JPS58139431A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58139431A
JPS58139431A JP57022340A JP2234082A JPS58139431A JP S58139431 A JPS58139431 A JP S58139431A JP 57022340 A JP57022340 A JP 57022340A JP 2234082 A JP2234082 A JP 2234082A JP S58139431 A JPS58139431 A JP S58139431A
Authority
JP
Japan
Prior art keywords
film
oxide
group
insulating film
in2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57022340A
Other languages
Japanese (ja)
Other versions
JPS6366416B2 (en
Inventor
Takeshi Konuma
小沼 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57022340A priority Critical patent/JPS58139431A/en
Publication of JPS58139431A publication Critical patent/JPS58139431A/en
Publication of JPS6366416B2 publication Critical patent/JPS6366416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02241III-V semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02258Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by anodic treatment, e.g. anodic oxidation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain the insulating film having a high insulation resistance and the deterioration of which is small by a method wherein a film is formed on a III-V group compound semiconductor substrate in such a manner that the film containing a plenty of oxide of V-group element is formed on the substrate side and the film containing a plenty of oxide of III-group element is formed on the side which comes in contact with the outside air. CONSTITUTION:After the processing strain of an N type InP substrate 1 has been removed, anodic oxide films 2 and 3 are formed in succession using an electrolytic solution of pH 2 and 4 and by having a Pt plate as a cathode, the composition ratio of the film 2 is set at P2O5/In2O3>1, and P2O5/In2O3<1 is set for the film 3. Then, an ohmic electrode 4 of Au-Ge is formed on the back side, and an Al electrode 5 is formed on the above oxide film 3. According to this constitution, as the film 3 of P2O5/In2O3<1 protects the film 2 and maintains an excellent degree of adhesion with metal for outside atmosphere, the insulating film of high insulation resistance having a low deterioration rate can be obtained. In order to change the composition ratio of the oxide, there are such methods wherein an anodic oxidizing solution and the like besides the usage of pH electrolytic solution. Also, the above-mentioned method is not limited for the InP and can be applied to the III-V group compound semiconductors in general.

Description

【発明の詳細な説明】 本発明は半導体装置及びその製造方法に関するものであ
り、特にi−v族化合物半導体装置の絶縁膜の組成及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and a method of manufacturing the same, and particularly to a composition of an insulating film of a group IV compound semiconductor device and a method of manufacturing the same.

化合物半導体の絶縁膜は、半導体装置を外部雰囲気から
保護するだめの表面保護膜、またはMIS(Metal
−+Insulator−8emiconductor
 )型トランジスタの絶縁膜として用いられている。絶
縁膜の形成方法としては熱酸化法、プラズマ熱化法。
The compound semiconductor insulating film is a surface protective film that protects the semiconductor device from the external atmosphere, or an MIS (Metal
-+Insulator-8emiconductor
)-type transistors. Thermal oxidation method and plasma thermalization method are used to form the insulating film.

陽極酸化法等を用いた化合物半導体を直接酸化する方法
及びSiO2,513N4.Al2O3等をCvD(C
hemical Vapor Deposition 
 )法を用いて化合物半導体上に堆積する方法等が用い
られている。前記CVDによる堆積法で形成した5in
2゜513N4.A12o3等は基板との熱膨張係数の
差異による亀裂が生じたり、基板と絶縁膜の界面での表
面準位が多い等の問題が生じる。又化合物半導体を直接
酸化する方法も特にIn、Pを含む化合物半導体では絶
縁膜の耐湿性が悪く、又MIS型トランジスタでは金属
と絶縁膜の付着強度が弱い等の問題がある。
A method of directly oxidizing a compound semiconductor using an anodic oxidation method or the like, and a method of directly oxidizing a compound semiconductor using an anodic oxidation method or the like and SiO2,513N4. CvD (C
chemical vapor deposition
) method is used to deposit it on a compound semiconductor. 5 inches formed by the CVD deposition method described above.
2゜513N4. A12o3 and the like have problems such as cracks occurring due to the difference in thermal expansion coefficient with the substrate and a large number of surface states at the interface between the substrate and the insulating film. Further, the method of directly oxidizing a compound semiconductor also has problems such as poor moisture resistance of the insulating film, especially in the case of compound semiconductors containing In and P, and weak adhesion strength between the metal and the insulating film in MIS type transistors.

