JPS58140486A - Device for utilizing wind energy - Google Patents

Device for utilizing wind energy

Info

Publication number
JPS58140486A
JPS58140486A JP57024158A JP2415882A JPS58140486A JP S58140486 A JPS58140486 A JP S58140486A JP 57024158 A JP57024158 A JP 57024158A JP 2415882 A JP2415882 A JP 2415882A JP S58140486 A JPS58140486 A JP S58140486A
Authority
JP
Japan
Prior art keywords
windmill
generator
wind
clutch
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57024158A
Other languages
Japanese (ja)
Inventor
Masataka Kusuda
楠田 昌孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP57024158A priority Critical patent/JPS58140486A/en
Publication of JPS58140486A publication Critical patent/JPS58140486A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/18Combinations of wind motors with apparatus storing energy storing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PURPOSE:To utilize the wind energy efficiently in the whole of the device by a method wherein the device is equipped with a heat exchanger, increasing the temperature of a medium in accordance with the revolution of a windmill, and a generator, generating an electric power in accordance with the revolution of the windmill. CONSTITUTION:The revolution of the windmill 1 drives an induction generator 3 through a revolving force transmitting means 2 to supply electricity while a part of the electricity is stored in an electricity storing unit 5. On the other hand, the revolution of the windmill drives the heat exchanger 6 utilizing Joule's heat to heat water and supply it into a hot-water supplying line through a heat accumulating unit 7. A control unit 8 is monitoring the revolving number of shafts 23, 24 and the output of electric power from the induction generator 3, to set a clutch 21 on and the clutch 29 off when the revolving number of the windmill 1 is lower than the synchronous speed of the induction generator 3 while the clutch 28 is cut off and the clutch 29 is set on when the revolving number is exceeding the synchronous speed. Further, both of the clutches are set on when the generating power of the generator 3 has arrived at the maximum generating power.

Description

【発明の詳細な説明】 本発明は風力エネルギー利用装置に関し、特に風力エネ
ルギーを電気エネルギーおよび熱エネルギーに変換して
利用するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wind energy utilization device, and particularly to a wind energy utilization device that converts wind energy into electrical energy and thermal energy.

従来、風力エネルギーを利用する装置は多くのものが提
案され、現に発電または熱変換装置等の単一目的に使用
される装置は既に実施されているが、一般的に電力エネ
ルギーと熱エネルギーは同時に必要なことが多く、風力
によってこの両者を同時に得よ5うとすれば単一目的の
装置を複数台設置することになる。
In the past, many devices that utilize wind energy have been proposed, and devices used for single purposes such as power generation or heat conversion devices have already been implemented, but generally electric energy and thermal energy are generated at the same time. This is often necessary, and if you try to obtain both at the same time using wind power, you will need to install multiple single-purpose devices.

しかしながら、風力エネルギーは時間的、季節的な変動
が大難いために主エネルギーとして利用するよシも、主
エネルギーのバックアップ用、または省エネルギー用と
して利用する方が適当であるが、この様な目的Kll数
の風力エネルギー利用装置を設置することは非常に経済
性の悪いものとなってしまう欠点を有していた。
However, since wind energy is subject to great temporal and seasonal fluctuations, it is more appropriate to use it as a backup for the main energy or for energy saving purposes than as the main energy. Installing several wind energy utilization devices has the disadvantage that it is extremely uneconomical.

し九がって本発明の目的は、風力エネルギーから経済性
良く電気および熱エネルギーを得ることができる風力エ
ネルギー利用装置を提供することにある0 このような目的を達成するために、本発明は風力エネル
ギーを風車の回転エネルギーに変え、風車の回転エネル
ギーを熱変換器によって変換した熱エネルギーと、発電
機によって変換した電気エネルギーとして利用するもの
であって、さらに、風車の回転エネルギーが発電に必要
な量以上となった時は、この余剰エネルギーを前記熱変
換器によって吸収するものである。以下実施例を示す図
面で詳細に説明する。
Therefore, an object of the present invention is to provide a wind energy utilization device that can economically obtain electrical and thermal energy from wind energy. This method converts wind energy into rotational energy of a windmill, and uses the rotational energy of the windmill as thermal energy converted by a thermal converter and electrical energy converted by a generator. When the amount exceeds a certain amount, this surplus energy is absorbed by the heat converter. Embodiments will be described in detail below with reference to drawings showing embodiments.

