JPS58137418A - Filter material for filter - Google Patents

Filter material for filter

Info

Publication number
JPS58137418A
JPS58137418A JP1977282A JP1977282A JPS58137418A JP S58137418 A JPS58137418 A JP S58137418A JP 1977282 A JP1977282 A JP 1977282A JP 1977282 A JP1977282 A JP 1977282A JP S58137418 A JPS58137418 A JP S58137418A
Authority
JP
Japan
Prior art keywords
filter
magnetic stainless
stainless steel
filter material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1977282A
Other languages
Japanese (ja)
Other versions
JPH0157608B2 (en
Inventor
Fumitaka Hayata
早田 文隆
Akira Tsuruta
鶴田 顕
Takao Yugawa
湯川 隆男
Shibao Nakae
中江 芝雄
Keiji Taguchi
田口 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP1977282A priority Critical patent/JPS58137418A/en
Publication of JPS58137418A publication Critical patent/JPS58137418A/en
Publication of JPH0157608B2 publication Critical patent/JPH0157608B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a filter material for a filter capable of purifying contaminated water stably in high reliability, by filling a casing with a diffusion bonded magnetic stainless fiber to increase the strength of the filter material. CONSTITUTION:A casing 20 is filled with a magnetic stainless steel fiber 22 and, after said fiber is degreased with trichloroethylene, it is subjected to intermetallic diffusion bonding in a vacuum heating furnace and thereafter cooled rapidly. Thus obtained filter material is free from the outflow of a metal fiber piece even if filtration and backwashing are repeated compared to a filter material with a conventional structure because of intermetallic diffusion bond and the lowering of filtering capacity.

Description

【発明の詳細な説明】 不発1(1jは多孔411.ろ過j+IJ、体を用いて
汚染物質をろ過するフィルクー111ろ過材に係り、特
に雷、磁フィルター装置に1良滴なフィルター用ろ過材
に関する。
DETAILED DESCRIPTION OF THE INVENTION Misfire 1 (1j is porous 411.filtration j+IJ, relates to FILKU 111 filtration material that filters pollutants using the body, and particularly relates to a filtration material for a filter that is good for lightning and magnetic filter devices. .

火力、原子力発電所の一次系統水中の微細な腐食生成物
を除去するために電磁フィルター装置が用いらね、てい
る。
Electromagnetic filter devices are used to remove minute corrosion products from the water in the primary system of thermal and nuclear power plants.

この電磁フィルター装置では強磁性の多孔ろ過材が11
4いられている。この多孔ろ過材は、1命削、切削等の
機械jJI+ニーや、線引き、束引き等の伸線加工によ
って作rっれたフェライト形、マルテンサイト形又はフ
ェライト相とオーステナイト相が混在している2相系等
の磁性ステンレス材繊維が用いられている。この磁性ス
テンレス繊維は数11mから数100/1m以下の代表
径を有しており、これをフィルターケーシング内へ不規
則に充填したり、ウェブ状に集合させ一定の層高に積重
ねてろ層を構成し、これによって火ブハ原子力発電所の
系統水中の微細なIIS生成物を除去するようになって
いる。
In this electromagnetic filter device, a ferromagnetic porous filter material with 11
4 I'm bored. This porous filter material has a ferrite type, a martensitic type, or a mixture of ferrite and austenite phases, which are made by machines such as cutting and cutting, or wire drawing processes such as wire drawing and bundle drawing. Two-phase magnetic stainless steel fibers are used. These magnetic stainless steel fibers have a typical diameter of several 11 m to several 100/1 m or less, and can be filled irregularly into a filter casing, or aggregated into a web and stacked to a constant layer height to form a filter layer. This is intended to remove fine IIS products from the system water at the Bukha Nuclear Power Plant.

