JPS58139390A - Magnetic bubble drive circuit - Google Patents

Magnetic bubble drive circuit

Info

Publication number
JPS58139390A
JPS58139390A JP57021223A JP2122382A JPS58139390A JP S58139390 A JPS58139390 A JP S58139390A JP 57021223 A JP57021223 A JP 57021223A JP 2122382 A JP2122382 A JP 2122382A JP S58139390 A JPS58139390 A JP S58139390A
Authority
JP
Japan
Prior art keywords
current
conductor
magnetic
bubble
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57021223A
Other languages
Japanese (ja)
Inventor
Kazuo Tokura
戸倉 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP57021223A priority Critical patent/JPS58139390A/en
Publication of JPS58139390A publication Critical patent/JPS58139390A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0858Generating, replicating or annihilating magnetic domains (also comprising different types of magnetic domains, e.g. "Hard Bubbles")

Abstract

PURPOSE:To improve the reliability against the operating temperature change, by connecting an external resistor matching the resistance temperature coefficient of each conductor and a current temperature coefficient of magnetic bubbles in series with each conductor of bubble memories and driving the memories with a constant voltage source. CONSTITUTION:In a drive circuit of a function conductor R14 such as magnetic bubble generator and bubble expander, a current correction resistor R23 is connected in series with the conductor R14. The current flowing to the R14 is kept to a current value optimizingly initially set even with the resistance change. The bubbles, however, have the current temperature coefficient in which the required current is reduced according to the temperature rise of the magnetic substance film, the current correction resistor connected in series corrects the current so as to drive the bubbles at the required optimum current for the bubbles. Thus, the suitable current is applied to each conductor according to the temperature of the magnetic substance film, allowing avoid malfunction.

Description

【発明の詳細な説明】 (技術分野) 本発明は動作温度変化に対しての信頼性を向上させた二
層導体電流駆動型磁気バブルメモリの駆動回路に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a drive circuit for a two-layer conductor current-driven magnetic bubble memory with improved reliability against changes in operating temperature.

(背景技術) 磁気バブルの転送方式としては磁性膜上のパーマロイパ
ターンを転送路としてX、Yコイルによる回転磁界によ
って転送させるフィールドアクセス型と磁性膜上に相互
に絶縁して重ねられる第1導体層及び第2導体層にパタ
ーン孔を設け、各導体層に適時電流を流す事によりパタ
ーン孔に出来る磁気勾配により磁気バブルを転送させる
二層導体電流駆動型がある。本発明にかかわる後場につ
いての原理の詳細については文献(The BellS
ystem Technical Jounal Vo
l 58 Nth61978 )に詳しくゝ0 第1図は二層導体電流駆動型磁気バブルメモリの原理的
パターン配置図である。第1図に於てlは第1導体層、
2は第2導体層、3は発生器、4は磁気バブル伸長器、
5,5′は検出器、6はスワップゲート、7はレプリケ
ートゲート、83〜8nはマイナループ(貯蔵部)であ
る。又各矢印は磁気バブルの転送路を示し、かつ磁気バ
ブルの移動方向を示す。磁気バブルの転送は第1導体層
1、第2導体層2に適時電流を流す事により行われ、又
他の機能例えば磁気バブルの発生は発生器3に、検出は
磁気バブル伸長器4に適時電流を流す事によって磁気バ
ブルの制御で行われる。以下第1導体層1、第2導体層
を単に導体と、又それ以外を総称して機能導体、磁気バ
ブルをバブルと云う。
(Background Art) Two methods of transferring magnetic bubbles are the field access type, in which a permalloy pattern on a magnetic film is used as a transfer path, and the rotating magnetic fields of X and Y coils are used to transfer magnetic bubbles, and the first conductor layer is stacked on the magnetic film in an insulated manner. There is also a two-layer conductor current driven type in which patterned holes are provided in the second conductive layer and a magnetic bubble is transferred by a magnetic gradient created in the patterned holes by passing a current through each conductive layer at appropriate times. For details on the principles behind the present invention, please refer to the literature (The BellS
system Technical Journal Vo
158 Nth61978 ) in detail 0 FIG. 1 is a diagram showing the principle pattern layout of a two-layer conductor current-driven magnetic bubble memory. In FIG. 1, l is the first conductor layer,
2 is a second conductor layer, 3 is a generator, 4 is a magnetic bubble expander,
5 and 5' are detectors, 6 is a swap gate, 7 is a replicate gate, and 83 to 8n are minor loops (storage parts). Further, each arrow indicates a transfer path of the magnetic bubble and indicates the direction of movement of the magnetic bubble. The transfer of magnetic bubbles is performed by applying current to the first conductor layer 1 and the second conductor layer 2 at appropriate times, and other functions such as generation of magnetic bubbles are performed by a generator 3 and detection by a magnetic bubble expander 4 at appropriate times. This is done by controlling magnetic bubbles by applying an electric current. Hereinafter, the first conductor layer 1 and the second conductor layer will be simply referred to as a conductor, the others will be collectively referred to as a functional conductor, and the magnetic bubble will be referred to as a bubble.

