JPS5813733B2 - Driving method of three-way catalyst for internal combustion engine - Google Patents

Driving method of three-way catalyst for internal combustion engine

Info

Publication number
JPS5813733B2
JPS5813733B2 JP52122000A JP12200077A JPS5813733B2 JP S5813733 B2 JPS5813733 B2 JP S5813733B2 JP 52122000 A JP52122000 A JP 52122000A JP 12200077 A JP12200077 A JP 12200077A JP S5813733 B2 JPS5813733 B2 JP S5813733B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
way catalyst
exhaust gas
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52122000A
Other languages
Japanese (ja)
Other versions
JPS5455225A (en
Inventor
近藤憲司
中瀬隆道
内藤準一郎
服部正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP52122000A priority Critical patent/JPS5813733B2/en
Priority to US05/863,579 priority patent/US4199938A/en
Priority to DE2757782A priority patent/DE2757782C2/en
Priority to US05/894,432 priority patent/US4240254A/en
Publication of JPS5455225A publication Critical patent/JPS5455225A/en
Publication of JPS5813733B2 publication Critical patent/JPS5813733B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関用排気ガス浄化装置として広く知られ
ている内燃機関の排気系に設けた3元触媒の駆動方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a three-way catalyst provided in an exhaust system of an internal combustion engine, which is widely known as an exhaust gas purification device for an internal combustion engine.

更に詳しくは、酸素吸蔵能力を有する元素(酸素吸蔵物
質)を添加した3元触媒を排気系に設置した内燃機関に
おいて、機関吸気系における(内燃機関に供給する)空
気一燃料混合気の空燃比を理論空燃比より小さく、即ち
混合気濃度をリッチ側にセットし,その排気系の3元触
媒の上流に2次空気をある周波数でもって間欠的に供給
することによって、排気ガスの空燃比を理論空燃比を境
としてリッチ側及びリーン側に交互に変動させる内燃機
関用3元触媒の駆動方法に関するものである。
More specifically, in an internal combustion engine in which a three-way catalyst to which an element with oxygen storage capacity (oxygen storage substance) is added is installed in the exhaust system, the air-fuel ratio of the air-fuel mixture (supplied to the internal combustion engine) in the engine intake system By setting the air-fuel mixture concentration to be lower than the stoichiometric air-fuel ratio, that is, setting the mixture concentration to the rich side, and intermittently supplying secondary air at a certain frequency upstream of the three-way catalyst in the exhaust system, the air-fuel ratio of the exhaust gas can be adjusted. The present invention relates to a method of driving a three-way catalyst for an internal combustion engine that alternately changes the air-fuel ratio to the rich side and lean side with respect to the stoichiometric air-fuel ratio.

内燃機関から排出される排気ガス中に含まれる有害成分
(CO,HC,NOx)を同時に除去する3元触媒は、
排気規制の厳しくなった現在広く検討され、それに関連
するシステムも種々提案されている。
A three-way catalyst that simultaneously removes harmful components (CO, HC, NOx) contained in exhaust gas emitted from internal combustion engines,
Now that exhaust regulations have become stricter, they are being widely studied, and various related systems have been proposed.

この3元触媒は、第1図に示した空燃比に対する浄化性
能からも明らかなように、3成分(CO,HC,NOx
)を高浄化し得る範囲(80%以上の浄化率を達成する
空燃比の範囲であり、以後A/Fウインドー幅と呼ぶ)
は理論空燃比近傍の極く狭い範囲に限られている。
This three-way catalyst has three components (CO, HC, NOx,
) can be highly purified (this is the range of air-fuel ratio that achieves a purification rate of 80% or more, hereinafter referred to as the A/F window width)
is limited to an extremely narrow range near the stoichiometric air-fuel ratio.

そのため、従来より提案されてきた3元触媒を用いた排
気ガス浄化システムは,この理論空燃比を検出する空燃
比検出器を排気系に設置し,該検出器の信号に基づいて
吸気系の混合気生成手段(例えば気化器あるいは電子式
燃料噴射装置)をフィードバック制御して、混合気の空
燃比をほぼ理論空燃比に保ち乍ら、3元触媒を有効に作
動させようとするものであった。
Therefore, the conventionally proposed exhaust gas purification system using a three-way catalyst installs an air-fuel ratio detector in the exhaust system to detect this stoichiometric air-fuel ratio, and based on the signal from the detector, mixes the air-fuel ratio in the intake system. The idea was to maintain the air-fuel ratio of the air-fuel mixture at approximately the stoichiometric air-fuel ratio while effectively operating the three-way catalyst by feedback-controlling the air-generating means (e.g., a carburetor or electronic fuel injection device). .