ところがこの磁性ステンレス職維を用いたろ過材では製
造過程において磁性ステンレス材へ強度の冷間加工を行
っているので、材料の靭性が*L7〈低下しており、加
えて繊維の表面に多数のUn工傷が残存しているのでこ
の加工傷が応力1仁中原因となる。このため被処理水の
流体力、逆洗時の衝撃流体力でこれらのステンレス繊維
が破断(7、処理水内へ流出する不具合がある。またこ
れらのステンレス繊維は靭性の低下で疲労強度が著しく
代下しており、弾性降伏し易い状態にあり、長期的なろ
過、逆洗サイクルの連続使用時にステンレス繊維に加え
られる流体力で繊維の複数個所が疲労破断したり全体的
に弾性降伏し、繊維層が圧密化する。この結果ろ過材の
圧力損失が急上昇し送水不oJ能となったり、フィルタ
ーが閉塞する不1」合金有することになる。さらにこれ
らのステンレス繊維はケーシングとの接触面に充填の不
連続向が形成され被処理流体のチャンネリングが生じて
ろ過、逆洗性能が低下する。このチャンネリングは前記
フィルターの圧密rヒが生じてフィルタ一部の透水抵抗
が増大した場合に、顕著となる。
However, with this filter material using magnetic stainless steel fibers, the magnetic stainless steel material is subjected to intense cold working during the manufacturing process, so the toughness of the material is reduced by *L7, and in addition, there are many particles on the surface of the fibers. Since the unprocessed scratches remain, these processing scratches are the cause of stress. For this reason, these stainless steel fibers break due to the fluid force of the water to be treated and the impact fluid force during backwashing (7).There is a problem that they flow out into the treated water.In addition, these stainless steel fibers have a significant decrease in fatigue strength due to a decrease in toughness. Due to the fluid force applied to the stainless steel fibers during continuous use during long-term filtration and backwashing cycles, the fibers may undergo fatigue rupture at multiple locations or undergo elastic yielding as a whole. The fiber layer becomes compacted.As a result, the pressure loss of the filter material suddenly increases, resulting in water delivery failure, or the filter becomes clogged due to the presence of non-alloy. A discontinuous filling direction is formed, causing channeling of the fluid to be treated, which deteriorates filtration and backwashing performance.This channeling occurs when the filter is compacted and the water permeation resistance of a part of the filter increases. , becomes noticeable.

本発明は上記事実を考慮し、系統水の浄化を安定かつ高
信頼性のもとに行うことのできるフィルター用ろ過材を
得ることが目的である。
In consideration of the above facts, the present invention aims to obtain a filtration material for a filter that can stably and reliably purify system water.

本発明に係るフィルター用ろ過材はケーシング内へ互に
拡散接合された磁性ステンレス繊維を装填することによ
りろ過材の強度を増大するようになっている。
In the filter medium according to the present invention, the strength of the filter medium is increased by loading magnetic stainless steel fibers that are diffusion-bonded to each other into the casing.

以下本発明の実MIi例を図面に従い説明する。An actual MIi example of the present invention will be described below with reference to the drawings.

第1図に示される電磁フィルター装置は、上部キャニス
タ10、F部キャニスタ12がら成る容器内にろ過材1
4が配置されている。このろ過材14はキャニスタ外部
に配置される電磁コイル16の磁力で磁化され、矢印A
、Bで示される如く汚染水は下部キャニスタ12から流
入してろ過材14でろ過され矢印Bで示される如く上部
キャニスタ10から送り出されるようになっている。
The electromagnetic filter device shown in FIG.
4 is placed. This filter material 14 is magnetized by the magnetic force of an electromagnetic coil 16 placed outside the canister, and is
, B, contaminated water flows in from the lower canister 12, is filtered by a filter medium 14, and is sent out from the upper canister 10 as shown by arrow B.

なお図中符号コ−8はポールピースを示す。In addition, the code|symbol 8 in the figure shows a pole piece.

第2図にはろ過材14が示されており、円筒状ケーシン
グ20内に磁性ステンレス繊維22が装填されている。
FIG. 2 shows the filter medium 14, in which a cylindrical casing 20 is loaded with magnetic stainless steel fibers 22. As shown in FIG.