第1図は本発明の一実施例を示すブロック図である。同
図において1は風車、2は風車の回転力を伝達する回転
力伝達手段であや、シャフト21゜23.24,25、
ギヤー26.27、クラッチ28.29とで構成されて
いる0そして3は誘導発電機であり、この誘導発電機3
の出力を整流器と電池勢で構成した蓄電部5に供給する
と共に、図示しない送電線路に供給している。t+、S
は熱変換器であり、この熱変換器6は外部から水等の媒
体が供給され、風車の回転力を利用して水をかきまわし
ジュール熱を発生させ、湯にした後にこの湯を蓄熱部7
を介して図示しない給湯ラインに供給する。更に、8t
li制御部であって、シャフト2の回転数と誘導発電機
3からの出力電力を監視しており、尚初、即ち風車1の
回転数が誘導発電機3の同期速度以下の時、この制御部
8はクラッチ2Iがオン、クラッチ29がオフとなるよ
うに動作し、シャフト21の回転数が誘導発電機3の同
期速度以上になつ友時はクラッチ28がオフ、クラッチ
2gがオンとなるように動作し、更にシャフト210回
転数が増し、誘導発電機3が最大発電々力に達するとク
ラッチ28.29が共にオンとなるように動作する。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, 1 is a windmill, 2 is a rotational force transmission means for transmitting the rotational force of the windmill, and shafts 21°, 23, 24, 25,
0 and 3 are induction generators, which are composed of gears 26, 27 and clutches 28, 29.
The output is supplied to a power storage unit 5 composed of a rectifier and batteries, and is also supplied to a power transmission line (not shown). t+, S
is a heat converter, and this heat converter 6 is supplied with a medium such as water from the outside, stirs the water using the rotational force of a windmill, generates Joule heat, converts it into hot water, and then transfers this hot water to a heat storage section 7.
The hot water is supplied to a hot water supply line (not shown) through the hot water supply line. Furthermore, 8t
li control unit, which monitors the rotation speed of the shaft 2 and the output power from the induction generator 3, and performs this control for the first time, that is, when the rotation speed of the wind turbine 1 is less than the synchronous speed of the induction generator 3. Part 8 operates so that clutch 2I is on and clutch 29 is off, and when the rotational speed of shaft 21 exceeds the synchronous speed of induction generator 3, clutch 28 is off and clutch 2g is on. When the rotational speed of the shaft 210 further increases and the induction generator 3 reaches its maximum generating power, the clutches 28 and 29 are both turned on.

このように構成された装置の動作は次の通りである。弱
風域では風車1が誘導発電機3の同期速度以下であや1
制御部$はクラッチ28がオン、クラッチ2sがオフと
なるようにクラッチ28゜29を制御するので、風車1
の回転力は熱交換器6内の水を湯にするためO熱エネル
ギーに変換され、温度の上昇した湯は蓄熱部1を介して
図示しない給湯ツインに送られ、余剰な湯は蓄熱部7に
蓄わ見られる。
The operation of the device configured in this way is as follows. In a weak wind region, the wind turbine 1 is below the synchronous speed of the induction generator 3
The control unit $ controls the clutches 28 and 29 so that the clutch 28 is on and the clutch 2s is off, so the wind turbine 1
The rotational force of is converted into O thermal energy to turn the water in the heat exchanger 6 into hot water, and the heated hot water is sent to the hot water supply twin (not shown) via the heat storage section 1, and the excess hot water is sent to the heat storage section 7. It can be seen stored in.

