JPS5813766B2 - coil spring - Google Patents

coil spring

Info

Publication number
JPS5813766B2
JPS5813766B2 JP51022903A JP2290376A JPS5813766B2 JP S5813766 B2 JPS5813766 B2 JP S5813766B2 JP 51022903 A JP51022903 A JP 51022903A JP 2290376 A JP2290376 A JP 2290376A JP S5813766 B2 JPS5813766 B2 JP S5813766B2
Authority
JP
Japan
Prior art keywords
coil
wire
hollow
weight
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51022903A
Other languages
Japanese (ja)
Other versions
JPS52106052A (en
Inventor
森田茂美
田部隆幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP51022903A priority Critical patent/JPS5813766B2/en
Publication of JPS52106052A publication Critical patent/JPS52106052A/en
Publication of JPS5813766B2 publication Critical patent/JPS5813766B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Description

【発明の詳細な説明】 本発明は素線に生じるせん断応力を均等化し、重量を軽
減したコイルはねに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coil spring that equalizes the shear stress generated in the strands and reduces the weight.

一般にコイルばねは中実素線をコイル状に巻回して形成
されている。
Generally, a coil spring is formed by winding a solid wire into a coil shape.

そしてこのコイルばねがコイルの軸方向に変形すると上
記素線が捩れ変形しエネルギを吸収蓄積するものである
When this coil spring deforms in the axial direction of the coil, the strands are twisted and deformed to absorb and store energy.

ところで上記素線の捩れによって生じるせん断応力は素
線がコイル状に形成されている影響でコイルの内側部と
外側部とでは異なり、せん断応力が不均一であって素材
の単位体積すなわち重量当りの蓄積エネルギが低くなり
、ばねとしての効率が低下するものである。
By the way, the shear stress caused by the twisting of the wire is different between the inner and outer parts of the coil due to the fact that the wire is formed into a coil shape, and the shear stress is non-uniform and the shear stress per unit volume of the material, that is, per weight. The stored energy decreases, and the efficiency of the spring decreases.

このため、従来から異形断面を有する素線を用いてせん
断応力の均等化を計り、単位重量当りの蓄積エネルギを
増大させてばねの軽量化を計る試みがなされている。
For this reason, attempts have been made to equalize the shear stress by using wires with irregular cross sections to increase the stored energy per unit weight and thereby reduce the weight of the spring.

しかし、このように異形断面を有する素線を用いると、
これをコイル状に巻回することが困難となり特殊の巻回
装置を必要とし、既存の巻回装置が利用できないため製
造コストが大巾に上昇する不具合があった。
However, when using a wire with such an irregular cross section,
It is difficult to wind this into a coil, requiring a special winding device, and because existing winding devices cannot be used, manufacturing costs increase significantly.

また、上記とは別の観点より、中空状の素線を用いてば
ねの軽量化を計ったものもあるが、このようなものにお
いてもコイルの内側部と外側部とのせん断応力の不均等
は解消せず、その軽量化にも限界があった。
Additionally, from a different perspective than the above, some springs have been made lighter by using hollow strands, but even in these types of springs, the shear stress between the inner and outer parts of the coil is unequal. This did not solve the problem, and there were limits to how much weight could be reduced.

本発明は以上の事情にもとすいてなされたもので、その
目的とするところは素線のコイル内側部と外側部の応力
を均等化してばねの軽量化を計り、かつ従来のコイルは
ねと同様に既存の巻回装置によって巻回でき、製造コス
トを低減させることのできるコイルばねを得ることにあ
る。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to reduce the weight of the spring by equalizing the stress on the inner and outer parts of the coil of strands, and to reduce the weight of the spring compared to the conventional coil. The object of the present invention is to obtain a coil spring which can be wound using an existing winding device and which can reduce manufacturing costs.

以下本発明の一実施例を図面に示す実施例にしたがって
説明する。
An embodiment of the present invention will be described below according to an embodiment shown in the drawings.

第1図ないし第3図は本発明の第1実施例を示し、図中
1は素線である。
1 to 3 show a first embodiment of the present invention, in which numeral 1 represents a wire.

