JPS5813964A - Absorption type heat pump - Google Patents

Absorption type heat pump

Info

Publication number
JPS5813964A
JPS5813964A JP11261081A JP11261081A JPS5813964A JP S5813964 A JPS5813964 A JP S5813964A JP 11261081 A JP11261081 A JP 11261081A JP 11261081 A JP11261081 A JP 11261081A JP S5813964 A JPS5813964 A JP S5813964A
Authority
JP
Japan
Prior art keywords
tank
piston
absorption
generator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11261081A
Other languages
Japanese (ja)
Inventor
誠一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11261081A priority Critical patent/JPS5813964A/en
Publication of JPS5813964A publication Critical patent/JPS5813964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、例えばフロンやアンモニア等を熱運搬媒とす
るために、蒸発器の下流側に接続された吸収器を低圧に
かつ凝縮器の上流側に接続された発生器を高圧に構成し
た吸収式ヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an absorber connected to the downstream side of the evaporator to a low pressure and a generator connected to the upstream side of the condenser to use, for example, fluorocarbons or ammonia as a heat transfer medium. This invention relates to an absorption heat pump that has a high pressure chamber.

上記ヒートポンプにおいて、従来、第2図に示すようは
、ポンプu7)によって吸収I!l’71から発生器(
2)に吸収液を送るように構成すると共K。
Conventionally, in the above heat pump, as shown in FIG. 2, the pump u7) absorbs I! Generator from l'71 (
2) If configured to send the absorption liquid to.

発生器(2)から減圧弁u81を経て吸収器(7)に吸
収液を戻すように構成して、蒸発器(6)からの熱運搬
媒を吸収液に吸収させて発生器(2)に送り、発生器(
2;からの熱運搬媒を気液分離器■、凝縮器(1)、減
圧弁−、蒸発器(61の順に送るように構成し、もって
、熱交換器(3) 、 141の一万から他方に熱を運
ばせるように構成していた。
The absorption liquid is configured to be returned from the generator (2) to the absorber (7) via the pressure reducing valve U81, and the heat transfer medium from the evaporator (6) is absorbed into the absorption liquid and returned to the generator (2). feed, generator (
The heat transfer medium from 2; is configured to be sent to the gas-liquid separator (1), the condenser (1), the pressure reducing valve, and the evaporator (61) in this order, so that the heat transfer medium from the heat exchanger (3), 141 to It was configured to transfer heat to the other side.

しかし、上記吸収液循環用ポンプ面を駆動するに、その
F411後の圧力差が一般に10ないし15に−もある
ために大きなエネルギーを必委とし、このポンプ417
1 * dJに襞するコストがランニングコストのかな
り大きな部分を占めていた。
However, in order to drive the pump surface for circulating the absorbent liquid, a large amount of energy is required because the pressure difference after the pump 411 is generally 10 to 15 degrees.
1*The cost of folding the dJ accounted for a fairly large portion of the running cost.

本発明は、上記実情に龜みて、吸収液循環に要するエネ
ルギーを極めて少くできるようにして、ランニングコス
トの大巾低減を図り、かつ、そのための構成を、熱運搬
性能が向上すると共に、設備的に有利なものKL、さら
には、−11述のポンプα’/l及び減圧弁0!Jを省
略できるようにすることを目的とする。
In view of the above-mentioned circumstances, the present invention aims to significantly reduce the running cost by minimizing the energy required for circulation of the absorbent liquid, and to improve the heat transfer performance and reduce the equipment cost. What is advantageous for KL, furthermore, the pump α'/l and the pressure reducing valve 0 mentioned in -11! The purpose is to allow J to be omitted.

次に、例示図により本発明の実施態様を説明する。Next, embodiments of the present invention will be described with reference to illustrative drawings.