風速が増し、風車1が誘導発電機3の同期速度以上の回
転をするようになると、制御部8はり2ツチ28がオフ
、クラッチ29がオンとなるようにクラッチ28.21
’t−制御するので、風車10回転力は誘導発電機3に
よって電気エネルギーに変見られ、図示しない送電ライ
ンに電力が送出され、余剰電力は蓄電部5に蓄えられる
When the wind speed increases and the wind turbine 1 rotates at a speed higher than the synchronous speed of the induction generator 3, the clutches 28 and 21 are turned so that the control section 8 beam 28 is turned off and the clutch 29 is turned on.
Since 't-control is performed, the rotational force of the wind turbine 10 is converted into electrical energy by the induction generator 3, power is sent to a power transmission line (not shown), and surplus power is stored in the power storage unit 5.

更に風速が増し、風力エネルギーが誘導発電機3の最大
発電々刀身上になる強風域に達すると、制#41部8F
iクラッチ28.29が共にオンとなるようにクラッチ
28.29を制御する。このため、風車1の回転力は、
誘導発電機3が電力を発生するエネルギーと熱変換器6
が熱を発生させるエネルギーの両方に使用される。した
がって、風力エネルギーのうち誘導発電機3の最大発電
々力を生じさせる必要量以外の風力エネルギーは熱変換
器6で吸収される。
When the wind speed further increases and the wind energy reaches a strong wind region above the maximum power generating capacity of the induction generator 3, the control #41 section 8F
The clutches 28 and 29 are controlled so that both the i-clutches 28 and 29 are turned on. Therefore, the rotational force of the wind turbine 1 is
an energy and heat converter 6 in which an induction generator 3 generates electrical power;
is used both for energy and to generate heat. Therefore, out of the wind energy, wind energy other than the amount necessary to generate the maximum generated power of the induction generator 3 is absorbed by the thermal converter 6.

この場合、誘導発電機3だけで強風域まで風力エネルギ
ーを吸収しようとすると、大容量の誘導発電機3が必要
となり、最多出現風速域での効率が悪くなって不経済で
あり、また誘導発電機3の容量を適尚なものとして経済
性を良くしようとすると、強風域では風力エネルギーが
増加し風車10回転力が大きくな9、誘導発電機3の最
大発電々力を生じさせる必要量以上となるので、誘導発
電機3の保護を行う九めに風車1の羽根のピッチを変え
る等して風車10回転力の増加を防ぐようにしなければ
ならない。し念がって、誘導発電機St単体で用いるよ
りも熱変換器6と組合わせた方が弱風域から強風域にわ
たる全範囲の風力エネルギーを利用できるので、風力エ
ネルギーの利用範囲が広くとれる。
In this case, if an attempt is made to absorb wind energy up to a strong wind region using only the induction generator 3, a large-capacity induction generator 3 will be required, which will be uneconomical due to poor efficiency in the wind speed region that occurs most frequently. If we try to improve the economy by setting the capacity of the generator 3 appropriately, the wind energy will increase in strong wind areas, and the rotational force of the wind turbine 10 will increase9, which is greater than the amount required to generate the maximum power of the induction generator 3. Therefore, before protecting the induction generator 3, it is necessary to change the pitch of the blades of the wind turbine 1 to prevent the rotational force of the wind turbine 10 from increasing. However, rather than using the induction generator St alone, when combined with the heat converter 6, the entire range of wind energy from the weak wind region to the strong wind region can be used, so the range of use of wind energy can be widened. .