しかしながら、この空燃比フィードバック方式において
も,空燃比を常に理論空燃比に保つことは不町能で、実
際の空燃比は理論空燃比を境としてリッチ側及びリーン
側に交互に変動する。
However, even with this air-fuel ratio feedback method, it is impossible to always maintain the air-fuel ratio at the stoichiometric air-fuel ratio, and the actual air-fuel ratio alternately changes toward the rich side and the lean side with the stoichiometric air-fuel ratio as a boundary.

そしてその変動幅や変動同波数はエンジンの作動状態に
応じて著しく変化する。
The width of the fluctuation and the wave number of the fluctuation change significantly depending on the operating state of the engine.

それ故、この空燃比フィードバック方式も3元触媒を完
全に有効に利用することはできなかった。
Therefore, this air-fuel ratio feedback system could not fully utilize the three-way catalyst effectively.

そこで最近は、ある程度空燃比に変動があっても高浄化
率を示す触媒が開発されてきている。
Therefore, recently, catalysts have been developed that exhibit a high purification rate even if the air-fuel ratio fluctuates to some extent.

例えば、特開昭52−56216.52−56217等
に示されるように白金PtとロジウムRhとを適当な割
合で担体に担持させることによって、3元触媒のA/F
ウインドー幅を大きくしようとする技術が提案されてい
る。
For example, as shown in JP-A-52-56216.52-56217, a three-way catalyst A/F
Techniques have been proposed to increase the window width.

また特開昭52−27087には、酸素吸蔵物質を触媒
に添加することによって同じ様にA/Fウインドー幅を
大きくしようとする技術が示されている。
Furthermore, Japanese Patent Laid-Open No. 52-27087 discloses a technique for similarly increasing the A/F window width by adding an oxygen storage substance to a catalyst.

しかしながら、これらの公知技術は触媒それ自体の改良
に係わるものであって、この種の3元触媒をどのように
駆動すれば、最も有効に3元触媒を作動させることがで
きるか,あるいはA/Fウインドー幅を拡大することが
できるかという点について言及するものではない。
However, these known techniques are concerned with improving the catalyst itself, and how to drive this type of three-way catalyst to operate the three-way catalyst most effectively, or how to operate the three-way catalyst most effectively. This does not refer to whether the F window width can be expanded.

一方3元触媒を有効に作動させようとするための3元触
媒の1駆動方法を開示した公知技術として,米国特許第
4,024,706号がある。
On the other hand, US Pat. No. 4,024,706 discloses a method for driving a three-way catalyst in order to effectively operate the three-way catalyst.

この米国特許によれば,エンジンに供給する混合気の空
燃比を理論空燃比を境としてリッチ側及びリーン側に交
互に変動させ、これによって3元触媒のA/Fウインド
ー幅を拡大しようとするものである。
According to this U.S. patent, the air-fuel ratio of the air-fuel mixture supplied to the engine is alternately varied between the rich side and the lean side with the stoichiometric air-fuel ratio as the boundary, thereby attempting to expand the A/F window width of the three-way catalyst. It is something.

しかしながら、この米国特許の駆動方法によって得られ
るA/Fウインド二幅は、ガソリン空燃比にして0.1
8ユニットであり、この程度のA/Fウインドー幅では
空燃比検出器を利用したフィードバック制御が必要であ
り、3元触媒の駆動方法として決して満足のできるもの
ではない。
However, the A/F window width obtained by the driving method of this US patent is 0.1 in gasoline air-fuel ratio.
8 units, and such an A/F window width requires feedback control using an air-fuel ratio detector, which is by no means a satisfactory driving method for a three-way catalyst.