凝縮器(1)において、発生器(21から送られてくル
フロン系、アンモニア等のガス状熱運搬媒体を、室内用
熱交換器(3)あるいは室外用熱交換器+41に供給さ
れる熱運搬媒体に熱を与える参によって凝縮させるべく
構成し、そして、蒸発器(61において、液状熱31!
!搬媒体を室外用あるいは室内用熱交換器+41 、 
+31からの熱運搬媒体によって蒸発させるべく構成し
、また、吸収器(7)において、蒸発器(6)から送ら
れてくるガス状熱運搬媒体を、ジメチルホルムアミド、
テトラエチレングリコール、ジエチルグリコール等の吸
収液に吸収させるべく楕成し、さらKは、発生器(21
において吸収液をガスバーナ等の適宜加熱装# 111
によって加熱し、ガス状熱運搬媒体を発生させるべく構
成しである。
In the condenser (1), a gaseous heat transport medium such as fluorocarbon or ammonia sent from the generator (21) is converted into a heat transport medium supplied to the indoor heat exchanger (3) or the outdoor heat exchanger +41. The liquid heat 31!
! Transfer medium to outdoor or indoor heat exchanger +41,
+31, and in the absorber (7) the gaseous heat transfer medium coming from the evaporator (6) is evaporated by dimethylformamide, dimethylformamide,
It is ovalized to be absorbed into an absorption liquid such as tetraethylene glycol or diethyl glycol, and K is a generator (21
The absorbing liquid is heated using an appropriate heating device such as a gas burner #111.
and is configured to generate a gaseous heat transfer medium.

1個のタンク内に、吸収濃度の高い吸収液ヒ吸収濃度の
低い吸収液を隔離する第1ピストン(5m)、及び、吸
収液と熱運搬媒を隔離する、第2ピストン(5b) k
内装して成る吸収液用兼熱運搬線用の第1及び第2タン
ク(8a)、(8b)を設け、それらタンク(8−)、
(8b)夫々において、モータa3及び回転−軸(14
畠’) 、 (14b)の作用で第1及び第2ピストン
(5m)、 (5b)が遠近方向にかつ同時的に往復移
i1Jされるように構成すると共に、第1タンク(8a
)と第2タンク(8b)とで遠近逆方向にピストン(5
m)、(5b)が移蛎されるように構成しである。
In one tank, there is a first piston (5 m) that separates an absorbent liquid with a high absorption concentration from an absorbent liquid with a low absorption concentration, and a second piston (5b) that separates the absorbent liquid and the heat transfer medium.
First and second tanks (8a) and (8b) for absorbing liquid and heat transport lines are provided, and these tanks (8-),
(8b) In each case, the motor a3 and the rotating shaft (14
The structure is such that the first and second pistons (5m) and (5b) are simultaneously reciprocated in the far and near direction by the action of the first tank (8a) and (14b).
) and the second tank (8b), the piston (5
m) and (5b) are configured to be transferred.

第1タンク(8M)を吸収器(7)に対して循環流路(
9m 、 9b e 9o 、 9d)により接続して
、第1タンク(8a)からの吸収濃度の低い吸収液を第
1ピストン(5M)の抑圧で吸収器(7)に供給すると
共に、吸収器(7)からの吸収濃度の高い岐収液全第1
及び11P52ピスト7 (5m)、(5b)の吸引作
用で第1タンク(8m)に貯蔵させるように構成し、ま
た、第2タンク(8b)を発生器(2)K対して循環流
路(9・# 9f19 g e 9h)により接続して
、第2タンク(8b)からの吸収濃度の高い吸収液を第
1及び第2ピストン(5a) 、 (5b)の押圧作用
で発生器(2)に供給すると共に、発生器(2)からの
吸収濃度の低い吸収液を第1ピストン(5轟)の吸引作
用で第2タンク(8b)に貯蔵すべく構成し、かつ、熱
交換器の作用で復路(9G)の吸収液から往路(9h)
の吸収液に熱を与えるべく構成しである。
The first tank (8M) is connected to the circulation flow path (
9m, 9be, 9o, 9d) to supply the absorbent with low absorption concentration from the first tank (8a) to the absorber (7) under the pressure of the first piston (5M), and 7) Divergent liquid with high absorption concentration from All No. 1
and 11P52 piston 7 (5m), (5b) is configured to store in the first tank (8m) by suction action, and the second tank (8b) is connected to the generator (2) K through a circulation flow path ( 9・#9f19ge9h), the absorbent with high absorption concentration from the second tank (8b) is transferred to the generator (2) by the pressing action of the first and second pistons (5a) and (5b). At the same time, the absorption liquid with low absorption concentration from the generator (2) is stored in the second tank (8b) by the suction action of the first piston (5 roar), and the action of the heat exchanger is From the absorption liquid on the return trip (9G) to the outward trip (9h)
It is configured to apply heat to the absorption liquid.

