JPS58139725A - Method for controlling basicity in stack gas desulfurization process using basic aluminum sulfate - Google Patents

Method for controlling basicity in stack gas desulfurization process using basic aluminum sulfate

Info

Publication number
JPS58139725A
JPS58139725A JP57021534A JP2153482A JPS58139725A JP S58139725 A JPS58139725 A JP S58139725A JP 57021534 A JP57021534 A JP 57021534A JP 2153482 A JP2153482 A JP 2153482A JP S58139725 A JPS58139725 A JP S58139725A
Authority
JP
Japan
Prior art keywords
aluminum sulfate
tower
basic aluminum
basicity
stack gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57021534A
Other languages
Japanese (ja)
Inventor
Minoru Yoshihara
実 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KOEI KK
Original Assignee
DOWA KOEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KOEI KK filed Critical DOWA KOEI KK
Priority to JP57021534A priority Critical patent/JPS58139725A/en
Publication of JPS58139725A publication Critical patent/JPS58139725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To reduce an amt. of basic aluminum sulfate to be used remarkably, by digitally grasping data on characteristics of a stack gas and operation states of absorption, oxidation, and neutralization steps, using the data and controlling them, and always maintaining stable operation. CONSTITUTION:An aq. soln. of basic aluminum sulfate (b) is delivered from an absorbing tower 1 through a tank 1' for an intermediate pump to an oxidation tower 2, and during the stay in the tank 1' its basicity is analyzed. This value is used as basicity control data; a digital value of a process state value is thus grasped, and it is fed to each calculation formula corresponding to each step to excute calculation. The results including time lag of control and preestimation of variation of the steps are obtained as set values to control air feed rate to the tower 2 and CaCO3 slurry feed rate to a neutralization vessel 3. In addition, a flow rate F of a stack gas (a) entering the tower 1 and its SOx content S are measured in an operator section 7.

Description

【発明の詳細な説明】 この発明は、塩基性硫酸アルミニクムによる排煙の脱硫
における硫酸アルミニワム水#敵の塩基紘の制一方法に
+−する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling aluminum sulfate/water/base formation in flue gas desulfurization using basic aluminum sulfate.

塩基性硫酸アルミニ9ム水溶液(以下単に「アルミ液」
という)?用いる排煙脱硫工程141図によって説明す
ると、1は吸収塔、2は酸化塔。
Basic aluminum sulfate 9M aqueous solution (hereinafter simply "aluminum liquid")
)? The flue gas desulfurization process to be used will be explained with reference to the diagram 141, where 1 is an absorption tower and 2 is an oxidation tower.

又、3は中和、僧であって、ボイラー等の煙道ガス乃至
は排煙(イ)紮、先づ吸収塔1に導入し、#排伽に含ま
nる硫黄酸化物rアルミ液(ロ)に吸収させる(吸収工
程)。
In addition, 3 is neutralization, which refers to flue gas or flue gas from boilers, etc. b)) (absorption process).

次いで、このアルミf&(ロ1r、上記吸収塔1から中
継ポンプタンク1ヶ介しTrR化塔2Kfsす、該酸化
塔2同に供給され4)9気(ハ)によって酸化する酸化
工程紮経π優、#アルミ液の大部分にパイプlから吸収
塔1に戻るか、その−Sにパイプ21を介して中和槽3
へ送らrL、別途供給される炭酸カルシワム(以下*に
「炭カル」という)スラリーに)によって中和し、アル
ミ液の塩基度の回復、向上ン計る中和工程か行われるも
のである。
Next, this aluminum is fed from the absorption tower 1 through one relay pump tank to the TrR conversion tower 2Kfs, and is oxidized by 9 gas (c) in the oxidation process. , #The majority of the aluminum liquid is returned to the absorption tower 1 from the pipe 1, or is sent to the neutralization tank 3 via the pipe 21 to -S.
A neutralization step is carried out to restore and improve the basicity of the aluminum liquid by neutralizing it with calcium carbonate slurry (hereinafter referred to as "charcoal") supplied separately.

他方、上記中、1′[4檜3から取出されるアルf*(
ロ)は石膏−扇挟瀘4で6貴成分子分離し、オーバーフ
ロータンク5ケ経て再び前出の中継タンク1′に還流さ
几るのである。
On the other hand, in the above, 1'[4 Al f*( taken out from Hinoki cypress 3)
(b) is separated into six noble molecules in a plaster-fan filter 4, and is returned to the relay tank 1' through five overflow tanks.

