 2372982 A JP2372982 A JP 2372982A JP 2372982 A JP2372982 A JP 2372982A JP S58140639 A JPS58140639 A JP S58140639A
Authority
JP
Japan
Prior art keywords
concrete
block
stress
pressure
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2372982A
Other languages
Japanese (ja)
Inventor
Atsushi Nakayama
淳 中山
Hiroshi Iida
弘志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakata Denki Co Ltd
Original Assignee
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakata Denki Co Ltd filed Critical Sakata Denki Co Ltd
Priority to JP2372982A priority Critical patent/JPS58140639A/en
Publication of JPS58140639A publication Critical patent/JPS58140639A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To measure stresses accurately, by fixing a diaphragm type stress gage beforehand with a concrete block, curing the block approximately at a specified temp. and embedding such block in concrete. CONSTITUTION:A diaphragm type stress gage 7 is beforehand embedded and held in a concrete block 8. Mortar is poured in the block 8 and the block is formed at the temp. which is kept constant during setting by underwater curing or the like, so that no abnormal stresses are generated at the boundary between a pressure receiving surface 2 and the concrete. In using the block 8 wherein such gage 7 is fixed, the block is installed in the measuring position in the form of a structure, and the concrete for forming the structure is placed thereon, whereby the block is formed integrally with the structural concrete. The formation of gap, between the pressure receiving surface and the concrete is thus eliminated and the accurate measurement is made possible.

Description

【発明の詳細な説明】 このA橢はコンクリートの応力#R定方法に関する−の
である。
DETAILED DESCRIPTION OF THE INVENTION This article A relates to a method for determining stress #R in concrete.

コノクリート構造物の内部応力を一定する方法として;
ンクリート内にひずみ針を両人してそのひずみを一定し
、コンクリートの弾性係数を乗じて応力を求める方法、
jlc滴の一部に鉄筋とl1illlfli#のバネ体
を入れ、このひずみを測定−することによってコンクリ
ート構造@0応力とする方法、 1lrlfl横に対し
て厚みの小さい平板バネ(ダイヤフラム)で構成される
圧力針をコンクリート中に封入して応力を一定する方法
等が一紋的に用いられる。
As a method of constant internal stress in conocrete structures;
A method of placing strain needles in the concrete to keep the strain constant and multiplying it by the elastic modulus of the concrete to find the stress.
A method of creating a concrete structure @ 0 stress by inserting reinforcing bars and a spring body of l1illfli# into a part of the jlc droplet and measuring this strain.1lrlflConstructed of a flat spring (diaphragm) with a small thickness relative to the side. Methods such as enclosing pressure needles in concrete to keep the stress constant are commonly used.

上記の三つの方法の内、ひずみ針を用いる方法は、コン
クリートの弾性係数、が一定でなく、桃揚の実構造物t
は正確な値な知ることができないため、^の応力が求め
られないことが欠点である。また鉄扇針を用いる方法は
コンクリ−1中の鉄11には応力集中が生じるため、コ
ンクリートの真の応力が求められない。
Among the above three methods, the method using strain needles is difficult to use because the elastic modulus of concrete is not constant and
Since it is not possible to know the exact value of , the disadvantage is that the stress of ^ cannot be determined. Further, in the method using an iron fan needle, stress concentration occurs in the iron 11 in the concrete 1, so the true stress of the concrete cannot be determined.

これらに対してダイヤ7ツム虚応力針はダイヤフラムの
面積が大き(厚さの小さい4遺にで14ため、コンクリ
ートの弾性係数の差違が応力集中直に与える影響が小さ
いため、−何なる伏線のコンクリート中−騎いても正確
な応力を一定で参ることが譬長である。
On the other hand, the diaphragm area of the Diamond 7 Tsum imaginary stress needle is large (because the thickness is small and the influence of the difference in the elastic modulus of concrete on the stress concentration is small, so there is no foreshadowing) The key is to maintain accurate stress at a constant level even when working in concrete.