両タンク(8M)、(8b)と吸収器(7)及び発生器
(21との間に第1及び第2流路切換弁(12m)、(
12b)を介装して、吸収器(7)に対して第2タンク
(8b)を、かつ、発生器(2)に対して第1タンク(
8m)を接続=I能に構成し、もって、両タンク(−)
Between both tanks (8M), (8b) and the absorber (7) and generator (21), first and second flow path switching valves (12m),
12b), the second tank (8b) is connected to the absorber (7) and the first tank (8b) is connected to the generator (2).
8m) is configured to connect = I function, and both tanks (-) are connected.
.

(8b)の−万に吸収器(7)の作用で吸収濃度の^い
吸収液を貯めると共に1他万に貯められた獣収一度の^
い吸収液を発生器(2)に供給し、かつ、−万のタンク
(8a)又は(8b)に吸収濃度の^い吸収、辰がほぼ
満杯になるか、あるいは、他方のタンク(8b)又は(
8a) において吸収濃度の高い吸収液がはぽ空になる
かすると、タンク(Sa)。
In (8b), the action of the absorber (7) stores the absorbent liquid with a high absorption concentration, and at the same time, the animal harvest stored in the other part is
A high absorption liquid is supplied to the generator (2), and the tank (8a) or (8b) is almost full, or the other tank (8b) is almost full. Or (
8a) When the absorbent liquid with high absorption concentration becomes empty, the tank (Sa).

(8b) K対する奴収器(7)及び発生器(2)の接
続関係を逆にできるように構成しである・ 4Nlタンク(8a)を蒸発器(6)K対して往復流路
(15m)、(15b) Kより接続して、第1タンク
(8畠)からの熱這搬媒を第2ピストン(5b)ID押
圧作用で蒸発器+61から吸収器(7)に供給すると共
に、第2タンク(8b)を凝縮器(1)に対して往復流
路(15@)、(15d) Kより接続して、凝縮器(
1)からの熱運搬媒を第2ピストン(5b)の吸引作用
で第2タンク(8b)に貯蔵させるように構成しである
(8b) The configuration is such that the connection relationship between the entrapment vessel (7) and the generator (2) to K can be reversed. The 4Nl tank (8a) is connected to the evaporator (6) in a reciprocating flow path (15 m). ), (15b) connected from K, the heat transfer medium from the first tank (8 tanks) is supplied from the evaporator +61 to the absorber (7) by the ID pressing action of the second piston (5b), and 2 tank (8b) is connected to the condenser (1) through the reciprocating flow path (15@) and (15d) K, and the condenser (
The heat transfer medium from 1) is stored in the second tank (8b) by the suction action of the second piston (5b).

両タンク(8畠)、(8b)と凝縮器(1)及び蒸発器
(6)との間に第3流路切換介Uυを介装して、凝縮器
(ll K対して第1タンク(8m)をかつ蒸発器(6
)に対して第2タンク(8b)を接続可能に構成し、も
って、第1及び第2流路切換弁(12Jl)、(12b
)と同時的に第3流路切換弁utgを操作して、−万の
タンク(8畠)又は(8b)から送り出された熱運□搬
媒を、そのタンク(8a)又は(8b)から送り出され
た吸収液に吸収させて、そのタンク(8畠)又はCab
) K貯蔵させると共に、他方のタンク(8b)又は(
8畠)から送り出された吸収液及び七〇に含まれる熱運
搬媒をそのタンク(8b)又は(8m)に貯蔵させるよ
うに構成しである。
A third flow path switching medium Uυ is interposed between both tanks (8 ha) and (8b) and the condenser (1) and evaporator (6), so that the condenser (ll K) is connected to the first tank ( 8m) and an evaporator (6m)
), the second tank (8b) is configured to be connectable to the first and second flow path switching valves (12Jl), (12b
) and simultaneously operate the third flow path switching valve utg to transfer the heat transport medium sent out from the -10,000 tank (8ha) or (8b) from that tank (8a) or (8b). It is absorbed by the delivered absorption liquid and stored in the tank (8 hatake) or Cab.
) K is stored in the other tank (8b) or (
The structure is such that the absorption liquid sent out from the tank (8b) or (8m) and the heat transfer medium contained in the tank (70) are stored in the tank (8b) or (8m).