この素線1はその外形が断面円形をなし、その中心軸を
平行に、かつ中心軸の一方に所定量偏心して形成された
断面円形の中空部2を有する偏心中空状をなしている。
The strand 1 has an eccentric hollow shape having a circular cross-sectional outer shape and a hollow portion 2 with a circular cross-section formed parallel to the central axis and eccentric by a predetermined amount to one of the central axes.

そしてこの素線1はその中空部2の偏心側がコイルの内
側に位置するようにコイル状に巻回されてコイルはね3
に形成されている。
The wire 1 is wound into a coil so that the eccentric side of the hollow part 2 is located inside the coil, and the coil springs 3.
is formed.

なお、上記中空部2の偏心量εはコイルはね3の形状そ
の他によって適宜設定されるものであるが、コイル半径
をR、素線1の外径をd2、中空部2の直径をd1とし
た場合、この偏心量εはとすることが望ましい。
Incidentally, the eccentricity ε of the hollow part 2 is appropriately set depending on the shape of the coil spring 3 and other factors. In this case, it is desirable that the eccentricity ε is set to .

そして、このようなコイルばね3は、まず偏心していな
い中空管状の素材を用意し、この素材を熱間圧延、冷間
引抜き、あるいは切削加工等によりその外面を中空部に
対して所定量偏心した円形に形成し、第3図に示す如き
素線1を形成する。
Such a coil spring 3 is made by first preparing a hollow tubular material that is not eccentric, and then making the outer surface of this material eccentric by a predetermined amount with respect to the hollow part by hot rolling, cold drawing, cutting, etc. It is formed into a circular shape to form a strand 1 as shown in FIG.

そしてこの素線1を従来と同様の方法によってその偏心
側がコイルの内側に位置するように巻回してコイルはね
3を形成する。
Then, the coil spring 3 is formed by winding the wire 1 in a manner similar to the conventional method so that the eccentric side thereof is located inside the coil.

次に以上の如く構成された本発明の第1実施例の作用を
説明する。
Next, the operation of the first embodiment of the present invention constructed as above will be explained.

まず、第4図に示す如き断面円形の中実素線1′が直線
状の場合、この素線1′に捩りが作用すると、この素線
1′の中心軸0が捩り中心となる。
First, when a solid wire 1' having a circular cross section as shown in FIG. 4 is straight, when twist is applied to the wire 1', the central axis 0 of the wire 1' becomes the center of the twist.

ところで、この素線1′がコイル状に巻回されてこれが
圧縮あるいは引張りが作用すると、この素線1′には捩
りが作用するが、この場合は素線1′がコイル状に巻回
されている影響でその捩り中心は素線1亦直線状の場合
の捩り中心Oよりコイル内側に偏した位置0′が捩り中
心となる。
By the way, when this strand 1' is wound into a coil and compression or tension is applied to it, twist acts on this strand 1', but in this case, when the strand 1' is wound into a coil, Due to the effect of

このときの捩り中心の移動量δは、素線径をd、コイル
半径をRとすると、通常の場合には となる。
The amount of movement δ of the torsion center at this time is normally as follows, where d is the wire diameter and R is the coil radius.

この結果コイル半径方向のX−X線に沿う素線1′各部
のせん断応力分布は第4図に示す如くなる。
As a result, the shear stress distribution at each part of the strand 1' along the line XX in the radial direction of the coil becomes as shown in FIG.

そしてこの素線1′のコイル外側部表面のa2点のせん
断応力τa2とコイル内側部表面のa1点のせん断応力
τa2 との比はばね指数をC=2R/dとするとワー
ルの式により となる。
The ratio of the shear stress τa2 at point a2 on the outer surface of the coil of this strand 1' to the shear stress τa2 at point a1 on the inner surface of the coil is given by Wahl's equation when the spring index is C=2R/d. .

この値は実際にはかなり大きくなり、たとえば2R=8
0羽、d=10闘C=2R/d=8として計算すると τa1/τa2=1.4 となる。
This value can actually be quite large, for example 2R=8
Calculating with 0 birds, d=10 fight C=2R/d=8, τa1/τa2=1.4.