第2図は本発明の他の実施例を示すブロック図で69、
第1図と同一部分および相当部分は同記号を用いている
。同図において、2は回転力伝達手段であり、シャフト
21〜23が同一中心軸上に配設され、シャフト21の
回転は常時、熱変換器6およびシャフト22に伝えられ
、更にクラッチ2sがオンの時だけシャフト22の回転
がシャフト23に伝えられる09は水等で構成される媒
体を熱変換器6に供給するポンプ、1oは熱変換器6か
ら出力される湯の流量を調節する調節弁、11は出力さ
れ九湯を図示しない給湯ラインに供給するポンプである
。12は制御部であり、風車1の回転数が同期発電機3
0の同期速度以下ではクラッチ28をオフとし、風車1
の回転数が同期発電&30の同期速度以上になつ九時線
クラッチ28をオンとするとともに、風車10回転数が
同期速度を保つように調節弁10を制御して出湯量を調
節する。
FIG. 2 is a block diagram 69 showing another embodiment of the present invention.
The same symbols are used for the same parts and corresponding parts as in FIG. 1. In the figure, 2 is a rotational force transmission means, in which shafts 21 to 23 are arranged on the same central axis, the rotation of the shaft 21 is always transmitted to the heat converter 6 and the shaft 22, and the clutch 2s is turned on. The rotation of the shaft 22 is transmitted to the shaft 23 only when 09 is a pump that supplies a medium such as water to the heat converter 6, and 1o is a control valve that adjusts the flow rate of hot water output from the heat converter 6. , 11 is a pump that supplies the output nine hot water to a hot water supply line (not shown). 12 is a control unit that controls the rotation speed of the wind turbine 1 from the synchronous generator 3.
Below the synchronous speed of 0, the clutch 28 is turned off and the wind turbine 1
The nine o'clock line clutch 28 is turned on when the rotational speed of the wind turbine becomes equal to or higher than the synchronous speed of the synchronous power generator &30, and the control valve 10 is controlled so that the windmill 10 rotational speed is maintained at the synchronous speed to adjust the amount of hot water.

このように構成された装置の動作は次の過多である。風
車1の回転が同期発電機30の同期速度以下である弱風
域では、制御部12はクラッチ28がオフとなるように
作用するので、風力エネルギーは熱変換器6だけに吸収
され、熱変換器6内の水が風*1の回転によってかきま
わされて湯になり、蓄熱部Tおよびポンプ11を介して
図示しない給湯ラインに送出され、余剰な湯は蓄熱部7
に蓄わ見られる。
The operation of the device thus constructed is as follows. In a weak wind region where the rotation of the wind turbine 1 is lower than the synchronous speed of the synchronous generator 30, the control section 12 acts to turn off the clutch 28, so that wind energy is absorbed only by the heat converter 6 and is not converted into heat. The water in the vessel 6 is stirred by the rotation of the wind *1 and becomes hot water, which is sent to a hot water supply line (not shown) via the heat storage section T and the pump 11, and excess hot water is sent to the heat storage section 7.
It can be seen stored in.

風速が増し、風車1の回転が同期発電機30の同期速度
以上になると、制御部12はクラッチ28がオンとなる
ように作用するので、風車1の回転は同期発電機30に
伝えられ、同期発電機30f1発電を開始する。この場
合、風力エネルギーは熱変換器6と同期発電機30の両
方に吸収されているので、熱変換器6における風力エネ
ルギーの吸収量を増減することによって同期発電機30
の回転数が変化する。そして熱変換器6における風力エ
ネルギーの吸収貴社熱変換器6を通過する水の量によっ
て制御できる。従って制御部12によって風車1の回転
数に応じて調節弁10を制御すれば熱変換器6を通過す
る水の量が制御され、風車1の回転数を一定に保つこと
ができ、これによって同期発電機30は一定周波数の電
力を発生することができる。そして、同期発電機30で
発生した電力は図示しない送電ラインに供給されると共
に、余剰電力は蓄電ssK蓄わ見られる。
When the wind speed increases and the rotation of the wind turbine 1 exceeds the synchronous speed of the synchronous generator 30, the control unit 12 acts to turn on the clutch 28, so the rotation of the wind turbine 1 is transmitted to the synchronous generator 30, and the rotation of the wind turbine 1 is synchronous. Generator 30f1 starts generating electricity. In this case, wind energy is absorbed by both the heat converter 6 and the synchronous generator 30, so by increasing or decreasing the amount of wind energy absorbed by the heat converter 6, the synchronous generator 30
The rotation speed changes. The absorption of wind energy in the heat converter 6 can be controlled by the amount of water passing through the heat converter 6. Therefore, if the control valve 10 is controlled by the control unit 12 according to the rotation speed of the wind turbine 1, the amount of water passing through the heat converter 6 can be controlled, and the rotation speed of the wind turbine 1 can be kept constant. Generator 30 is capable of generating power at a constant frequency. The power generated by the synchronous generator 30 is supplied to a power transmission line (not shown), and the surplus power is stored in the power storage ssK.