向、311以上のタンク(8)を2群にして設けてもよ
く、また、両ピストン(158)、(15b)を駆動す
ることもでき、それら多様な駆動手段を駆動装置(13
、14)と総称する。
In addition, 311 or more tanks (8) may be provided in two groups, and both pistons (158) and (15b) may be driven, and these various drive means may be connected to a drive device (13
, 14).

a4と総称し、また、第3流路切換弁(至)K代えて各
種構成が利用でき、それらを第2切換弁機構u1と総称
し、さらには、第1及び第2切換弁楓構(2)、u8を
一体的構造にするこさも可能である。
In addition, various configurations can be used in place of the third flow path switching valve (to) K, and these are collectively referred to as the second switching valve mechanism u1, and furthermore, the first and second switching valve Kaede structures ( 2) It is also possible to make u8 an integral structure.

また、IIl及び第2切換弁機構(6)、Uυを操作す
るに1人為的に行わせることも可能であるが、例えばタ
イマーや吸収液量検出器等を備えた自動操作機構を付設
する事が望ましい。
Although it is possible to manually operate IIl, the second switching valve mechanism (6), and Uυ, it is also possible to install an automatic operation mechanism equipped with a timer, an absorption liquid amount detector, etc. is desirable.

本発明による吸収式ヒートポンプは、暖房、冷房あるい
は給湯専用であってもよく、また、それらを適宜組合せ
たものであってもよい。
The absorption heat pump according to the present invention may be used exclusively for heating, cooling, or hot water supply, or may be a combination of these as appropriate.

以上襞するに、本発明は、璽記吸収式ヒートポンプに2
いて、複数個の吸収液用及び熱運搬媒川タンク131 
ft設け、前記吸収液用タンク(8)の一部を前記吸収
器(7)Kかつ残部を前記発生器(21に夫々接続する
循珈捷路(9Jlないし9h)を設け、前記吸収液用タ
ンク(81に対する前記吸収器(7)及び発生器(2)
の接続関係を逆にするための第1切換弁横m旧を設け、
前記熱這伽媒用タンク181の一部を前記凝縮#;l)
の下流側に、かつ、残St前記蒸発W 161の上流側
に夫々接続する往復流路(15aないし154) t−
設け、前記熱這搬媒坩タンク(8)に対する前記凝縮器
il+及び蒸発!l 161の接続関係を逆にするため
の第2切侠弁Ia構Uυを設け、前記吸収液用及び熱連
鍛媒用タンク1B+を形成するに11個のタンク内に、
吸収濃度の高い吸収液と吸収濃度の低い吸収液を隔離す
る第1ピストン(6m) 、及び、吸収液と熱迷搬媒を
隔−するIN2ピストン(5b)を、駆動装置(18゜
14)により遠近方向にかつ同時的に往復副旬論に設け
ると共に、前記餉S流路<eaないし9k)の往路部分
(9t)と復路部分く96)を前記集1ピストン(5a
)に対して互に反対の位置で接続して、前記両ピストン
(54m)、(6b)間に吸収濃度の楠い吸収液が貯蔵
されるように構成し、かつ、前記往復流M(15mない
し1jSd) ’t4tlFk!、第4tlFk!、b
) K対して前記第1ピストン(5畠)とは反対側で接
続しである争を特徴とする。
To summarize, the present invention has two features in the absorption heat pump.
and a plurality of absorption liquid and heat transfer medium river tanks 131.
ft, and a circulation path (9Jl to 9h) connecting a part of the absorption liquid tank (8) to the absorber (7)K and the remaining part to the generator (21), respectively. The absorber (7) and the generator (2) for the tank (81)
A first switching valve horizontal m old is provided to reverse the connection relationship of
Part of the heat transfer medium tank 181 is condensed #;l)
Reciprocating channels (15a to 154) connected to the downstream side of the residual St and the upstream side of the evaporation W161, respectively.
Provided, said condenser il+ and evaporation for said heat transfer medium crucible tank (8)! A second valve Ia structure Uυ is provided for reversing the connection relationship of 161, and in the 11 tanks forming the absorbent liquid and hot continuous forging tank 1B+,
The first piston (6m) that separates the absorbent liquid with high absorption concentration from the absorbent liquid with low absorption concentration, and the IN2 piston (5b) that separates the absorbent liquid and the heat transfer medium, are driven by a drive device (18°14). At the same time, the outgoing part (9t) and the returning part (96) of the piston S flow path <ea to 9k) are connected to the piston (5a).
) are connected at opposite positions to the pistons (54m) and (6b), so that an absorbent liquid having an absorption concentration is stored between the two pistons (54m) and (6b), and the reciprocating flow M (15m or 1jSd) 't4tlFk! , 4th tlFk! ,b
) It is characterized by being connected to K on the opposite side to the first piston (5 hatake).