本発明は上記従来の欠点を解決する半導体装置及びその
製造方法、すなわち化合物半導体装置における新規な絶
縁膜の組成及びその形成方法を提供するものである。本
発明はIn、Pを含む璽−■族化合物半導体を酸化して
形成した酸化膜が耐湿性が悪く、金属と酸化膜との付着
強度が弱いのは、燐(p)の酸化物が原因であることを
見出しだことによる。即ち本発明の半導体装置及び七の
製造方法は耐湿性及び金属との付着強度を向上せしめる
ため、基板上に形成する絶縁膜の組成を同絶縁膜の厚み
方向に沿って適切に変化させるものである。
The present invention provides a semiconductor device and a method for manufacturing the same that solves the above-mentioned conventional drawbacks, that is, a novel composition of an insulating film in a compound semiconductor device and a method for forming the same. The present invention shows that the oxide film formed by oxidizing a P-group compound semiconductor containing In and P has poor moisture resistance, and the reason why the adhesion strength between the metal and the oxide film is weak is due to the oxide of phosphorus (P). Because it's a headline. That is, in the semiconductor device and manufacturing method of the present invention, the composition of the insulating film formed on the substrate is appropriately changed along the thickness direction of the insulating film in order to improve moisture resistance and adhesion strength with metal. be.

以下本発明の実施例をI−V化合物半導体としてInP
  を用いた半導体装置を例にあげて説明する。
Examples of the present invention will be described below as InP as an IV compound semiconductor.
This will be explained by taking a semiconductor device using this as an example.

第1図は本発明の実施例における半導体装置及びその製
造方法を説明するための、製造工程の断面図である。第
1図(a)゛に示すようにI−V族化合(燐酸)とグロ
ピレングリコールの混合液を電解液(pH=2)として
用い、陽極酸化法により酸化膜を形成する。すなわち、
n型1nP1を陽極とし、白金(pt)板を陰極とし、
4 m A /d の電流密度で1000人の第1の陽
極酸化膜2を形成する。
FIG. 1 is a cross-sectional view of a manufacturing process for explaining a semiconductor device and its manufacturing method in an embodiment of the present invention. As shown in FIG. 1(a), an oxide film is formed by an anodic oxidation method using a mixed solution of a group IV compound (phosphoric acid) and glopylene glycol as an electrolytic solution (pH=2). That is,
An n-type 1nP1 is used as an anode, a platinum (PT) plate is used as a cathode,
A first anodic oxide film 2 of 1000 people is formed at a current density of 4 mA/d.

次に上記と同様の陽極酸化法で第1図(C)に示すよう
にp H=4の電解液で第2の陽極酸化膜3を600人
の膜厚に形成する。
Next, a second anodic oxide film 3 is formed to a thickness of 600 mm using an electrolytic solution of pH=4 as shown in FIG. 1(C) using the same anodic oxidation method as described above.

ここで第1.第2の陽極酸化膜2,3はIn2o3(酸
化インジウム)とP2O6(6酸化燐)の組成比を異な
らしめており、第1の陽極酸化膜2の組成比はP2O6
/In2o3)1とし、第2の陽極酸化膜3の組成比は
PO/In2O3〈1としている。
Here's the first one. The second anodic oxide films 2 and 3 have different composition ratios of In2o3 (indium oxide) and P2O6 (phosphorus hexaoxide), and the composition ratio of the first anodic oxide film 2 is P2O6.
/In2O3)1, and the composition ratio of the second anodic oxide film 3 is PO/In2O3<1.

 6 第2図はE S CA (Electron 5pec
troscopyfor Chemical Anal
ysis)法で分析した陽極酸化膜の組成を示している
。同図の分析結果よりわかるように、n型InP1より
なる基板に近い側に形成された第1の陽極酸化膜2の組
成を見るとIn2O3がP2O6よりIl、″い。また
、基板に遠い側に形成された第2の陽極酸化膜3の組成
を見るとP2O3がIn2O3より少くなっていること
がわかる。
6 Figure 2 shows E S CA (Electron 5pec
Troscopy for Chemical Anal
The composition of the anodic oxide film analyzed by the ysis) method is shown. As can be seen from the analysis results in the same figure, when looking at the composition of the first anodic oxide film 2 formed on the side closer to the substrate made of n-type InP1, In2O3 is higher than P2O6. Looking at the composition of the second anodic oxide film 3 formed in , it can be seen that P2O3 is less than In2O3.

次に第1図(d)に示すようにn型InP  1よりな
る基板の裏面に金−ゲルマニウム(Au−Go)の合金
を蒸着、熱処理し、オーミック電極4を形成する。さら
に第2の陽極酸化膜3にアルミニウムCAN’)を蒸着
し、電極6としMISダイオードを形成する。
Next, as shown in FIG. 1(d), a gold-germanium (Au--Go) alloy is deposited on the back surface of the substrate made of n-type InP 1 and heat-treated to form an ohmic electrode 4. Further, aluminum (CAN') is deposited on the second anodic oxide film 3 to form an electrode 6 and a MIS diode.