而して、従来のアルミ液(ロ)の塩基1L上紀中和槽3
の出口で創定され、その6IIJ屋値とM歯膜定値との
闇rtt差異があれば、そfLに基づいてアナログ的に
1/ll:動する制御系統r介して炭カルスラリ−に)
o供給trコントロールするものであるから。
Therefore, the conventional aluminum liquid (b) base 1L neutralization tank 3
is created at the exit of
o Because it controls the supply tr.

この場せ、循環!illに対して中和槽、酸化塔等の各
11が大きく、むだ時間や一次遅れが顕著r(現わnる
πめ、調節計6のPID感度の鈍化デ余儀なくさnる一
方、アルミ液(ロ)の塩基Ifは、比較的大きい時間サ
イクルで変化することから、安定しπrA節管理i来す
ことがi%?て困峻であったし、又従来のアナログ制御
では114な@算、補正回路r必債とし、高価で実用的
ではなかった。(第1図点一部分診照) このような実情に謹み本発8Aに、上紐中継タンク1に
アルミQ(ロ)の塩基度測定f#傅を組み入n。
Take this opportunity to circulate! The neutralization tank, oxidation tower, etc. 11 are large compared to the illumination, and the dead time and first-order delay are significant. Since the base If in (b) changes in a relatively large time cycle, it is difficult to achieve stable πrA node control, and conventional analog control requires 114 @ calculations. , a correction circuit R was required, which was expensive and impractical. (Partial examination of the points in Figure 1) In consideration of this situation, the basicity of Aluminum Q (B) was added to the upper string relay tank 1 in the original 8A. Incorporate measurement f # 傅 n.

アルミ液〃1タンク1’Nfi溜する闇に、その塩基l
N1r測定し、後述するように1中和槽出口濃度′とし
て塩基度制御のデーターとすることによって。
In the darkness where 1 tank of aluminum liquid accumulates, the base l
By measuring N1r and using it as data for basicity control as the concentration at the outlet of neutralization tank 1, as described later.

工程状題値ンデジタルな数値(データー)で把掴し、こ
nll−各工程特性に応じた演算式にインプットして演
JI#ンけわしめ、制御の時間遅rtや工程の変動予想
7組み込んだ結果r設定値として算出して、酸化塔2へ
の空気供給量、並びに中和槽への炭カルスラリ−の供給
量の制御r行うものである。
Grasp the process status problem using digital numerical values (data), input it into calculation formulas according to each process characteristic, calculate it, and incorporate control time delays and process variation forecasts. The result is calculated as a set value, and the amount of air supplied to the oxidation tower 2 and the amount of coal carbon slurry supplied to the neutralization tank are controlled.

以下、本発明の構成r一つの実施例に従って更に詳述す
ると、第2図及び第3図に晃らnる通り。
Hereinafter, the structure of the present invention will be described in more detail according to one embodiment, as shown in FIGS. 2 and 3.

吸収塔1に入る排煙ピ)の流量伊)と、その硫黄酸化切
含M率(Siケ、S普演算部7において測定し、その値
に基づいて例えば1次のシーケンス演算式■〜■の演I
4V行う。
The flow rate (I) of the flue gas entering the absorption tower 1 and its sulfur oxidation removal M ratio (Si, S) are measured in the calculation unit 7, and based on the values, for example, the first-order sequence calculation formulas ■ to ■ Performance I
Perform 4V.