すなわち、上述のように吸収器(7)と発生!112+
別に熱運搬線用タンク(81’&往復流11(15畠な
いし15d) Kより#C続することKよって、従来の
ように低圧の奴収量 +’/)から高圧の発生’In 
12+に大鑑の披収故を直接供給する必要が完全に無く
なり、低圧系及び高圧系夫々において独立して吸収液及
び熱運搬媒を細壌できて、その111112)ための所
要エネルギーを例えば従来の1/4以Fにでき、そ:n
l/a果、ヒートポンプ全体としての所要エネルギーを
例えば従来の20%程度も減少できて、省エネルギー及
び経済性に優れた状態の遍転trrえるようになった。
That is, as mentioned above, the absorber (7) and generation! 112+
Separately, the heat transfer line tank (81'& reciprocating flow 11 (15 fields or 15 d) is connected from K to #C. Therefore, high pressure is generated from low pressure yield +'/) as in the past.
It is completely unnecessary to directly supply the liquid to the 12+, and the absorption liquid and heat transfer medium can be supplied independently in the low-pressure system and the high-pressure system, and the energy required for the 111112) can be reduced, for example, by the conventional It can be reduced to 1/4 or more F, so:n
As a result, the energy required for the heat pump as a whole can be reduced by, for example, about 20% compared to the conventional heat pump, and it has become possible to turn the heat pump in a state that is excellent in energy saving and economical efficiency.

その上、タンク(8)に対する吸収器(7)及び発生J
l(2)の接続関係、並びに、熱趣搬謀用タンク(81
に対する薫釦器tb> &び凝縮! il+の接続関係
を交互に切換えられるから、タンクidl 2)容tt
−たとえ小さくしても、長時間にわたる連続運転が可能
であり、コンパクトで天川的なヒートポンプに構成でき
るようになった。
Moreover, the absorber (7) and the generator J to the tank (8)
1(2), and the thermal atmosphere transport tank (81
Kaorubuttonki tb>& condensed! Since the connection relationship of il+ can be switched alternately, tank idl 2) Capacity tt
-Even if it is small, it can operate continuously for long periods of time, making it possible to construct a compact Tenkawa-style heat pump.

また、タンク(8)夫々において、Nピストン(jsa
)s(5b) 2)作用で、吸収細度が相堰する吸収液
どうし及び吸収液と熱運搬媒が混合しないようにしであ
るから、吸収器4′/J及び始生器12)のいずれもが
効率よく作用し、そして、崗ピストン(5M)、(5b
) t−ltil鰐して、吸収液及び熱這搬媒を強制流
#させるから、吸収器(°l)や熱交!lI器uDの効
率t−向上できると共に、運転後直ちに所望のII&趣
搬を行わせることができ、全体として、優れた熱運畿性
龍が得られた。
In addition, in each tank (8), an N piston (jsa
) s (5b) 2) Because the absorption fineness prevents the absorption liquids from mixing with each other and the absorption liquid and the heat transfer medium from mixing, neither the absorber 4'/J nor the starter 12) The piston (5M), (5b
) The absorption liquid and heat transfer medium are forced to flow through the absorber (°l) and heat exchanger! In addition to being able to improve the efficiency of the II device uD, it was also possible to carry out the desired II&D immediately after operation, and as a whole, a dragon with excellent heat transport properties was obtained.