前記半導体装置(MISダイオード)において陽極酸化
膜の絶縁性を見るため電流−電圧特性を測定すると、印
加電圧10vで電流は10 ”Aであった。
When the current-voltage characteristics of the semiconductor device (MIS diode) were measured to check the insulation properties of the anodic oxide film, the current was 10''A at an applied voltage of 10V.

なお、ここで第1の陽極酸化膜のみ(但しこの陽極酸化
膜の厚みは1000人)を形成した従来例の場合は印加
電圧1o■で電流は5X10   Aであり、本発明の
前記実施例の場合より電流値は少ない。また、第2の陽
極酸化膜3のみ(陽極酸化膜は1600Aの厚み)を形
成した場合では1ovの大きさの電圧は印加できず、印
加電圧1Vで電流は1O−5A  となり絶縁膜として
用いられないことにな□る。
Here, in the case of the conventional example in which only the first anodic oxide film was formed (however, the thickness of this anodic oxide film was 1,000 people), the applied voltage was 1 o and the current was 5 x 10 A. The current value is smaller than in the case of In addition, when only the second anodic oxide film 3 (the thickness of the anodic oxide film is 1600 A) is formed, a voltage of 1 ov cannot be applied, and the current is 1 O-5 A at an applied voltage of 1 V, which is used as an insulating film. It turns out that there is nothing.

次に、本発明の実施例により形成したMISダイオード
の寿命試験を行なった。なお、比較のため、PO/In
2O3〉1の組成を有する絶縁膜 6 のみを形成した従来のMISダイオードも同様に寿命試
験を行なった。MISダイオードを高温放置(125°
C)L、電圧印加(es V ) 寿命試験を行なうと
、本発明の実施例のP2O6/In2O3〉1の組成を
有する第1の陽極酸化膜とP2O5/In2O3〈1の
組成を有する第2の陽極酸化膜とからなるMISダイオ
ードでは500時間経ても劣化は見られなかったが、P
2O6/In2O3〉1の組成のみを有する従来のMI
Sダイオードでは、電流−電圧特性を測定すると高温放
置後電流が増加し、劣化の激しいものは電流値が4〜7
桁位増大した。、さらに従来のMISダイオードでは陽
極酸化膜上の電極のはぐり等の不良が発生した。
Next, a life test was conducted on the MIS diode formed according to the example of the present invention. For comparison, PO/In
A conventional MIS diode formed with only an insulating film 6 having a composition of 2O3>1 was similarly subjected to a life test. MIS diode left at high temperature (125°
C) L, voltage application (es V ) When the life test was carried out, it was found that the first anodic oxide film having the composition of P2O6/In2O3〉1 and the second anodic oxide film having the composition of P2O5/In2O3〈1 of the embodiment of the present invention. Although no deterioration was observed in the MIS diode composed of an anodic oxide film even after 500 hours, P
Conventional MI with only a composition of 2O6/In2O3〉1
When measuring the current-voltage characteristics of S diodes, the current increases after being left at high temperatures, and those with severe deterioration have a current value of 4 to 7.
It increased by an order of magnitude. Further, in the conventional MIS diode, defects such as peeling off of the electrode on the anodic oxide film occurred.

本実施例のMISダイオードでは不良が発生しなかつた
が、この原因を考えてみるとP2O6/In2O3>1
の組成の第1の陽極酸化膜をP2O6/ I n 20
3< 1の組成の第2の陽極酸化膜で被覆しているため
、第2の陽極酸化膜が保護され、温度。
No defects occurred in the MIS diode of this example, but considering the cause of this, P2O6/In2O3>1
The first anodic oxide film with the composition of P2O6/I n 20
Since it is coated with the second anodic oxide film having a composition of 3<1, the second anodic oxide film is protected and the temperature decreases.

湿度等の外部雰囲気に対して安定で、かつ金属との密着
が良好に維持されたためであると考えられる。即ち■族
の元素の酸化物を主成分とする第1の陽極酸化膜は絶縁
物として高抵抗であるが、外部雰囲気に敏感で劣化しや
すい欠点がある。一方、璽族元素の酸化物を主成分とす
る第2の陽極酸化膜は抵抗は絶縁物としては低いが、外
部雰囲気に変化しにくく、金属との密着が良い。これら
の長所のみを利用するとI−V族化合物半導体の絶縁膜
として絶縁抵抗が高く劣化の少ないものが得られる。
This is thought to be because it is stable against external atmosphere such as humidity and maintains good adhesion to metal. That is, the first anodic oxide film, which is mainly composed of oxides of group (1) elements, has a high resistance as an insulator, but has the disadvantage that it is sensitive to the external atmosphere and easily deteriorates. On the other hand, the second anodic oxide film mainly composed of an oxide of a group element has a low resistance as an insulator, but is not easily changed by the external atmosphere and has good adhesion to metals. If only these advantages are utilized, an insulating film of an IV group compound semiconductor having high insulation resistance and little deterioration can be obtained.