■8iii演Jt0・a、@= a x s/loo 
xし々2,4゜s@ : kg−mol/′H′、G:
入口ガスfit(IJH”Al1:人口硫鹸酸化切言肩
軍(801換真)(容蓋嘩)■移動平均・・・Xo==
←NII、N:サンプル個数L:むだ時間、T:時定数 ■必賛炭カル黛演痒・・・Oa = 8 X 10(L
Oa=炭カル必要蓋 而して、上1■〜■の演算結果は、アル#?1k(ロ)
の中8IOta出口の墳ifと堪基度設定櫃との走、又
は炭カル供給がスラリーのa8は、実測によって侍らf
Lる炭カルスラリー濃度と共に、炭カル演J[BVLお
いて上V■の必賛炭カル量演算式にインプットして、中
和槽3vこ対する炭カルスラI)−供給  −t+−算
出し1次いで調節郁94Cおいて、炭カルスラリ−の供
給蓋実測値に基づいてそのノ(ルプ10r自動制御する
ものである。
■8iii performance Jt0・a, @= a x s/loo
x Shishi 2.4゜s@: kg-mol/'H', G:
Inlet gas fit (IJH"Al1: Artificial sulfur oxidation force (801 conversion) (container) ■ Moving average...Xo==
←NII, N: Number of samples L: Dead time, T: Time constant
Given that Oa=Charcoal Cal, the calculation results of the above 1■~■ are Al#? 1k (ro)
The distance between the mound if at the exit of the middle 8IOta and the durability setting chest, or the a8 where the coal cal supply is slurry, is determined by actual measurements from the samurai f.
Input the coal cal slurry concentration and the coal cal slurry concentration into the calculation formula for the required coal cal amount in the above V■ for the neutralization tank 3V, calculate the coal cal slurry I) - supply -t + - and then The control valve 94C automatically controls the flow rate 10r based on the actual measured value of the coal slurry supply lid.

又、#他塔2への空気量の制御についても同様A :8
 X 22.4 X l/2 X 110x効率xFX
l/L鵞但し、ム:必要空気量、F二安全率 により、演算さnるものでお心。
Also, the same goes for controlling the amount of air to #other column 2 A:8
x 22.4 x l/2 x 110x efficiency x FX
However, please note that L/L is calculated based on the required air volume and F2 safety factor.

以上の鰭明により既に明らかである通り、従来の塩基注
硫蹟アルミニウムを用いる排煙脱硫システムで汀、脱硫
効果に大きな影響i及ぼすアルミ液の塩基度の制御か、
単なる中和槽周辺の塩基度に関するデーターからアナp
グ的に制御1rtていπのに対し1本発明では排煙自体
の特性値及び吸収、#M化、中和工程における工程状標
値も含めてデジタル的にデーター〇特性値、状態値)Y
把握利用して制御し得るものであるから、常rc−安定
しπ慄東が可能となり、アルミ四ス會著しく減少さ建し
π市u′■Iwp為(J、二(−々/J  こ、 1章
的、−目一、市へ11を、望〕1殉−゛ n益な発明で
ある。
As is already clear from the above results, in the conventional flue gas desulfurization system using base-injected aluminum, control of the basicity of the aluminum liquid has a large effect on the desulfurization effect.
Anap from simple data on basicity around the neutralization tank
In the present invention, the data are digitally controlled including the characteristic values of the flue gas itself and the process condition target values in the absorption, #M conversion, and neutralization processes (characteristic values, state values) Y
Since it can be grasped and controlled, it is possible to constantly rc-stabilize π control, and the aluminum four-wheel assembly is significantly reduced, and the , 1st chapter, 11th chapter, 11th chapter, 1st death, 11 years ago, it is a beneficial invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の塩基1f?J御方法rcおける系統図、
第2図は本発明の方法における系統図、又第3図はその
ブロック図である。 尚1図中1・・・吸収塔、2・・・酸化塔、3・・・中
和槽、4・・・石肴濃?Ia装置、5・・・オーツ(−
フロータンク、6@・・f14m計、7・・Φ811演
算部。 8・会・炭カル演JK都、9・・・−節部、10・―・
)(ルブ。 以  上 %許出−人   同和工営株式会社 代理人 弁理士  小原  和 夫
Figure 1 shows the conventional base 1f? System diagram in J method rc,
FIG. 2 is a system diagram of the method of the present invention, and FIG. 3 is a block diagram thereof. In Figure 1, 1...Absorption tower, 2...Oxidation tower, 3...Neutralization tank, 4...Ishikano? Ia device, 5... oats (-
Flow tank, 6@... f14m meter, 7... Φ811 calculation unit. 8・Kai Tancal Performance JK Miyako, 9...-Setsube, 10...
) (Rube. Above % allowed - Person Dowa Koei Co., Ltd. Agent Patent attorney Kazuo Ohara

Claims (1)