円面状ケーシング20はSUS /+ 30 )I>t
Fl (r用いて外径3 C1ttn、板圧]胴、高さ
l 5 cqnに11°月戊されており、この円筒状ケ
ーシング20内へIJI削加工で製作した平均線fJ、
 30μmのS U S 4 ニー< 0(フェライト
系)の磁性ステンレス繊維を平均充填率5%で装填しで
ある。このステンレス繊維を円筒状ケーシングに装填し
た後にトリクロールエチレンで脱脂させ、さらに真空加
熱炉内で6空度10 ’ +mnHg(許′谷範囲10
−’ 〜10 ’ gtl’& )、温度1]50℃(
許容範囲10500〜1200℃)、処理時度1 hr
 (許容範囲05〜3hr)で金属間拡散接合し、その
後急冷しである。
The circular casing 20 is SUS /+30)I>t
Fl (outer diameter 3 C1ttn using r, plate thickness) The cylinder is 11° rounded to a height l 5 cqn, and the average line fJ is produced by IJI machining into the inside of this cylindrical casing 20.
It is loaded with magnetic stainless steel fibers of 30 μm SUS4 knee < 0 (ferrite type) at an average filling rate of 5%. After loading this stainless steel fiber into a cylindrical casing, it was degreased with trichlorethylene, and further heated to 6 degrees of air 10' + mnHg (tolerance range 10') in a vacuum heating furnace.
-'~10'gtl'& ), temperature 1] 50℃ (
Tolerance range: 10,500-1,200℃), processing time: 1 hr
(Tolerance range: 05 to 3 hours) The metal was diffusion bonded, and then it was rapidly cooled.

この真空炉内での熱処理でケーシング内の磁性ステンレ
ス繊維22は繊維の相互接触部で充填時の圧縮力を受は
持ち、第3図に示される如くこの部分が金属間拡散接合
、すなわち同相のま1で原子間結合されて強固に結合し
ている。捷だ第4図に示される如く円1冨状ケーシング
2oの内周と磁性ステンレス繊維22との接触部におい
ても金属間拡散接合が達成されている。
Through this heat treatment in the vacuum furnace, the magnetic stainless fibers 22 in the casing receive compressive force during filling at the mutual contact portion of the fibers, and as shown in FIG. They are strongly bonded through interatomic bonds. As shown in FIG. 4, metal-to-metal diffusion bonding is also achieved at the contact portion between the inner periphery of the circular casing 2o and the magnetic stainless steel fiber 22.

このように作成された本実施例のろ過材を従来構造のろ
過材、すなわち金属間拡散接合を行わず単に円筒内へ同
一充填率で金属嫌維を充填したろ過材と比較した結果を
第5,6図に従い説明する。
The results of comparing the filter material of this example created in this way with a filter material with a conventional structure, that is, a filter material in which metallic fibers are simply filled into the cylinder at the same filling rate without performing metal-to-metal diffusion bonding, are shown in the fifth section. , 6 will be explained below.

第5,6図は平均粒形17zm のr  Fe2O3を
平均]、 OOppl)含む原水を磁界強度3KG、処
理線速400m/hrで1時間、上向流にろ過し、その
後磁場をなくし、処理線速2000 m /hr  で
10秒間下向流に逆洗した場合の各ろ過、逆洗サイクル
毎の除去率変化と、ろ過材の圧力損失変化を示したもの
であり、図中矢印Cは逆洗処理時を示している。
Figures 5 and 6 show raw water containing Fe2O3 with an average grain size of 17zm], OOppl), which was filtered in an upward flow at a magnetic field strength of 3 KG and a treatment line speed of 400 m/hr for 1 hour, then the magnetic field was removed, and the treatment line was filtered. This figure shows the change in removal rate for each filtration and backwash cycle and the change in pressure loss of the filter medium when backwashing is carried out in a downward flow for 10 seconds at a speed of 2000 m/hr. Arrow C in the figure indicates the backwashing. Indicates processing time.