第2図は従来の機能導体の駆動回路例である。FIG. 2 is an example of a conventional functional conductor drive circuit.

第2図に於て11はインバータバッファ、R11、R1
2は電流設定用抵抗、R13は電流検出抵抗、QIOは
トランジスタ、R14は機能導体である。
In Figure 2, 11 is an inverter buffer, R11, R1
2 is a current setting resistor, R13 is a current detection resistor, QIO is a transistor, and R14 is a functional conductor.

本回路の動作は入力信号が端子10に印加される事によ
り概略的に で表わされる。(VCE(11はインバータバッファ1
1の最終段トランジスタのコレクタ・エミッタ飽和電圧
、■BB10トランジスタQIOのベースエミッタ電圧
、VCCは電源電圧、lは機能導体R14に流れる電流
である)。
The operation of the circuit is schematically represented by an input signal being applied to terminal 10. (VCE (11 is inverter buffer 1
1, the base-emitter voltage of the transistor QIO in BB10, VCC is the power supply voltage, and l is the current flowing through the functional conductor R14).

つまり機能導体R14に流れる電流1は機能導体R14
の抵抗値には関係せず、電流設定用抵抗R11゜R12
、電流検出用抵抗R13によって決められる。
In other words, the current 1 flowing through the functional conductor R14 is
Regardless of the resistance value of the current setting resistor R11゜R12
, is determined by the current detection resistor R13.

電流iは機能導体R14の各々に(発生器3、バブル伸
長器4、等)適した電流値に初期設定されると、以後機
能導体R14の抵抗値が変化しても初期設定の電流値に
保たれる。しかるにバブルは磁性膜の温度上昇に伴って
これを動作させるのに必要な電流が減少する約−0,2
%/’Cの電流温度係数を持っており、0°C時の電流
を1.0とすれば100℃時には0.8が適正な電流値
である。しかしながら従来の駆動回路例では磁性膜の温
度が変化して、磁性膜に密着している導体、機能導体の
抵抗値が変化しても電流値は常に一定であるために、例
えば0°Cの時の電流値に初期設定をすると100を時
には20チの電流が過剰となり、又100℃の時の電流
値に初期設定をすると0℃時には20%の電流値が不定
する事になり、電流が過剰の場合にはそれが温度上昇を
増長させ、かつ不要領域でのバブルの発生、誤動作の原
因となり、不定の場合には動作不能となる。
When the current i is initially set to a current value suitable for each of the functional conductors R14 (generator 3, bubble expander 4, etc.), the current value remains at the initial setting even if the resistance value of the functional conductor R14 changes thereafter. It is maintained. However, the current required to operate the bubble decreases as the temperature of the magnetic film rises, approximately -0.2
It has a current temperature coefficient of %/'C, and if the current at 0°C is 1.0, the appropriate current value is 0.8 at 100°C. However, in conventional drive circuits, even if the temperature of the magnetic film changes and the resistance value of the conductor or functional conductor that is in close contact with the magnetic film changes, the current value remains constant. If the initial setting is made to a current value of 100°C, the current value of 20° will be excessive, and if the initial setting is made to the current value of 100°C, 20% of the current value will be unstable at 0°C, and the current will be If it is excessive, it increases the temperature rise, causes bubbles to occur in unnecessary areas, and causes malfunction, and if it is unstable, it becomes impossible to operate.