【特許請求の範囲】[Claims] 1、塩基性硫酸アルζニクムによる排煙脱硫方法におい
て、塩基性硫酸アルミニウム水溶液の吸収工程及び中和
工程における塩基lfン制御するV′C−当πす、排煙
の流量、健黄酸化物の含有率により硫黄酸化智負荷量r
演算、入力させ、その信号によって、酸化工程ytおけ
る9気供給量並ひに中和工程rcおける炭酸カルシウム
供給iiv自動的に、調整管理させるようにしπ塩基性
硫酸アル2ニワム艮よる排煙脱硫法におけ心塩基度制御
方法。
1. In the flue gas desulfurization method using basic aluminum sulfate, the basic aluminum sulfate aqueous solution absorption step and neutralization step are controlled by V'C-1, flue gas flow rate, and yellow oxide. The sulfur oxide load amount r depending on the content of
Calculation and input are performed, and the signals are used to automatically adjust and manage the supply amount of 9 gas in the oxidation process yt and the calcium carbonate supply in the neutralization process rc. Cardiac basicity control method in the law.
JP57021534A 1982-02-13 1982-02-13 Method for controlling basicity in stack gas desulfurization process using basic aluminum sulfate Pending JPS58139725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021534A JPS58139725A (en) 1982-02-13 1982-02-13 Method for controlling basicity in stack gas desulfurization process using basic aluminum sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021534A JPS58139725A (en) 1982-02-13 1982-02-13 Method for controlling basicity in stack gas desulfurization process using basic aluminum sulfate

Publications (1)

Publication Number Publication Date
JPS58139725A true JPS58139725A (en) 1983-08-19

Family

ID=12057622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021534A Pending JPS58139725A (en) 1982-02-13 1982-02-13 Method for controlling basicity in stack gas desulfurization process using basic aluminum sulfate

Country Status (1)

Country Link
JP (1) JPS58139725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110935304A (en) * 2019-12-02 2020-03-31 内蒙古工业大学 Basic aluminum sulfate regeneration desulfurization method based on inhibition of oxidation and multi-field synergistic desorption
CN112206645A (en) * 2019-07-10 2021-01-12 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Thermal power plant desulfurization efficiency control method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206645A (en) * 2019-07-10 2021-01-12 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Thermal power plant desulfurization efficiency control method and system
CN112206645B (en) * 2019-07-10 2022-10-04 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Thermal power plant desulfurization efficiency control method and system
CN110935304A (en) * 2019-12-02 2020-03-31 内蒙古工业大学 Basic aluminum sulfate regeneration desulfurization method based on inhibition of oxidation and multi-field synergistic desorption
CN110935304B (en) * 2019-12-02 2021-10-12 内蒙古工业大学 Basic aluminum sulfate regeneration desulfurization method based on inhibition of oxidation and multi-field synergistic desorption

Similar Documents

Publication Publication Date Title
CN103771553B (en) The adaptive fuzzy control method of wet flue gas desulfurization waste water evaporation process
EP3842125A1 (en) Automatic ammonia-adding system and method for ammonia-based desulfurization device
CN107398162B (en) Energy-saving method for wet flue gas desulfurization oxidation fan
JPS58139725A (en) Method for controlling basicity in stack gas desulfurization process using basic aluminum sulfate
CN108201785A (en) A kind of smoke carbon dioxide absorption plant based on two-phase absorbent
DE19815207C1 (en) Process for removing sulfur dioxide from waste gas
CN207187485U (en) Wet flue gas desulfurization oxidation fan energy saving system
CN107670474A (en) A kind of SNCR denitration system control device and denitration control method
DE2647216C2 (en) Process for the transfer of thermal energy by means of a heat pump and boiler
CN101190399A (en) Magnesium oxide slurry method desulfurization system
CN111450622B (en) Demister flushing system capable of automatically adjusting water balance of desulfurizing tower and control method
CN105095601A (en) Simulation modeling method for liquid-solid two-phase flow in desulfurization system of thermal power plant
CN114858653A (en) Method for on-line monitoring activity of desulfurization slurry and controlling circulation quantity
CN212396137U (en) Demister flushing system capable of automatically adjusting water balance of desulfurizing tower
CN113655824A (en) Wet desulphurization spraying amount and spraying slurry pH value coupling control optimization method
JPH0355171B2 (en)
CN210505655U (en) Desulfurization wastewater treatment device and treatment system
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
EP2018216B1 (en) A method and an apparatus for the absorption of gases
CN207575963U (en) A kind of desulfurizing tower chimney
JPS58112025A (en) Controlling method of waste gas desulfurizing apparatus
CN213069599U (en) Liquid level control system of wet desulphurization absorption tower of thermal power generating unit
JPS62298428A (en) Flue-gas desullfurization facility
JPH0573452B2 (en)
JPS61274727A (en) Apparatus for controlling wet waste gas desulfurization apparatus