上記を流側では陽極酸化液のpHを変えることで絶縁膜
を構成する酸化物の組成比を変えたが、陽極酸化液を変
えることにより第1と第2の陽極酸化膜の組成比を変え
ても良い、又プラズマ酸化法で基板温度あるいはV族元
素からなる雰囲気の分圧を変えて絶縁膜の構成比を変え
ることができる。熱酸化法により絶縁膜を形成する場合
でも同様に酸化温度、V族元素からなる雰囲気の分圧を
変えることにより絶縁膜の構成比を変えられる。
On the flow side, the composition ratio of the oxides constituting the insulating film was changed by changing the pH of the anodic oxide solution, but by changing the anodic oxide solution, the composition ratio of the first and second anodic oxide films was changed. Alternatively, the composition ratio of the insulating film can be changed by changing the substrate temperature or the partial pressure of the atmosphere made of group V elements using a plasma oxidation method. Even when an insulating film is formed by a thermal oxidation method, the composition ratio of the insulating film can be changed by changing the oxidation temperature and the partial pressure of the atmosphere made of group V elements.

実施例ではI−V族化合物半導体としてInPについて
説明したが、I n 1− !G a !P 。
In the embodiment, InP was explained as the IV group compound semiconductor, but InP is the I-V compound semiconductor. Ga! P.

I n 1−x G a x P y A s 、x等
のIn、Pを含む化合物半導体にも適用できる。又Ga
As、Garb等の!n、Pを含まないI−V族化合物
半導体にも適用できることは勿論である。
It can also be applied to compound semiconductors containing In and P, such as I n 1-x G a x P y As, x. Also Ga
As, Garb, etc! Of course, it can also be applied to IV group compound semiconductors that do not contain n or phosphorus.

さらに実施例ではMISダイオードで説明したが、本発
明はMIS型FETのゲート絶縁膜の形成に適用でき、
又A P D (Avalanche Phot。
Furthermore, although the embodiments have been explained using MIS diodes, the present invention can be applied to the formation of a gate insulating film of MIS type FET.
Also A P D (Avalanche Photo.

Diode)等の表面保護膜に適用できる。It can be applied to a surface protective film such as Diode).

以上説明した様に本発明の半導体装置とその製造方法は
■−V族化合物半導体に用いる絶縁膜として基板に接す
る絶縁膜の組成を■族元素からなる酸化物の構成が■族
元素からなる酸化物より大になるようにし、一方外気に
触れる絶縁膜の組成は■族元素からなる酸化物に大にな
るようにするものであシ、絶縁抵抗が高く、劣化の少な
い■−V族化合物半導体の絶縁膜が得られ、その工業的
価値は大きい。
As explained above, the semiconductor device and the manufacturing method of the present invention are such that the composition of the insulating film in contact with the substrate as the insulating film used in the -V group compound semiconductor is changed from the composition of the oxide consisting of the group II element to the oxide consisting of the group II element. On the other hand, the composition of the insulating film that is exposed to the outside air should be made of oxides consisting of Group III elements, and it should be a Group V compound semiconductor with high insulation resistance and little deterioration. An insulating film can be obtained, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例における半導
体装置およびその製造方法を説明するための製造工程断
面図、第2図は同半導体装置の絶縁膜の組成をESCA
法で分析した結果を示す図である。 1−−−−・・InP (基板)、2・・・・・・1n
203/P2O6く1の構成比を有する第1の陽極酸化
膜、3・・・・・・In2O3/P2o6)1 の構成
比を有する第2の陽極酸化膜、4,6・・・・・・電極
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図
1(a) to (d) are manufacturing process cross-sectional views for explaining a semiconductor device and its manufacturing method in one embodiment of the present invention, and FIG. 2 is an ESCA diagram showing the composition of the insulating film of the semiconductor device.
FIG. 3 is a diagram showing the results of analysis using the method. 1----...InP (substrate), 2...1n
A first anodic oxide film having a composition ratio of 203/P2O6)1, 3...A second anodic oxide film having a composition ratio of In2O3/P2O6)1, 4,6... electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 figure