第5,6図から明らかなように、従来のろ過材は、ろ過
、逆洗の各サイクル毎の金属繊維片流出が累積し、充填
率全減少させるのでろ過、逆洗の流体力でろ過材が圧密
化され約5000回以上のサイクルではろ過材の初期差
圧が上昇する。この結果1hrのろ過サイクル後の最終
差圧も急激に上昇し、逆洗が不十分でろ過性能が低下す
ることになる。しかし本実施例におけるろ過料は各金、
匡轍維が互に強固に拡散接合されているので金属繊維片
の流出がなく、約5000回のろ過サイクル後でも初期
状態と同様に安定なろ過作業が可能である。
As is clear from Figures 5 and 6, in conventional filter media, metal fiber fragments flow out during each cycle of filtration and backwashing, which accumulates and completely reduces the filling rate. is compacted and the initial differential pressure of the filter medium increases after about 5,000 cycles or more. As a result, the final differential pressure after the 1-hour filtration cycle also rises rapidly, resulting in insufficient backwashing and reduced filtration performance. However, the filtration fee in this example is each gold,
Since the rutted fibers are firmly diffusion bonded to each other, there is no outflow of metal fiber pieces, and even after approximately 5,000 filtration cycles, stable filtration work is possible in the same way as in the initial state.

さらに従来のろ過材は約5000回1!L、−1−のサ
イクル後、圧力損失増大に伴ってろ過媒体を収容する容
器内壁面に沿ったチャンネリングフローが生じ易くなり
これによってもろ過性能を低丁させるが、本実施例では
磁性ステンレス繊維22が円筒状ケーシング20の容器
内周とも拡散接合されているのでチャンネリングフロー
が防11−できる。
Furthermore, conventional filter media can be used approximately 5,000 times! After the cycles L and -1-, channeling flow along the inner wall surface of the container containing the filtration medium tends to occur due to the increase in pressure loss, which also reduces the filtration performance, but in this example, magnetic stainless steel Since the fibers 22 are also diffusion bonded to the inner circumference of the cylindrical casing 20, channeling flow can be prevented.

次に第7図乃至第9図には本発明の第2乃至第4実施例
が示されており、前記実施例におけるろ過材よりも小さ
なユニット化されたろ過材114゜214、.314 
 がそれぞれ示されている。これらのろ過材も前記第〕
実施19すにおけるろ過材]4と同様にケーシング20
内に拡散接合された磁性ステンレス繊維22が装填され
ている。
Next, FIGS. 7 to 9 show second to fourth embodiments of the present invention, in which unitized filter media 114, 214, . 314
are shown respectively. These filter media are also
Filter material in Example 19] Casing 20 in the same way as in 4.
Diffusion-bonded magnetic stainless steel fibers 22 are loaded inside.

このうち第7図のろ過材11.4は平面形状が六角形、
第8図のる過材214では扇形、第9図のろ過料314
では矩形状とされており、これらのユニット化されたろ
過材を複数個組合わせて大口形のる層(口径約50cr
n以」二)を構成できるようになっている。
Among these, the filter material 11.4 in Fig. 7 has a hexagonal planar shape.
The filtration material 214 in FIG. 8 is fan-shaped, and the filtration material 314 in FIG.
It is rectangular in shape, and a large-mouth layer (about 50 cr in diameter) is made by combining multiple unitized filter media.
2) can be configured.

このJ:うに構成された第2乃至第4実施例におけるろ
過材114.2]、4.3]1  も磁性ステンレス繊
維22が互に、またケーシング2oの内周と拡散接合さ
れているので前記実施例と同様の効果を得ることができ
る。
The filter media 114.2], 4.3]1 in the second to fourth embodiments configured as J: are also diffusion-bonded with the magnetic stainless steel fibers 22 to each other and to the inner periphery of the casing 2o. Effects similar to those of the embodiment can be obtained.

次に第10図には本発明の第5実施例が示されている。Next, FIG. 10 shows a fifth embodiment of the present invention.

この実施1+11におけるろ過材4]4は円筒状ケーシ
ング20の高さ方向中間部にストッパ28が数段に亘っ
て設けられており、これらのストッパへエキスバンドメ
タル30が掛は渡されている。これらのエキスバンドメ
タルの間には前記各実施例と同様な磁性ステンレス繊維
22が充填されているが、これらの磁性ステンレス繊維
はエキスパンド゛メタル30によって上段、中段、下段
に区画されており、各段毎に異った充填率、線径の金属
繊維が装填されている。これらの磁性スデンレス繊維2
2も前記各実施例と同様に拡散接合されている。
In the filter medium 4 in this embodiment 1+11, stoppers 28 are provided in several stages at the middle part of the cylindrical casing 20 in the height direction, and extended band metals 30 are passed to these stoppers. Magnetic stainless fibers 22 similar to those in each of the above embodiments are filled between these expanded metals, but these magnetic stainless fibers are divided into upper, middle, and lower stages by expanded metals 30. Metal fibers with different filling rates and wire diameters are loaded in each stage. These magnetic stainless steel fibers 2
2 is also diffusion bonded in the same manner as in each of the above embodiments.