(発明の課題) 本発明の目的はこれらの欠点を除去するために磁性膜の
温度に応じて適正な電流を導体、機能導体に供給する様
にしたもので、その特徴は、非磁性ガーネット基板上に
薄い磁性膜を形成し、その上に相互に絶縁して重ねられ
る第1導体層、第2導体層を有し各導体層に設けられた
ノくターン孔によりメジャー転送路、及びマイナー転送
路を構成し、第1導体層及び第2導体層と絶縁して重ね
られる磁気バブル入出力制御機能ノ(ターン層及び磁性
膜の厚さ方向にバイアス磁界を与える手段を有する二層
導体電流駆動型磁気)くプル装置の駆動回路において、
第1導体層、第2導体層、磁気ノ()゛ル入出力制御機
能パターン層の抵抗温度係数と磁気バブルの電流温度係
数を整合させる外部抵抗を各々の導体と直列接続し、該
直列回路を定電圧源で駆動するごとき磁気バブル駆動回
路にある。
(Problems to be solved by the invention) The purpose of the present invention is to supply an appropriate current to a conductor and a functional conductor according to the temperature of the magnetic film in order to eliminate these drawbacks. A thin magnetic film is formed on top, and a first conductor layer and a second conductor layer are stacked on top of each other insulated from each other, and a major transfer path and a minor transfer path are formed by the turn holes provided in each conductor layer. A magnetic bubble input/output control function that constitutes a circuit and is insulated and overlapped with the first conductor layer and the second conductor layer (a two-layer conductor current drive having means for applying a bias magnetic field in the thickness direction of the turn layer and the magnetic film) In the drive circuit of the type magnetic pull device,
An external resistor that matches the resistance temperature coefficient of the first conductor layer, the second conductor layer, and the magnetic bubble input/output control function pattern layer with the current temperature coefficient of the magnetic bubble is connected in series with each conductor, and the series circuit is It is a magnetic bubble drive circuit that is driven by a constant voltage source.

(発明の構成および作用) 第3図は本発明の第1の実施例であり、21はバッファ
、R21とR22は電流検出抵抗、Q20はトランジス
タ、R23は電流補正抵抗、R14は機能導体である。
(Structure and operation of the invention) FIG. 3 shows a first embodiment of the invention, in which 21 is a buffer, R21 and R22 are current detection resistors, Q20 is a transistor, R23 is a current correction resistor, and R14 is a functional conductor. .

本回路の動作は入力信号が端子題に印加されると、トラ
ンジスタQ20のエミッタには大略 21 ■E” R21+ R22°VCC なる電圧が出力され、電流補正抵抗1(乙を介して機能
導体R14に電流が供給されるものである。
The operation of this circuit is that when an input signal is applied to the terminal, a voltage of approximately 21 ■E'' R21 + R22°VCC is output to the emitter of the transistor Q20, and a voltage of approximately 21 ■E'' R21 + R22°VCC is output to the functional conductor R14 via the current correction resistor 1 (B). A current is supplied.

電流補正抵抗R23は次式で求まるもので磁性膜の温度
が変化しても常にバブルを動作させるのに最適な電流を
得るためのものである。
The current correction resistor R23 is determined by the following equation, and is used to obtain the optimum current for always operating the bubble even if the temperature of the magnetic film changes.

今、バブルの動作温度をO℃〜100℃と1−ると次式
が成立する。
Now, if the operating temperature of the bubble is 1-1 from 0°C to 100°C, the following equation holds true.