このダイヤ7ツム臘応力針を才1図に示す。This 7-diamond stress needle is shown in Figure 1.

円筒状一体10*圧wi3はそれ目体外圧PK対して殆
んど反力を持たないない薄い金属板で作られ、濾体lと
の関−には水銀、油等の痕体Sが被膜状Km人しである
。3は受圧w2よりlll−の小さいパ華体ダイ丁7シ
ムで、このダイブツク五−のたわみt変位検出Wh4に
よって一定する。
The cylindrical integral body 10*pressure wi3 is made of a thin metal plate that has almost no reaction force against the external pressure PK, and the relationship with the filter body 1 is coated with traces of mercury, oil, etc. I am a Km person. Reference numeral 3 denotes a shim 7 with a pressure lll- smaller than the receiving pressure w2, which is made constant by the deflection t and displacement detection Wh4 of this die book 5-.

外圧rが受圧#2に作用すると液体は受圧板2を介して
圧−され、二次ダイヤ7ツムーに圧力がfR4され、液
圧に比例したたわみt生じる。
When the external pressure r acts on the receiving pressure #2, the liquid is pressed through the pressure receiving plate 2, and a pressure fR4 is applied to the secondary diamond 7, causing a deflection t proportional to the liquid pressure.

受圧1[2は上遁のように両横の大きい4砿であるため
外圧に対して二次ダイイ7りム30両積を小さくするこ
とによって、二次ダイJr7りム纂のたわみを14=J
ltDm積比だけ小さくでき外圧からみた圧力針の弾懺
係鐵を大ZくできることがIII長である。
Since the receiving pressure 1 [2 is a large 4-ring on both sides like the Upper Release, by reducing the product of the secondary die 7 limb 30 with respect to the external pressure, the deflection of the secondary die Jr 7 limb string is 14 = J
The third advantage is that it is possible to reduce the volume ratio by ltDm and to increase the impact force of the pressure needle as seen from the external pressure.

しρ1しながら、この圧力針はコンクリート中にa−薯
rL4と、コンクリートの虞応鵡によって處体被貞は#
繊し、受圧漏はコンクリートを押すことになる。受圧4
tが変位し体積が増重すれぼ液圧は減少するので、コン
クリートを押すことによる反力の増加とコンタリートの
貞廖jHKよるIILJEの減少が予備する点&lC爾
することになる。構11には温度の上昇とともにコンク
リートのiI度も変化するので1.この楓象は値線であ
るが、−ffKコンクリート反応熱がピークに4する時
点にはコンクリートは充分硬化しているので、その後、
ll1度が1Fする時点から舗々に液体の体積は減少し
て応力解放が起り、最終的には才2WJK示す如くコン
クリート6と受圧vR2の関にはく離が生じる。
While ρ1, this pressure needle is in the concrete, and due to the reaction of concrete, the body is #
The pressure leakage will push the concrete. Pressure receiving 4
As t is displaced and the volume increases, the hydraulic pressure decreases, so the reaction force due to pushing the concrete increases and IILJE decreases due to the contour of the concrete. In structure 11, the iI degree of concrete changes as the temperature rises, so 1. This maple symbol is a value line, but the concrete has sufficiently hardened by the time the -ffK concrete reaction heat reaches its peak of 4, so after that,
From the point when 11 degrees reaches 1F, the volume of the liquid gradually decreases and stress is released, and eventually, as shown in Figure 2, separation occurs between the concrete 6 and the receiving pressure vR2.

このようにダイヤ7ツム臘応力針自体は優れた応答骨性
をもっているが、1ンタリート内にm設する@ayコン
クリート生熱によって受圧爾であるダイヤ7ツムとコン
クリートの関に徽少なl!*が生じるために、コンクリ
ートの応力な正確に−ることがで1ない。
As described above, the stress needle itself has excellent responsive bone properties, but it has a low resistance to the relationship between the Diamond 7 Tsum and concrete, which receive pressure due to the raw heat of the concrete installed in the concrete. *Because of this, it is not possible to accurately measure the stress in the concrete.