すなわち、風車1゛の回転が同期発電機30の同期速度
以上の場合、調節弁10を制御することによって熱変換
器6が風車10回転を一定に抑える一種のブレーキとし
て作用する。また、熱変換に関しては太陽熱コレクタと
組み合わせ、太陽熱コレクタよりの温水を昇温するよう
にすれば更に効率が向上する。
That is, when the rotation of the wind turbine 1 is equal to or higher than the synchronous speed of the synchronous generator 30, the heat converter 6 acts as a kind of brake to keep the rotation of the wind turbine 10 constant by controlling the control valve 10. Regarding heat conversion, efficiency can be further improved by combining it with a solar heat collector and raising the temperature of hot water from the solar heat collector.

なお、以上の実施例において、発電機は誘導発電機およ
び同期発電機について説明したが、これに限定されず他
の発電機であっても良い。
In the above embodiments, the induction generator and the synchronous generator have been described as the generator, but the invention is not limited thereto, and other generators may be used.

以上説明したように本発明に係る風力エネルギー利用装
置は、風力エネルギーを発電機と熱変換器とによって吸
収するものであるから、強風域での風力エネルギーの吸
収のために過大容量の発電機を用いる必要がなくなり、
また、弱風域から強風域まで風力エネルギーを無駄なく
利用で亀るので、経済性良く風力エネルギーから電気お
よび熱エネルギーを得ることができるという優れた効果
を有する。
As explained above, since the wind energy utilization device according to the present invention absorbs wind energy using a generator and a heat converter, it is necessary to use an excessively large capacity generator to absorb wind energy in a strong wind area. There is no need to use
In addition, since wind energy can be utilized without waste from a weak wind region to a strong wind region, it has an excellent effect of being able to economically obtain electricity and thermal energy from wind energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示すプaツク図、第2
図は他の実施例を示すブロック図である01・拳・・風
車、2・・・轡回転力伝達手段、3・・・・誘導発電機
、6・・・・熱変換器、1゜・−・・調節弁、12@−
・−制御部、30・・・・同期発電機。 特許出願人三井造船株式会社 代理人山川政樹(ほか1名)
FIG. 1 is a block diagram showing the first embodiment of the present invention, and FIG.
The figure is a block diagram showing another embodiment. ---Control valve, 12@-
-Control unit, 30...Synchronous generator. Patent applicant Mitsui Engineering & Shipbuilding Co., Ltd. Agent Masaki Yamakawa (and 1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)風車と、この風車の回転力を伝達する回転力伝達
手段と、前記風車の回転力に応じて媒体の温度を上昇さ
せる熱交換器と、前記風車の回転力に応じた電力を発生
する発電機とで構成され九ことを特徴とする風力エネル
ギー利用装置。
(1) A windmill, a rotational force transmission means that transmits the rotational force of the windmill, a heat exchanger that increases the temperature of a medium according to the rotational force of the windmill, and generates electric power according to the rotational force of the windmill. 1. A wind energy utilization device comprising: a power generator;
(2)風車と、この風車の回転力を伝達する回転力伝達
手段と、前記風車の回転力に応じて媒体の温度を上昇さ
せる熱交換器と、前記風車の回転数が一定となるように
前記熱変換器に供給する媒体の流量を制御する制御部と
、前記風車の回転力に応じて電力を発生する同期発電機
とで構成されることt%黴とする風力エネルギー利用装
置。
(2) A windmill, a rotational force transmission means for transmitting the rotational force of the windmill, a heat exchanger for increasing the temperature of a medium in accordance with the rotational force of the windmill, and a mechanism for maintaining a constant rotational speed of the windmill. A wind energy utilization device comprising: a control unit that controls the flow rate of a medium supplied to the heat converter; and a synchronous generator that generates electric power according to the rotational force of the wind turbine.
JP57024158A 1982-02-16 1982-02-16 Device for utilizing wind energy Pending JPS58140486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024158A JPS58140486A (en) 1982-02-16 1982-02-16 Device for utilizing wind energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024158A JPS58140486A (en) 1982-02-16 1982-02-16 Device for utilizing wind energy