しかも、この米国特許においては,エンジンに供給する
混合気の空燃比(吸気系における空燃比)をリッチ側及
びリーン側に交互に変動させるものであるから,その空
燃比の変動幅が大きくなるにつれてエンジン作動が不安
定になり、また変動周波数が小さくなる程その影響が大
きくなるので、この米国特許に開示される3元触媒の駆
動方法ではエンジン作動に悪影響を与えるという欠点が
ある。
Moreover, in this U.S. patent, the air-fuel ratio of the air-fuel mixture supplied to the engine (the air-fuel ratio in the intake system) is alternately varied between rich and lean sides, so as the range of variation in the air-fuel ratio increases, The engine operation becomes unstable, and the smaller the fluctuating frequency, the greater the effect, so the method of driving a three-way catalyst disclosed in this US patent has the disadvantage of adversely affecting engine operation.

そこで本発明は、3元触媒を有効に作動させる3元触媒
の駆動方法を提供することを目的とするものであり,本
発明の特徴は,内燃機関の排気系に酸素吸蔵能力を有す
る酸素吸蔵物質を添加した3元触媒を配置し,内燃機関
に供給する混合気の空燃比を理論空燃比よりもリッチ側
にセットし、かつ3元触媒の上流に、該上流の排気ガス
空燃比を前記理論空燃比を境としてリッチ側及びリーン
側に交互に変動させるとともに該排気ガス空燃比の変動
値を前記理論空燃比を境に等しくなるように2次空気を
間欠的に供給し,かつリーン側への変動サイクルをリッ
チ側への変動サイクルより短かくするように2次空気の
間欠的供給時間を設定することにより,上記3元触媒を
有効に作動させる3元触媒の駆動方法である。
Therefore, an object of the present invention is to provide a method for driving a three-way catalyst that effectively operates the three-way catalyst. A three-way catalyst to which a substance has been added is arranged, and the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is set to be richer than the stoichiometric air-fuel ratio, and upstream of the three-way catalyst, the air-fuel ratio of the upstream exhaust gas is adjusted to the above-mentioned value. The exhaust gas air-fuel ratio is alternately varied to the rich side and the lean side with the stoichiometric air-fuel ratio as the boundary, and secondary air is intermittently supplied so that the fluctuating value of the exhaust gas air-fuel ratio becomes equal with the stoichiometric air-fuel ratio as the boundary, and This is a three-way catalyst driving method that effectively operates the three-way catalyst by setting the intermittent supply time of secondary air so that the fluctuation cycle to the rich side is shorter than the fluctuation cycle to the rich side.

?発明の実施例を説明する前に,酸素吸蔵物質を利用し
た3元触媒の浄化作用について説明する.第2図は,内
燃機関の排気ガス組成を,機関に供給する混合気の空燃
比の変化に対して示すものである。
? Before explaining embodiments of the invention, the purification action of a three-way catalyst using an oxygen storage substance will be explained. FIG. 2 shows the exhaust gas composition of an internal combustion engine with respect to changes in the air-fuel ratio of the air-fuel mixture supplied to the engine.

図からも明らかな様に3元触媒が最も効率よく作動する
理論空燃比近傍に於いて0,C0が急激に変動する。
As is clear from the figure, 0 and C0 fluctuate rapidly near the stoichiometric air-fuel ratio at which the three-way catalyst operates most efficiently.

この3元触媒上に於ける反応式は一般に次の様な式から
成り立っている。
The reaction formula on this three-way catalyst generally consists of the following formula.

式(1)〜(3)は酸化反応,式(4)・〜(6)は還
元反応でこれらが同時に進行するのが3元触媒である。
Formulas (1) to (3) are oxidation reactions, and formulas (4) to (6) are reduction reactions, and a three-way catalyst is one in which these reactions proceed simultaneously.

現在公知の3元触媒としてはPt−IRn系金属があり
、その有効作動領域(A/Fウィンドー幅)は第1図に
示す様に極めて狭い(通常空燃比の幅にして0.05〜
0.1程度)。
Currently known three-way catalysts include Pt-IRn metals, and their effective operating range (A/F window width) is extremely narrow as shown in Figure 1 (usually 0.05~
(about 0.1).