1(0):VE/(R(o)十R23)iCloo)=
■E 4R(100)+ R23)100°”  ””
  ’(0)     ’(too)/亀(。)’(0
)  20℃の時の機能導体R14の最適電流値、’(
too) = 100℃の時の機能導体R14の最適電
流値、R(。)=0℃の時の機能導体R14の抵抗値、
”(loo) =  100℃の時の機能導体R14の
抵抗値、■。 = トランジスタQ20のエミッタ電圧
、α −バブルの電流温度係数、 バブルの電流温度係数−0,2%/℃、機能導体R14
の抵抗温度係数を−0,34%/’Cとすると電流補正
抵抗)t23の最適値は機能導体R14の0°Cの時の
抵抗R(。)の36%となる。ここでは補正抵抗R23
の値を動作温度の上限と下限で最適な電流値になる様に
2点近似で求めているが、各温度での最適値とのズレは
温度範囲の中間で最大となる。しかしその値は1.2%
以下であり実用上障害とはならない。
1(0):VE/(R(o)10R23)iCloo)=
■E 4R (100) + R23) 100°” ””
'(0) '(too)/tortoise(.)'(0
) Optimal current value of functional conductor R14 at 20°C, '(
too) = optimum current value of functional conductor R14 at 100°C, R(.) = resistance value of functional conductor R14 at 0°C,
”(loo) = resistance value of functional conductor R14 at 100°C, ■. = emitter voltage of transistor Q20, α - current temperature coefficient of bubble, current temperature coefficient of bubble -0.2%/°C, functional conductor R14
If the temperature coefficient of resistance is -0.34%/'C, the optimum value of the current correction resistance) t23 is 36% of the resistance R(.) of the functional conductor R14 at 0°C. Here, correction resistor R23
The value of is determined by two-point approximation so that the current value is optimal at the upper and lower limits of the operating temperature, but the deviation from the optimal value at each temperature is greatest in the middle of the temperature range. However, the value is 1.2%
This is the following and does not pose a practical problem.

以上は機能導体について説明をしてきたが、第1導体層
、第2導体層の駆動につ℃・ても全く同じ事が云える。
Although the above description has been about the functional conductor, the same thing can be said about the driving of the first conductor layer and the second conductor layer.

以上の説明の様に各機能導体に選択された1本の抵抗を
直列に挿入するだけで、常にバブルの動作に最適な電流
を供給する事が出来るので磁性膜の温度変化による電流
の過不定、及びそれによって生じる誤動作の防止が出来
、又過剰電流を抑制する事によって低電力化、及び熱の
発生を抑制する事が出来、バブルメモリの実装を小型化
出来る等の利点がある。
As explained above, by simply inserting one selected resistor in series with each functional conductor, it is possible to always supply the optimum current for bubble operation, so the current is unstable due to temperature changes in the magnetic film. , and the resulting malfunctions can be prevented, and by suppressing excessive current, power consumption can be reduced, heat generation can be suppressed, and bubble memory packaging can be miniaturized.

(発明の効果) 本発明は電流補正抵抗を用いて常にバブルの動作に必要
な最適電流で駆動をしているので、熱の発生の少ない又
誤動作の少ない高信頼の磁気バブルメモリを実現出来ワ
ードプロセッサ、ECR。
(Effects of the Invention) The present invention uses a current correction resistor to always drive the bubble with the optimum current necessary for bubble operation, making it possible to realize a highly reliable magnetic bubble memory that generates less heat and has fewer malfunctions. ,ECR.

PO8端末等のメモリとして利用出来る。It can be used as memory for PO8 terminals, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二層導体電流駆動型磁気バブルメモリの原理的
パターン配置図、第2図は従来の機能導体の駆動回路図
、第3図は本発明の一実施例の機能導体駆動回路図であ
る。 21はバッファ、l’t21.R22は亀、圧設定片抵
抗、Q20はトランジスタ、R23は電流補正用抵抗、
R14は機能導体。、 特許出願人  沖電気工業株式会社 特許出願代理人 弁理士 山本恵− 第1図
Fig. 1 is a diagram of the principle pattern layout of a two-layer conductor current-driven magnetic bubble memory, Fig. 2 is a conventional functional conductor drive circuit diagram, and Fig. 3 is a functional conductor drive circuit diagram of an embodiment of the present invention. be. 21 is a buffer, l't21. R22 is a tortoise, pressure setting piece resistor, Q20 is a transistor, R23 is a current correction resistor,
R14 is a functional conductor. , Patent applicant Oki Electric Industry Co., Ltd. Patent application agent Patent attorney Megumi Yamamoto - Figure 1

Claims (1)