この発−の膳的はlイヤ7りム一応力針を4ンクリート
に4設する際にその応力針の受圧漏とコンクリートとに
一関を生じないようKすることである。
The purpose of this development is to ensure that when four stress needles are installed in four concretes, there will be no relationship between the pressure leakage of the stress needles and the concrete.

この角−はダイヤ7ツム臘応力針をコンクリ−)K置数
するに#いて、ダイヤ7ツム臘応力針を予め躍ンタリー
トブロックで固めると共に腋ブロックな略々一定の温度
で養生(しめ、腋ブロックを針−すべtコンクリート中
に堀設してなるコンクリートの応カ一定方法である。
Before placing the diamond 7 stress needles in concrete, this corner is hardened in advance with a dipping block and cured at an approximately constant temperature using an axillary block. This is a concrete stress constant method in which blocks are dug in needle-sealed concrete.

以下本発明の実施例にりいて111明する0才3図、才
4−において、7は応力針本体であり、才1図の応力針
とM様の構造である。8は応力針と一体構造を形成する
一ンクリートプロツタを示す。
Embodiments of the present invention will be explained below with reference to Figures 0 and 4. Reference numeral 7 denotes a stress needle body, which has a structure similar to that of the stress needle in Figure 1. 8 shows an integral plotter forming an integral structure with the stress needle.

=フタリートグロック8は麺棒(図示(ず)中に応力針
7を保持し、モルタルを注入して成形する−ので、水中
4II生讐によって硬化中の1&直を一5ii!Kfl
iって成形することによって受圧−2とコンクリートの
境界に^常な応力が発膨することはなく、堰虐的な葺會
鎗件で圧力針7をグーツタで1めることかでする。尚図
中9は応力針1の出力り一プルを示す。
= Futarito Glock 8 holds the stress needle 7 in a rolling pin (not shown) and injects mortar into the mold.
By forming the concrete in the same way, normal stress will not be generated at the boundary between the pressure-receiving pressure 2 and the concrete, and the pressure needle 7 can be set in place with a thud in a rough roofing process. Note that 9 in the figure indicates the output pull of the stress needle 1.

この応力針1を崗めたブロック8は使jlKillして
、構造物形枠内の幽定鯛所に設置し、構造物を形成する
コツタリートを注入することによって構造コンクリート
と一体化される。
The block 8 with the stress needle 1 is installed at a fixed position within the structure frame, and is integrated with structural concrete by pouring the cottalite that forms the structure.

構造物ツノクリートとの兼合を15方法としてγ4國に
示す如く鉄棒などの突肩Wを4込む構造としてもよい。
In combination with the structural horn cleat, it is also possible to have a structure in which four protruding shoulders W such as iron bars are inserted as shown in γ4 country.

この構造においても構造物コンクリートの発熱によって
応力針7内の液圧は上昇するが、応力針7の周囲はコン
クリ−ドブ冒ツク8で予め硬化しているので液圧が上昇
しても受圧藺とコンクリートとの接触面とに不盛合を及
ぼすことはない。
In this structure as well, the fluid pressure inside the stress needle 7 increases due to the heat generated by the structural concrete, but since the area around the stress needle 7 has been hardened in advance with the concrete slab 8, even if the fluid pressure increases, the pressure cannot be received. There will be no misalignment between the surface and the contact surface with the concrete.

らなみK O,2■の水銀tI&体とした直通加1の圧
力針が弾性係数2刈0’ 4/−のコンクリート中に拘
束されている時、I!度が一℃上昇した時に発生する圧
力は 1.8〜2(−であり、コンクリートが硬化して
いる乗件では不逼合な来す心配は全くない。
When a pressure needle with a direct application of 1 and a mercury tI & body of Nanami KO, 2■ is restrained in concrete with an elastic modulus of 2 0' 4/-, I! The pressure generated when the temperature rises by 1 degree Celsius is 1.8 to 2 (-), so there is no fear of mismatch in cases where the concrete has hardened.