この結果この実施例におけるる過料414でほろ層の高
さ方向に充填率、線径を変化させた多孔質ろ過材を作成
することができ、被処理水中の粒子に広い粒径分布があ
る場合、各粒子伜に適合した線径、充填率を有する多孔
質ろ過材を作成することができ、ろ過、逆洗効率を向上
することができる。
As a result, it is possible to create a porous filter material in which the filling rate and wire diameter are varied in the height direction of the hollow layer using the filter material 414 in this example, and when the particles in the water to be treated have a wide particle size distribution. It is possible to create a porous filter material having a wire diameter and a filling rate suitable for each particle size, and it is possible to improve filtration and backwashing efficiency.

なお、この円筒状ケーシング20は上端部及び下端部に
もエキスバンドメタル30が張り掛けられて磁性ステン
レス繊維22の脱落を両市している。なお、この上端部
、下端部のエキス・ξンドメタルは前記第1〜第4の各
実施例にも当然適用可能である。
Note that this cylindrical casing 20 is also covered with expanded metal 30 at its upper and lower ends to prevent the magnetic stainless fibers 22 from falling off. It should be noted that the extracted ξ metals of the upper end and lower end can of course be applied to each of the first to fourth embodiments.

以上説明した如く本発明に係るフィルター用ろ過材はケ
ーシング内へ拡散接合した磁性ステンレス繊維を装填し
たので安定かつ高信頼性のもとに汚染水を浄化すること
ができる優れた効果を有する。
As explained above, the filter medium according to the present invention has the excellent effect of stably and reliably purifying contaminated water because the casing is loaded with diffusion-bonded magnetic stainless steel fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第」図は本発明のフィルター用ろ過材を適用した電磁コ
イル装置を示す断面図、第2図は本発明の第]実施例に
係るろ過(Aを示す斜視図、第3図は磁性ステンレス繊
維の拡散接合状態を示す拡大斜視図、第4図は磁性ステ
ンレス繊維と円筒状ケーシングの拡散状態を示す拡大斜
視図、第5図はろ適時間に対する除去率の変化度合を示
す線図、20・・・ケーシング、 2z・・・磁性ステンレス繊維。 第1図 第3図 ・ 第5図 第2図 第4図 0 第・6゛図 第7図 9 第9図 2 0 ン戸」100間(h「) 第8図 I)’) 第10図
Fig. 1 is a sectional view showing an electromagnetic coil device to which the filter material of the present invention is applied; Fig. 4 is an enlarged perspective view showing the diffusion bonding state of the magnetic stainless steel fiber and the cylindrical casing, Fig. 5 is a diagram showing the degree of change in removal rate with respect to filtering time, 20...・Casing, 2z...Magnetic stainless steel fiber. ) Figure 8 I)') Figure 10

Claims (4)

【特許請求の範囲】[Claims] (1)  ケーンング内へ磁性ステンレス繊組−を装填
し、この磁性ステンレス繊維を拡散接合で相互に接合し
たことを特徴とするフィルター用ろ過材。
(1) A filtration material for a filter, characterized in that magnetic stainless steel fibers are loaded into a caning and the magnetic stainless steel fibers are bonded to each other by diffusion bonding.
(2)前記磁性ステンレス搬椎は線洋、−)−りO0μ
mであることを特徴とする特許請求の範囲第]頃のフィ
ルター用ろ過材。
(2) The magnetic stainless steel carrier is 00μ, -)-00μ
A filtration material for a filter according to Claim No.], characterized in that: m.
(3) 前記磁性ステンレス繊ネf1は光J率[〜20
%の範+!Iiでケーンング内へ装填されていることを
特徴とする特許請求の範囲第11r1又は第2項のフィ
ルター用ろ過材。
(3) The magnetic stainless steel fiber f1 has a light J rate [~20
% range+! The filtration material for a filter according to claim 11r1 or 2, characterized in that it is loaded into a caning at point Ii.
(4)前記磁性ステンレス繊維は前記ケーンンダ内−面
へ拡散接合されていることを特徴とする特許請求の範囲
第1項乃至第3項のいず才1か]項のフィルター用ろ過
材。
(4) The filtration material for a filter according to any one of claims 1 to 3, wherein the magnetic stainless steel fibers are diffusion bonded to the inner surface of the can.
JP1977282A 1982-02-12 1982-02-12 Filter material for filter Granted JPS58137418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977282A JPS58137418A (en) 1982-02-12 1982-02-12 Filter material for filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977282A JPS58137418A (en) 1982-02-12 1982-02-12 Filter material for filter