したがってコイル内側のa1点のせん断1応力の方が4
0%も大きなことになる。
Therefore, the shear 1 stress at point a1 inside the coil is 4
0% is also a big deal.

次に第3図に示す前記第1実施例の如き偏心中空状の素
線1が直線状の場合、これに捩りが作用するとその捩り
中心は外形の中心軸Oより中空部2の偏心側の反対側に
生じる。
Next, when the eccentric hollow wire 1 as in the first embodiment shown in FIG. Occurs on the opposite side.

そしてこの素線1を前記第1実施例の如くその中空部2
の偏心側がコイル内側に位置するように巻回した場合に
は捩り中心は上記直線状の場合の捻り中心よりコイル内
側すなわち中空部2の偏心側に移動する。
Then, as in the first embodiment, this strand 1 is inserted into the hollow part 2.
When the coil is wound so that the eccentric side thereof is located inside the coil, the torsion center moves to the inside of the coil, that is, to the eccentric side of the hollow portion 2, from the torsion center in the case of the linear case.

したがって中空部2の偏心による捩り中心の変位置とコ
イルに巻回したことによる捩り中心の移動量とが等しく
なるように各部の寸法を設定しておけば第5図に示すご
とく、コイル状に巻回した場合の捩り中心を素線1外形
の中心軸0に合致させることができる。
Therefore, if the dimensions of each part are set so that the displacement of the torsional center due to the eccentricity of the hollow part 2 is equal to the amount of movement of the torsional center due to winding the coil, the coiled shape will be formed as shown in Figure 5. The center of twist when wound can be made to coincide with the central axis 0 of the outer shape of the strand 1.

そしてこの場合には素線1のコイル外側部表面のa2点
と捩り中心との距離Oa2と、コイル内側部表面のa1
点と捻り中心との距離Oa1は等しくなり、第5図に示
す如くこれらの点のせん断応力τa1,τa2は等しく
なり、せん断応力が均等化し、ばねの効率が向上して重
量の軽減が計れる。
In this case, the distance Oa2 between the point a2 on the outer surface of the coil of the strand 1 and the torsion center, and the distance Oa2 on the inner surface of the coil
The distance Oa1 between the point and the center of twist becomes equal, and the shear stresses τa1 and τa2 at these points become equal as shown in FIG. 5, so that the shear stress is equalized, the efficiency of the spring is improved, and the weight can be reduced.

なお、この場合せん断応力の小さな中心軸0の付近には
中空部2が形成されているので、従来の中心中空状の素
線を用いたコイルはねと同様に素線を中空にしたことに
よる重量軽減効果もあわせもつことになる。
In this case, since the hollow part 2 is formed near the central axis 0 where the shear stress is small, this is due to the fact that the wire is made hollow, similar to the conventional coil spring using a wire with a hollow center. It also has the effect of reducing weight.

そして、上記中空部2の直径d1およびその偏心量εは
種々の条件において適宜これを設定するものであるが、
一般的な場合において、上記中空部2の偏心による重量
軽減の効果を充分に発揮させるためには素線外径をd2
とし、また中空部2の直径をd1 としコイル半径をR
とした場合にこのεは とするのがよい。
The diameter d1 of the hollow portion 2 and its eccentricity ε are set appropriately under various conditions.
In a general case, in order to fully exhibit the weight reduction effect due to the eccentricity of the hollow part 2, the outer diameter of the wire should be set to d2.
Also, let the diameter of the hollow part 2 be d1 and the coil radius R
In this case, it is preferable to set ε to .

次にこの中空部2の偏心による効果を確認するためにお
こなった実験について説明する。
Next, an experiment conducted to confirm the effect of eccentricity of the hollow portion 2 will be explained.

まず、同心中空素線および偏心中空素線を用いてはね指
数C=8で同一仕様のコイルばねをそれぞれ製作した場
合の重量WHを求め、これらを中実素線を用いて同仕様
のコイルばねを製作した場合の重量Wsと比較した結果
を第6図に示す。
First, find the weight WH when coil springs with the same specifications are manufactured using concentric hollow wires and eccentric hollow wires with a spring index C = 8, and calculate the weight WH of coil springs with the same specifications using solid wires. FIG. 6 shows the results of comparison with the weight Ws of the spring produced.