これは第2図の組成図からも明らかな様に、特に02濃
度の変化から考えて理論空燃比を境としてリーン側では
式(1)〜(3)の酸化反応が、またリッチ側では式(
4)〜(6)の還元反応が先行し、前者では式(4)〜
(6)の反応に必要なCO,H2,CnHmが除去され
てNOの還元反応が阻害され、逆【後者では、NOに対
する当量より大過?に存在するCo,H2,CnHmに
より式(4)〜(6)の還元反応は進むが、Noと反応
した残余のCO,H2,CnHmと反応すべき02が当
量以下のがめ、式(1)〜(3)の酸化反応が阻害され
る。
As is clear from the composition diagram in Figure 2, especially considering the change in the 02 concentration, the oxidation reactions of formulas (1) to (3) occur on the lean side, and the formulas (1) to (3) occur on the rich side, and (
The reduction reactions of 4) to (6) precede, and in the former, formulas (4) to
CO, H2, and CnHm necessary for the reaction (6) are removed, and the reduction reaction of NO is inhibited. Although the reduction reactions of formulas (4) to (6) proceed due to the Co, H2, and CnHm present in The oxidation reactions of ~(3) are inhibited.

従って式(1)〜(6)の酸花・還元反応が同時に進行
子るのを阻害しているのは、理忰空燃比で急激に変化す
る02,CO,H2の3成分で、若しこれらが理論空燃
比とほぼ同一組成比(CO,NO,HC,H2,0系)
でなだらかに変化すれば,3元触媒の有効作動領域(A
/Fウインドー幅)は拡大化される筈である。
Therefore, what prevents the acid reaction and reduction reactions in formulas (1) to (6) from proceeding simultaneously are the three components 02, CO, and H2, which change rapidly with the air-fuel ratio. These are almost the same composition ratio as the stoichiometric air-fuel ratio (CO, NO, HC, H2, 0 series)
If the change is gradual, the effective operating range (A
/F window width) should be enlarged.

しかし内燃機関の燃焼反応が大幅に変化し望ましい排気
組成にならない限りこれらは期待出来ず、現実では不可
能に近い。
However, these cannot be expected unless the combustion reaction of the internal combustion engine changes significantly to achieve a desirable exhaust composition, and in reality, this is almost impossible.

そこで、これを触媒上で行わせようと試みたのが、前記
の公知技術である。
Therefore, the above-mentioned known technology attempts to perform this on a catalyst.

これは上記02について行ったもので,式(1)〜(6
)の反応を司るPt−Rh系触媒金属の他にそむ自身0
2吸蔵(あるいは吸着)能力を有する一般的に知られた
ランタニド族(Ce02,Lar03等),n型半導体
(Cub,ZnO,Zr02等)の酸素吸蔵物質を添加
した3元応には寄与せずに、排気組成中の酸素分圧の変
化に伴い酸素分圧の高いリーン側で酸素を吸蔵し、酸素
分圧の低いリッチ側で吸蔵した酸素を放出することで、
触媒活性表面の酸素分圧(濃度)を、滑らかに変化させ
、機関がリツチ←リーンに交互に変化する様なシステム
の場合、その各々の1/2サイクルで触媒活性表面の雰
囲気を理論空燃比と近似させることにより,3元触媒の
作動領域(A/Fウインドー幅)を拡大しようとするも
のである。
This was done for 02 above, and formulas (1) to (6
) in addition to the Pt-Rh catalyst metal that governs the reaction of
It does not contribute to the ternary reaction with the addition of commonly known oxygen storage substances of the lanthanide group (Ce02, Lar03, etc.) and n-type semiconductors (Cub, ZnO, Zr02, etc.) that have 2 storage (or adsorption) ability. In addition, as the oxygen partial pressure in the exhaust gas changes, oxygen is stored on the lean side where the oxygen partial pressure is high, and the stored oxygen is released on the rich side where the oxygen partial pressure is low.
In the case of a system in which the oxygen partial pressure (concentration) on the catalytic active surface changes smoothly, and the engine changes alternately from rich to lean, the atmosphere on the catalytic active surface changes to the stoichiometric air-fuel ratio in each 1/2 cycle. By approximating this, the operating range (A/F window width) of the three-way catalyst is intended to be expanded.

第3A図乃至第3D図は、酸素吸蔵物質を添加した3元
触媒の酸素の吸蔵及び放出を模式的に示している。
FIGS. 3A to 3D schematically show storage and release of oxygen in a three-way catalyst to which an oxygen storage substance is added.