Publications (2)

Publication Number Publication Date
JPS58137418A true JPS58137418A (en) 1983-08-15
JPH0157608B2 JPH0157608B2 (en) 1989-12-06

Family

ID=12008619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977282A Granted JPS58137418A (en) 1982-02-12 1982-02-12 Filter material for filter

Country Status (1)

Country Link
JP (1) JPS58137418A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180909B1 (en) * 1998-10-01 2001-01-30 Usf Filtration And Separations Group, Inc. Apparatus and method for sealing fluid filter by infrared heating
US6291806B1 (en) 1998-10-01 2001-09-18 Usf Filtration And Separations Group, Inc. Process for bonding workpieces
WO2011099094A1 (en) * 2010-02-09 2011-08-18 ニッタ株式会社 Inertial filter
WO2011099093A1 (en) * 2010-02-09 2011-08-18 ニッタ株式会社 Inertial filter used in particle classification
KR20170085497A (en) * 2014-11-13 2017-07-24 엔브이 베카에르트 에스에이 Sintered metal object comprising metal fibers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180909B1 (en) * 1998-10-01 2001-01-30 Usf Filtration And Separations Group, Inc. Apparatus and method for sealing fluid filter by infrared heating
US6291806B1 (en) 1998-10-01 2001-09-18 Usf Filtration And Separations Group, Inc. Process for bonding workpieces
WO2011099094A1 (en) * 2010-02-09 2011-08-18 ニッタ株式会社 Inertial filter
WO2011099093A1 (en) * 2010-02-09 2011-08-18 ニッタ株式会社 Inertial filter used in particle classification
KR20170085497A (en) * 2014-11-13 2017-07-24 엔브이 베카에르트 에스에이 Sintered metal object comprising metal fibers

Also Published As

Publication number Publication date
JPH0157608B2 (en) 1989-12-06

Similar Documents

Publication Publication Date Title
JP3177096B2 (en) High efficiency metal membrane filter element and method of manufacturing the same
JPH06262064A (en) Module for filtration, separation, refining or contact transformation of gas or liquid
US5545323A (en) Filter assembly and method of making a filter assembly
JPS6157215A (en) Fine screen and fine screen stacked magazine, production anduse thereof
JPS58137418A (en) Filter material for filter
CA2132236A1 (en) Filter assembly and method of making a filter assembly
JPS6344006B2 (en)
JP2005138083A (en) Wire net filter
JPS60241914A (en) Corrosion-resistant filter medium for electromagnetic filter
CN105999851B (en) Metal film filtering material and its preparation method and application
JPS6239004B2 (en)
CN106179736A (en) A kind of accurate cohesion magnetic filter
US5868810A (en) Filtering cartridge
JPH04165006A (en) Manufacture of metallic porous body
JPS6256769B2 (en)
JPH06114247A (en) Metallic separation membrane
SU988317A1 (en) Method of producing filtering material from porous substance for cleaning liquid or gas
JPH037407B2 (en)
JP4414555B2 (en) Hot water filter
JP2001314716A (en) Laminated metallic filter and producing method thereof and filter element using the same
JPS6243725B2 (en)
KR100347568B1 (en) Filtering method of micro-metallic particles which are suspending in a fluid
JPS5912721A (en) Filter element for electromagnetic filter and preparation thereof
JPH0947615A (en) Magnetized filter material
JPH06254314A (en) Oil cleaner