【特許請求の範囲】[Claims] 非磁性ガーネット基板上に薄い磁性膜を形成し、その上
に相互に絶縁して重ねられる第1導体層、第2導体層を
有し各導体層に設けられたパターン孔によりメジャー転
送路及びマイナー転送路を構成し、第1導体層及び第2
導体層と絶縁して重ねられる磁気バブル入出力制御機能
パターン層及び磁性膜の厚さ方向にバイアス磁界を与え
る手段を有する二層導体電流駆動型磁気バブル装置の駆
動回路において第1導体層、第2導体層、磁気バブル入
出力制御機能パターン層の抵抗温度係数と磁気バブルの
電流温度係数を整合させる。外部抵抗を各々の導体と直
列接続し、該直列回路を定電圧源で駆動する事を特徴と
する磁気バブル駆動回路。
A thin magnetic film is formed on a non-magnetic garnet substrate, and a first conductor layer and a second conductor layer are stacked on top of each other insulated from each other, and patterned holes provided in each conductor layer provide a major transfer path and a minor transfer path. A transfer path is formed by forming a first conductor layer and a second conductor layer.
In a drive circuit for a two-layer conductor current-driven magnetic bubble device, which has a magnetic bubble input/output control function pattern layer that is insulated and overlapped with the conductor layer, and means for applying a bias magnetic field in the thickness direction of the magnetic film, the first conductor layer, the first Match the resistance temperature coefficient of the two conductor layers and the magnetic bubble input/output control function pattern layer with the current temperature coefficient of the magnetic bubble. A magnetic bubble drive circuit characterized in that an external resistor is connected in series with each conductor, and the series circuit is driven by a constant voltage source.
JP57021223A 1982-02-15 1982-02-15 Magnetic bubble drive circuit Pending JPS58139390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021223A JPS58139390A (en) 1982-02-15 1982-02-15 Magnetic bubble drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021223A JPS58139390A (en) 1982-02-15 1982-02-15 Magnetic bubble drive circuit

Publications (1)

Publication Number Publication Date
JPS58139390A true JPS58139390A (en) 1983-08-18

Family

ID=12049015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021223A Pending JPS58139390A (en) 1982-02-15 1982-02-15 Magnetic bubble drive circuit

Country Status (1)

Country Link
JP (1) JPS58139390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520967B2 (en) 2003-05-19 2009-04-21 Panasonic Corporation Fluid applying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520967B2 (en) 2003-05-19 2009-04-21 Panasonic Corporation Fluid applying apparatus

Similar Documents

Publication Publication Date Title
US6385109B1 (en) Reference voltage generator for MRAM and method
JP2004152475A (en) Sense amplifier bias circuit for memory having at least two different resistive state
US9979401B2 (en) Magnetoelectric computational devices
SE8003001L (en) MAGNETIC DEVICE FOR TRANSFORMING A MAGNETORARY RESISTANCE
JP2003281880A (en) Thin film magnetic storage device
TWI235294B (en) Reference voltage generating circuit and internal voltage generating circuit for controlling internal voltage level
JPS58139390A (en) Magnetic bubble drive circuit
US8848427B1 (en) Semiconductor intergrated circuit and operating method thereof
US3354445A (en) Mated-film element with single vertical word line
TWI539454B (en) Semiconductor device
KR20020003820A (en) Current driver for mram
KR100422945B1 (en) A method for writing of a magnetic random access memory using bipolar junction transistor
KR20040017836A (en) Control device for reversing the direction of magnetisation without an external magnetic field
US3095555A (en) Magnetic memory element
CN112002687A (en) Device and method for continuously controlling movement and pinning of siganus
JPS5814393A (en) Magnetic bubble memory device
US3441919A (en) Partial switching of a magnetic element
KR890005974A (en) Signal amplifier
JPS5931150B2 (en) magnetic bubble module
JP2003272105A (en) Write driver circuit for driving magnetic head
US4322818A (en) Magnetic bubble memory device
US3343144A (en) Low power thin magnetic film
KR20040006335A (en) Device for controlling sensing margin of magnetoresistive random access memory
JPS60211679A (en) Magnetic bubble memory device and its driving method
CN117897039A (en) Spin logic device based on magnetic tunnel junction and electronic device including the same