この結果から、同心中空素線を用いた場合(第6図中破
線で示す)には外径d2 と中空部の径d1 との比n
=dl/dが0.5〜0.6付近では中実素線との重量
比WH/Wsが約0.9で10%程度しか重量軽減され
ないのに対し、偏心中空素線を用いた本発明のもの(第
6図中実線で示す)ではWH/Wsが約0.82で18
%程度も重量軽減がなされる。
From this result, when a concentric hollow strand is used (indicated by the broken line in Fig. 6), the ratio n of the outer diameter d2 and the diameter d1 of the hollow part is
= When dl/d is around 0.5 to 0.6, the weight ratio WH/Ws with respect to the solid wire is about 0.9, and the weight is reduced by only about 10%, whereas the weight is reduced by only about 10%. In the invention (shown by the solid line in Figure 6), WH/Ws is approximately 0.82, which is 18
The weight is also reduced by about %.

なお、本発明は上記の第1実施例に限定されず種々の変
形例が可能である。
Note that the present invention is not limited to the first embodiment described above, and various modifications are possible.

たとえば第7図ないし第8図には本発明の第2実施例を
示す。
For example, FIGS. 7-8 show a second embodiment of the present invention.

この第2実施例は両端部の外径が縮少された不等線径の
偏心中空素線1〃を用いてコイルはね3′を形成したも
のであって、中空部2′の構成および作用は上記第1実
施例と同様である。
In this second embodiment, a coil spring 3' is formed using an eccentric hollow strand 1 of unequal diameter with reduced outer diameters at both ends, and the configuration of the hollow part 2' and The operation is similar to that of the first embodiment.

また、本発明は上記の第1および第2実施例にも限定さ
れず、素線の断面形状は円形に限定されずその他の形状
でもよく、要は偏心した中空部を有するものであればど
のようなものでもよい。
Furthermore, the present invention is not limited to the first and second embodiments described above, and the cross-sectional shape of the wire is not limited to a circular shape but may be any other shape. Something like that would be fine.

さらにばね形状も円筒形に限らず円錐形鼓形、樽形その
他任意の形状のものに適用でき、また圧縮、引張、捩り
その他のコイルはねに適用できる。
Further, the shape of the spring is not limited to a cylindrical shape, but can be applied to any shape such as a conical drum shape, a barrel shape, and can also be applied to compression, tension, torsion, and other coil springs.

上述の如く本発明は中心軸に対して偏心して形成された
中空部を有する偏心中空素線を、その中空部の偏心側が
コイルの内側に位置するように巻回したものである。
As described above, in the present invention, an eccentric hollow wire having a hollow portion formed eccentrically with respect to the central axis is wound such that the eccentric side of the hollow portion is located inside the coil.

したがってコイルの内側部と外側部の素線各部の応力が
均等化され、単位体積すなわち重量当りの蓄積エネルギ
が増大してばねの軽量化を計ることができる。
Therefore, the stress in each part of the wire inside and outside the coil is equalized, the stored energy per unit volume, that is, weight is increased, and the weight of the spring can be reduced.