コンクリート応力針は応力がa粛I4/−に及ぶような
大応力領域では、こζに述べた不盛合の##響を余り間
層にしな(てもよいが、実用面から考えると、コンクリ
ートが大きな圧線強度な持っているにもかかわらず、針
側−的は小さい応力のIJIA−であることが多い0例
えば岩盤或はコンクリートal!−上に噛てられる一造
書の!I鳩比圧力分布針−する硼倉にはa瑞圧麿体は款
V−の4城であり、S酸型、4造物ともに大1な弾性v
k砿を持っているから、針聞手設としてはコンクリート
中の応力針−が有利である。このような4合応力t#な
直適コンクリート中にm設すると、期待する一定値を得
ることが1廟であると太すれて米たが、本=A明はこの
114一点を解決する膚力な平家である。
Concrete stress needles can be used in areas with large stress, where the stress reaches a Even though it has a large pressure wire strength, the needle side - the target is often a small stress IJIA - for example, a rock or concrete plate that is bitten on top of the IJIA! In the specific pressure distribution needle, the azui pressure body is the 4th castle of clause V-, and both the S acid type and the 4th structure have a large elasticity v.
Since it has a k-thickness, a stress needle in concrete is advantageous as a needle stopper. It was believed that it would take only one step to obtain the expected constant value if m was installed in directly suitable concrete with a resultant stress of t#, but this book, A. M., has found a way to solve this 114 point. He was a powerful Heike.

以上−一したようにこの始明はコンクリートブロック円
に予め応力#tt’4め込み、腋プロツI′4I!:定
礒で一生することにより応力針の受圧面とコンクリート
との4袢にすt +M3 k生じることがない、従って
このブロックごとコンクリートの4達4IK城赦するこ
とにより、その構造−の応力を正確に#llA311で
きる。
As mentioned above, at this beginning, stress #tt'4 is placed in the concrete block circle in advance, and the axillary prots I'4I! : By keeping the stress at a fixed level, no stress will be generated between the pressure receiving surface of the needle and the concrete.Therefore, by relaxing the concrete block with this block, the stress in its structure can be reduced. I can do #llA311 accurately.

【図面の簡単な説明】[Brief explanation of drawings]

J−1−はダイヤフラム4応力計な示す断面図、才2図
は11図の応力針をコンクリート中Kj!1設した従来
例を示す図、矛3図はとの軸重の−SA廁例を示す図1
.?411ii1はこの癲−の仙の貞濾例を示す図であ
る・ 7・・・応力形 8・・・コンクリートブロック 外2名 第1図 第2図 第 3aa @4aa 手続補正書 昭右1 ra Q」 17日 特許庁長官島 1)轡御 殿 1、事件の表示 昭和u手勢 願第023719  号 2・轟−の盛称 コンクリートの応力霞定方法 3、補正をする者 事件との関係特許出願人 住 所  康京都ll1着区荻−4丁回8番13量礒称
 坂爾電−棒弐★社 4、代理人 「であり、」に傭正する・
J-1- is a cross-sectional view showing the diaphragm 4 stress meter, and Figure 2 shows the stress needle of Figure 11 in concrete. Figure 1 shows an example of a conventional example with one installed, and Figure 1 shows an example of an axle load of -SA.
.. ? 411ii1 is a diagram showing an example of this failure. 7... Stress form 8... 2 people outside the concrete block Figure 1 Figure 2 Figure 2 3aa @ 4aa Procedural amendment Sho right 1 ra Q ” 17th Japan Patent Office Commissioner Shima 1) Indication of the case Showa Ute Seise Application No. 023719 2 Todoroki's Stress Haze Determination Method for Concrete 3, Person making amendment Patent applicant related to the case Address: Kyoto, 11-ku, Ogi-4-cho, 8-13, name: Sakaerden-Bou 2★sha 4, agent ``Dere,''