しかも、タンク(81及びピストン(5m)、(5b)
 k有効利用して、吸収液及び無運盪媒を流副させるこ
とKよって、例えばそれらfltI[Iのためのポンプ
を別に設けるに比して、設備を安価に構成でき、その上
、発生器42;と吸収器(71にわたる熱運搬媒軸顧の
ために従未必袈としていた^吐出圧のポンプ及び減圧弁
を無くすことができ、全体としてイニシャルコストの面
でも有利になった。
Moreover, the tank (81 and piston (5m), (5b)
By making effective use of the absorption liquid and flowing the non-moving medium, the equipment can be configured at a lower cost than, for example, providing a separate pump for fltI[I, and in addition, the generator 42; and absorber (71), the discharge pressure pump and pressure reducing valve, which were previously required, can be eliminated, and the overall initial cost is also advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は不発例に係る獣収式ヒートポンプの実施の態様を
鉤示し、第1図は不発例のヒートポンプのフローシート
、第2図は従来のに一トボンプのフローシートである。 (11−・・・・・凝縮器、(21−−−−−−発生器
、(5m)、(5b) −・・・・・ピストン、(6;
・・・・・・蒸発器、(7)・・・・・・吸収器、(8
1−−−−−−p y y、(9M ナイし9k) −
−−−# 11流路、■・・・・・・第1切換弁砿構、
(13、14) −−−−−−駆納装−1(15aない
し151) −−−−−−往復流路、(ltil −−
−−−−第2切換弁機構。
The drawings show an embodiment of the animal-contained heat pump according to the failed case, and FIG. 1 is a flow sheet of the failed heat pump, and FIG. 2 is a flow sheet of the conventional Nito Bonp. (11-... Condenser, (21----- Generator, (5m), (5b) -... Piston, (6;
...Evaporator, (7) ...Absorber, (8
1-------py y, (9M naishi 9k) -
---#11 flow path, ■...First switching valve structure,
(13, 14) ------- Transportation equipment-1 (15a to 151) ------- Reciprocating flow path, (ltil --
-----Second switching valve mechanism.

Claims (1)