Publications (1)

Publication Number Publication Date
JPS58140486A true JPS58140486A (en) 1983-08-20

Family

ID=12130524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024158A Pending JPS58140486A (en) 1982-02-16 1982-02-16 Device for utilizing wind energy

Country Status (1)

Country Link
JP (1) JPS58140486A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098334A (en) * 2000-06-22 2001-11-08 장종윤 Wind power
JP2011089492A (en) * 2009-10-23 2011-05-06 Nippon Eco Solutions Inc Wind turbine generator
KR101421581B1 (en) * 2013-03-28 2014-07-22 주식회사 웨스텍 Hydraulic energy conversion system using wind power energy
WO2015029562A1 (en) * 2013-08-27 2015-03-05 住友電気工業株式会社 Wind generator system
CN108798999A (en) * 2017-05-01 2018-11-13 李启飞 Wind drives the hot semiconductor temperature difference power generating system of mangneto

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098334A (en) * 2000-06-22 2001-11-08 장종윤 Wind power
JP2011089492A (en) * 2009-10-23 2011-05-06 Nippon Eco Solutions Inc Wind turbine generator
KR101421581B1 (en) * 2013-03-28 2014-07-22 주식회사 웨스텍 Hydraulic energy conversion system using wind power energy
WO2015029562A1 (en) * 2013-08-27 2015-03-05 住友電気工業株式会社 Wind generator system
JP2015046984A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Wind turbine generator system
CN105531918A (en) * 2013-08-27 2016-04-27 住友电气工业株式会社 Wind generator system
US9617980B2 (en) 2013-08-27 2017-04-11 Sumitomo Electric Industries, Ltd. Wind power generating system
CN105531918B (en) * 2013-08-27 2018-03-02 住友电气工业株式会社 Wind generator system
CN108798999A (en) * 2017-05-01 2018-11-13 李启飞 Wind drives the hot semiconductor temperature difference power generating system of mangneto

Similar Documents

Publication Publication Date Title
US4896507A (en) Solar power system
DE69201723D1 (en) WIND-DRIVEN POWER GENERATION AND STORAGE DEVICE.
KR20120024983A (en) Variable-speed power generation device and control method therefor
CN102003223A (en) Wind power generation device of air conditioner and power supply method thereof
CN104806454A (en) Wind power, photo-thermal and medium heat storage combined energy supply system
CN106677990A (en) Photothermal power generation system
JP2004069197A (en) System using natural energy/underground heat together, and operating method thereof
CN102373973A (en) Low-medium temperature heat energy recovery power generation device
WO2019180096A1 (en) Grid forming power supply plant and method
CN110198052B (en) Photo-thermal-wind power combined grid-connected power generation coordination control method
JPS58140486A (en) Device for utilizing wind energy
CN205490097U (en) Wind generating set and water cooling system of converter thereof
JPS60122865A (en) Solar heat electric power generation apparatus
KR20080088063A (en) Heating system using aerogenerator
US20140368045A1 (en) Power Management and Energy Storage Method
CN110854937A (en) Thermal power frequency modulation method of coupling heat storage device
JP2008312330A (en) Waste heat power generating apparatus and operation method for the waste heat power generating apparatus
JP4475843B2 (en) Control method of power generation system combining wind power generation and diesel power generation, and power generation system combining wind power generation and diesel power generation
CN201826904U (en) Wind power generation unit for air conditioner
CN209706344U (en) A kind of solid modules electric heat-storage device
CN201771558U (en) Mediate and low temperature heat-recovering and power-generating device
CN116565962B (en) Wind-solar heat storage integrated system and wide-load peak shaving operation method
CN116191573B (en) Electric power peak shaving system based on data processing
CN215170831U (en) Electric water feeding pump system of wet cooling unit boiler based on double-fed system
CN217503613U (en) Solid energy storage power generation waste heat recycling system utilizing clean energy