また、素線の外形の断面形状は従来と同様の円形等でよ
くこれをコイル成形困難な異形断面とする必要はなく、
従来のコイル巻回装置を利用することができるのでコス
トを低減することができる等、その産業上の利用価値は
犬である。
In addition, the cross-sectional shape of the outer shape of the strands may be circular, etc., as in the past, and there is no need to make it into an irregular cross-section that makes it difficult to form a coil.
Its industrial utility value is significant, such as being able to use a conventional coil winding device and thus reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の第1実施例を示し、第1
図は縦断面図、第2図はその一部を拡大して示す断面図
、第3図aはコイル成形前の素線の側面図、第3図bは
第3図aの■a−■a線に沿う断面図である。 また第4図ないし第6図は上記第1実施例の作用、効果
説明図であって、第4図は中実素線の応力分布図、第5
図は偏心中空素線の応力分布図、第6図は重量軽減効果
を示すグラフである。 また第7図および第8図は本発明の第2実施例を示し、
第7図は縦断面図、第8図aはコイル成形前の素線の側
面図、第8図bおよびCはそれぞれ第8図aの■b一■
b線および■C−■C線に沿う断面図である。 1,1”・・・素線(偏心中空素線)、2.2’…中空
部、3 . 3’・・・コイルばね。
1 to 3 show a first embodiment of the present invention.
The figure is a longitudinal cross-sectional view, FIG. 2 is a cross-sectional view showing a part of it enlarged, FIG. 3 a is a side view of the wire before coil forming, and FIG. 3 b is a-- It is a sectional view along the a line. 4 to 6 are explanatory diagrams of the functions and effects of the first embodiment, in which FIG. 4 is a stress distribution diagram of the solid wire, and FIG.
The figure is a stress distribution diagram of the eccentric hollow strand, and FIG. 6 is a graph showing the weight reduction effect. Further, FIGS. 7 and 8 show a second embodiment of the present invention,
Fig. 7 is a longitudinal sectional view, Fig. 8a is a side view of the wire before coil forming, and Figs. 8b and C are respectively shown in Fig. 8a.
It is a sectional view taken along line b and line ■C-■C. 1,1"...strand (eccentric hollow wire), 2.2'...hollow part, 3.3'...coil spring.

Claims (1)

【特許請求の範囲】[Claims] 1 中心軸に対して偏心して形成された中空部を有する
偏心中空素線をその中空部の偏心側がコイルの内側に位
置するように巻回してなるコイルはね。
1. A coil made by winding an eccentric hollow wire having a hollow part formed eccentrically with respect to the central axis so that the eccentric side of the hollow part is located inside the coil.
JP51022903A 1976-03-03 1976-03-03 coil spring Expired JPS5813766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51022903A JPS5813766B2 (en) 1976-03-03 1976-03-03 coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51022903A JPS5813766B2 (en) 1976-03-03 1976-03-03 coil spring

Publications (2)

Publication Number Publication Date
JPS52106052A JPS52106052A (en) 1977-09-06
JPS5813766B2 true JPS5813766B2 (en) 1983-03-15

Family

ID=12095591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51022903A Expired JPS5813766B2 (en) 1976-03-03 1976-03-03 coil spring

Country Status (1)

Country Link
JP (1) JPS5813766B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665738U (en) * 1979-08-22 1981-06-02
JPS5935274U (en) * 1982-08-31 1984-03-05 日産ディーゼル工業株式会社 Vehicle cab suspension device
KR20020085514A (en) * 2001-05-09 2002-11-16 현대자동차주식회사 Valve spring

Also Published As

Publication number Publication date
JPS52106052A (en) 1977-09-06

Similar Documents

Publication Publication Date Title
US4377280A (en) Cylindrical helical compression spring
JPS5836216B2 (en) Non-cylindrical compression coil spring
US4469756A (en) Method of and apparatus for forming an outwardly projecting bulge in a steel wire strand for forming an anchor in concrete
JPS6035661A (en) Safety steering column consisting of synthetic substance, which is reinforced by fiber and formed through winding
JPH0247611B2 (en)
US4923183A (en) Non-circular cross-section coil spring
US1952301A (en) Flexible shaft
JPH11512787A (en) Method of producing steel cord and steel cord produced by this method
JPS5813766B2 (en) coil spring
US2260606A (en) Coiled spring
JPH0160705B2 (en)
JPS59168198A (en) Metal cable for reinforcing elastic product
US2022839A (en) Electrical conductor
US3274846A (en) Flexible cable
US3525996A (en) Core for a push-pull cable
US1857764A (en) Spring device
US1780564A (en) Electrical conductor
US3804396A (en) Securing device for vehicle safety belts
US1905498A (en) Valve spring
US2626799A (en) Prestressed spring
US2753042A (en) Dispenser
US904496A (en) Wire fencing.
US2438864A (en) Rope
JPS61105317A (en) Coiled spring
JPS5891940A (en) Coil spring consisting of compound material