【特許請求の範囲】[Claims] 蒸発器(6)の上流側に接続された吸収器(7)を低圧
に、かつ、凝縮器(1)の上流側に接続された発生器(
2)を高圧に構成した吸収式ヒートポンプであって、複
数個の吸収液用及び熱運搬線用タンク(8鼻を設け、前
記吸収液用タンク(8)の一部を前記役収器(7)にか
つ残部を前記発生器12)に夫々接続する循環流路(e
aないし9h )を設け、前記吸収液用タンク(81に
対する前記吸収器(71及び発生器(2)の接続関係を
逆にするための第1切換弁機muカを設け、前記熱運搬
線用タンク(81の一部を前記kIkJ器11)のF流
側に、かつ、残部をIO記薫蒸発器lLi1上流側に夫
々接続する往復流路(115Jlないし15d)を設け
、前記熱運搬線用タンク(81に対する前記凝縮器(1
1及び蒸発器(61の接続関係を逆にするための第2切
換弁機構叫を設け、前記吸収液用及び熱運搬線用タンク
(8)を形成するに、1個のタンク内に、吸収濃度の高
い吸収液と吸収濃度の低い吸収液を隔離する第1ピスト
ン(5m) 、及び、吸収液と熱運搬媒を隔畷する第2
ピストン(5b)を、駆動装置(13,14’)により
遠近方向Kかつ同時的に往復動可能に設けると共に、前
記循環流路teaないし9h)の往路部分(9f)と復
路部分(9g)を前記第1ピストン(5a)に対して互
に反対の位置で接続して、前記両ピストン(5&)、(
5b)間に吸収濃度の高い吸収液が貯蔵されるようKl
l成し、かつ、前記往復流路(]5aないし15d)を
前記第2ピストン(5b)に対して前記第1ピストン(
5蟲)とは反対側で接続しである事を特徴とする吸収式
ヒートポンプ。
The absorber (7) connected upstream of the evaporator (6) is brought to a low pressure, and the generator (7) connected upstream of the condenser (1) is
This is an absorption heat pump in which a plurality of absorbent liquid and heat transport line tanks (8 noses are provided, and a part of the absorbent liquid tank (8) is connected to the absorbent tank (7). ) and the remainder to the generator 12), respectively.
a to 9h), a first switching valve device MU for reversing the connection relationship of the absorber (71 and generator (2) to the absorbent tank (81), A reciprocating flow path (115Jl to 15d) is provided which connects a part of the tank (81) to the F flow side of the kIkJ device 11 and the remaining part to the upstream side of the IO storage evaporator lLi1, and The said condenser (1) to the tank (81
1 and the evaporator (61) to form the absorption liquid and heat transfer line tank (8). The first piston (5 m) separates the absorbent liquid with high concentration and the absorbent liquid with low absorption concentration, and the second piston separates the absorbent liquid and the heat transfer medium.
A piston (5b) is provided so as to be able to reciprocate simultaneously in the far and near directions K by means of a drive device (13, 14'), and a forward path portion (9f) and a backward path portion (9g) of the circulation flow paths tea to 9h) are provided. The two pistons (5&), (
5b) Kl so that absorbent liquid with high absorption concentration is stored between
1, and the reciprocating flow path (5a to 15d) is connected to the first piston (5b) with respect to the second piston (5b).
An absorption heat pump that is characterized by being connected on the opposite side of the heat pump.
JP11261081A 1981-07-17 1981-07-17 Absorption type heat pump Pending JPS5813964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11261081A JPS5813964A (en) 1981-07-17 1981-07-17 Absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11261081A JPS5813964A (en) 1981-07-17 1981-07-17 Absorption type heat pump

Publications (1)

Publication Number Publication Date
JPS5813964A true JPS5813964A (en) 1983-01-26

Family

ID=14591035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11261081A Pending JPS5813964A (en) 1981-07-17 1981-07-17 Absorption type heat pump

Country Status (1)

Country Link
JP (1) JPS5813964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144266A (en) * 1989-10-27 1991-06-19 Tokyo Gas Co Ltd Absorption type heat pump room cooler/heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144266A (en) * 1989-10-27 1991-06-19 Tokyo Gas Co Ltd Absorption type heat pump room cooler/heater

Similar Documents

Publication Publication Date Title
US5360057A (en) Dual-temperature heat pump apparatus and system
US5390509A (en) Triple effect absorption cycle apparatus
US4691532A (en) Dual cooling/heating system energy recovery
US7062913B2 (en) Heat engine
US5546760A (en) Generator for absorption heat pumps
US5335515A (en) Triple effect absorption cycle apparatus
JP2866200B2 (en) Absorption refrigeration and heat pump system with defrost
CN1109865C (en) Triple effect absorption refrigeration system
US5775114A (en) Figure 8-form thermodynamic cycle air conditioner
JPS5813964A (en) Absorption type heat pump
CA1241848A (en) Twin reservoir heat transfer circuit
JPH04103571U (en) Heat pump water heater
USRE36045E (en) Triple effect absorption cycle apparatus
JPH034824B2 (en)
JPS5812969A (en) Absorption type heat pump
CN213273678U (en) Heat pump drying-machine with cubic subcooling function
JPS5928725B2 (en) power plant
JPH034823B2 (en)
JPH027412Y2 (en)
JPH0147714B2 (en)
JPS5895150A (en) Heat collecting system
JPH0384372A (en) Engine driven heat pump
JPH0328677B2 (en)
JPS5913666B2 (en) heat pump system
JPH07146023A (en) Absorption refrigerator