Claims (1)

【特許請求の範囲】[Claims] ダイヤ72ム臘応力針f=xンクリートに置設するにお
いて、ダイヤ7フム瀝応力針を予めコノクリートブロッ
クで■めると共に腋プレツタを略々一定の温度で養生ぜ
しめ、腋ブロックを計lIlすすべ1コン/i−F中に
!l赦してなる;ylリートの応カ一定方法。
When installing the diamond 72mm stress needle f = During smooth 1 con/i-F! I'll forgive you; I'll give you a certain way to respond.
JP2372982A 1982-02-17 1982-02-17 Stress measuring method of concrete Pending JPS58140639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2372982A JPS58140639A (en) 1982-02-17 1982-02-17 Stress measuring method of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2372982A JPS58140639A (en) 1982-02-17 1982-02-17 Stress measuring method of concrete

Publications (1)

Publication Number Publication Date
JPS58140639A true JPS58140639A (en) 1983-08-20

Family

ID=12118398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2372982A Pending JPS58140639A (en) 1982-02-17 1982-02-17 Stress measuring method of concrete

Country Status (1)

Country Link
JP (1) JPS58140639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870096B1 (en) 2007-04-17 2008-11-25 한국시설안전공단 Stress Measurement Techniques for the Concrete Structures according to measuring displacement due to Stress-Relief
CN104236758A (en) * 2014-09-18 2014-12-24 西安近代化学研究所 Measuring device for internal stress and distribution of internal stress in explosive and powder solidifying and forming process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870096B1 (en) 2007-04-17 2008-11-25 한국시설안전공단 Stress Measurement Techniques for the Concrete Structures according to measuring displacement due to Stress-Relief
CN104236758A (en) * 2014-09-18 2014-12-24 西安近代化学研究所 Measuring device for internal stress and distribution of internal stress in explosive and powder solidifying and forming process

Similar Documents

Publication Publication Date Title
Roth et al. Slip-line field analysis for orthogonal machining based upon experimental flow fields
US11169136B2 (en) Method for measuring corrosion-expansion force during cracking of concrete due to corrosion and expansion of reinforcing steel
US10488281B2 (en) Axial force pressure transducer
Yeon et al. Evaluation of zero-stress temperature prediction model for Portland cement concrete pavements
FR2817755B1 (en) DEVICE FOR MEASURING NEGATIVE PRESSURES IN AN EXTRACORPOREAL BLOOD CIRCUIT
JPS58140639A (en) Stress measuring method of concrete
US10634486B2 (en) Device for measuring endogenous deformations
US9862022B2 (en) Casting method using lost foam
CN209979633U (en) Self-compaction concrete self-contraction amount measuring device
JP2643081B2 (en) Method and apparatus for detecting effective stress of concrete
US4914962A (en) Vibrating strip transducer
JPH0886704A (en) Estimating method of stress acting on existing concrete structure
CN209470662U (en) A kind of tool-type strain transducer
US3603141A (en) Devices for estimating the stress in concrete structures
CN2141081Y (en) Vibration-string force sensing element
JPS6027964Y2 (en) Test specimen for measuring expansion amount of expanded concrete
JPS57190760A (en) Foreseeing method for breakout
CN115235515B (en) Sensor and preparation method thereof
SU1397705A1 (en) Strain gauge for measuring deformation of solidifying materials
Kanazawa et al. Study on COD Bend Test as an Engineering Brittle Fracture Initiation Characteristics Test (The 2 nd report)
US4823610A (en) Device for and method of measuring tensile force in reinforcing member of reinforced concrete
JPH03255326A (en) Semiconductor force sensor
SU556361A1 (en) Bulk material pressure sensor
SU1043517A1 (en) Loose mixture internal friction coefficient determination method
SU1744430A1 (en) Method of measuring elastic deformation of pipeline end member