Claims (1)

【特許請求の範囲】 (1)I−V族化合物半導体基板上に、N族元素の酸化
物と■族元素の酸化物よりなりかつ厚み方向に沿って組
成の異なる絶縁膜が形成され、前記絶縁膜において前記
半導体基板と接する側はV族元素の酸化物の含有量が1
族元素の含有量より大きく、反対側はN族元素の酸化物
の含有量がV族元素の含有量より大きいことを特徴とす
る半導体装置。 (掲 N族元素がInであり、V族元素がPであること
を特徴とする特許請求の範囲第1項記載の半導体装置。 (3)璽−V族化合物半導体基板上に陽極酸化法により
酸化膜を形成する過程において陽極酸化液のpH値を変
化させることを特徴とする半導体装置の製造方法。
[Scope of Claims] (1) An insulating film made of an oxide of an N group element and an oxide of a group I element and having different compositions along the thickness direction is formed on a group IV compound semiconductor substrate, In the insulating film, the content of oxide of group V element on the side in contact with the semiconductor substrate is 1.
A semiconductor device characterized in that the content of an oxide of a group N element is greater than the content of a group V element on the other side. (The semiconductor device according to claim 1, characterized in that the N group element is In and the V group element is P. A method for manufacturing a semiconductor device, characterized in that the pH value of an anodic oxidation solution is changed in the process of forming an oxide film.
JP57022340A 1982-02-15 1982-02-15 Semiconductor device and manufacture thereof Granted JPS58139431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022340A JPS58139431A (en) 1982-02-15 1982-02-15 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022340A JPS58139431A (en) 1982-02-15 1982-02-15 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58139431A true JPS58139431A (en) 1983-08-18
JPS6366416B2 JPS6366416B2 (en) 1988-12-20

Family

ID=12079959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022340A Granted JPS58139431A (en) 1982-02-15 1982-02-15 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58139431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015436A1 (en) * 1989-05-31 1990-12-13 Nippon Mining Co., Ltd Method of producing compound semiconductor devices
RU2756003C1 (en) * 2020-11-13 2021-09-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Method for manufacturing a semiconductor apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015436A1 (en) * 1989-05-31 1990-12-13 Nippon Mining Co., Ltd Method of producing compound semiconductor devices
US5214003A (en) * 1989-05-31 1993-05-25 Nippon Mining Co., Ltd. Process for producing a uniform oxide layer on a compound semiconductor substrate
RU2756003C1 (en) * 2020-11-13 2021-09-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Method for manufacturing a semiconductor apparatus

Also Published As

Publication number Publication date
JPS6366416B2 (en) 1988-12-20

Similar Documents

Publication Publication Date Title
US11018238B2 (en) Structure, method for manufacturing same, semiconductor element, and electronic circuit
Ito et al. The GaAs inversion-type MIS transistors
US9952175B2 (en) Gas sensor and sensor device
JPH10505911A (en) Gas detection method and apparatus
US7187014B2 (en) Semiconductor device and method for fabricating the same
JP2000150875A (en) Semiconductor device and formation of thin film
JPWO2016143053A1 (en) Gas sensor and sensor device
Zasadzinski et al. Superconducting tunneling study of vanadium
Alifragis et al. Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures
JPS58139431A (en) Semiconductor device and manufacture thereof
CN110927216B (en) Integrated GaN-based sensor for synchronously monitoring solution temperature and pH and preparation method thereof
Çetinkara et al. The effects of the time-dependent and exposure time to air on Au/epilayer n-Si Schottky diodes
Monroy et al. Reliability of Schottky contacts on AlGaN
JP2000292409A5 (en)
KR930000825B1 (en) Improved magnetoresistors
EP2426483A1 (en) Hydrogen Sensors
JPH02296141A (en) Functional element and fet sensor provided with functional element
Sama et al. Investigation of Sc 2 O 3 based all-solid-state EIS structure for AlGaN/GaN HEMT pH sensor
US6087702A (en) Rare-earth schottky diode structure
Carillo et al. Relevant energy scale in hybrid mesoscopic Josephson junctions
Ouennoughi et al. Analysis of InP Schottky/tunnel metal-insulator-semiconductor diode characteristics with a conductance technique
Mazumdar et al. Electronic conductivity of AgI using DC polarization and charge transfer techniques
Köhler et al. Some investigations on evaporated Au CdS-type metal-semiconductor barriers
JPS60181645A (en) Composite sensor and its preparation
Aydinli et al. Au/Ni/SnNi/n‐GaAs Interface: Ohmic Contact Formation