第3A図は、γ−アルミナ(Al203)を担体とし、
該担体にPt−Rh系触媒金属及び酸素吸蔵物質を担持
させたペレットタイプの3元触媒粒を示し,第jB図は
、この触媒金属1と酸素吸蔵物質2との模式的構造を示
している。
Figure 3A shows γ-alumina (Al203) as a carrier;
A pellet-type three-way catalyst particle in which a Pt-Rh catalyst metal and an oxygen storage material are supported on the carrier is shown, and Fig. jB shows a schematic structure of the catalyst metal 1 and the oxygen storage material 2.

第3C図は、排気ガスの雰囲気がリーン状態にある時の
酸素吸一物質2が排気ガス中の酸素023を吸蔵(吸着
)した状態を示している。
FIG. 3C shows a state in which the oxygen absorbing substance 2 has occluded (adsorbed) oxygen 023 in the exhaust gas when the exhaust gas atmosphere is in a lean state.

そして第3D図は排気ガス雰囲気がリッチ状態になった
時の酸素吸蔵物質2が排気ガス中に吸蔵した酸素3を放
出した状態を示している。
FIG. 3D shows a state in which the oxygen storage material 2 releases the oxygen 3 stored in the exhaust gas when the exhaust gas atmosphere becomes rich.

従って、排気ガスの雰囲気がリーン状態であっても、余
分の酸素3が酸素吸蔵物質2に吸蔵されるために、触媒
金属1周囲の雰囲気が理論空燃比付近の状態に保たれ、
逆に排気ガス雰囲気がリツチ然態になると放出された酸
素のために触媒金属1の周囲の雰囲気が同様に理論空燃
比付近の状態に保たれる。
Therefore, even if the exhaust gas atmosphere is lean, the excess oxygen 3 is stored in the oxygen storage material 2, so the atmosphere around the catalyst metal 1 is maintained near the stoichiometric air-fuel ratio,
On the other hand, when the exhaust gas atmosphere becomes rich, the atmosphere around the catalyst metal 1 is similarly maintained near the stoichiometric air-fuel ratio due to the released oxygen.

このように、添加した酸素吸蔵物質は,触媒金属付近に
達する排気ガスの雰囲気を調整する役目を果たすことに
よって、空燃比の変動が少々生じても,触媒金属付近の
雰囲気を理論空燃比付近に保つことができ、それ故A/
Fウィンドー幅を広げることが可能となる。
In this way, the added oxygen storage material plays the role of adjusting the atmosphere of exhaust gas that reaches the vicinity of the catalyst metal, and even if the air-fuel ratio fluctuates slightly, the atmosphere around the catalyst metal remains close to the stoichiometric air-fuel ratio. can be kept, therefore A/
It becomes possible to widen the F window width.

茨に,本発明の各種実験を行なった時の試験装置を,第
4図に基づき説明する。
The test equipment used to conduct various experiments of the present invention will be explained based on FIG. 4.

この装置の概略を示子第4図において,11は2.00
0cc、4−サイクル、6気筒エンジンで、気化器12
を装備したガソリン干ンジンである。
The outline of this device is shown in Figure 4, where 11 is 2.00.
0cc, 4-cycle, 6-cylinder engine, carburetor 12
It is a gasoline-powered engine equipped with.

排気管13には、酸素吸蔵物質を添加した3元触媒14
が設けてある。
The exhaust pipe 13 is equipped with a three-way catalyst 14 containing an oxygen storage substance.
is provided.

この3元触媒14は、γ−アルミナ(γ一Al203)
の触媒担体に、Pt−Rh系触媒金属を1.5g/l及
び酸素吸蔵物質として酸化セリウムCeO2を20g/
l担持させたペレットタイプで、これを2.5lのケー
スに充填したものである。
This three-way catalyst 14 is made of γ-alumina (γ-Al203)
A catalyst carrier containing 1.5 g/l of Pt-Rh catalyst metal and 20 g/l of cerium oxide CeO2 as an oxygen storage material.
It is a pellet type that supports 1 liter and is filled into a 2.5 liter case.

3元触媒14の上流の排気管13に、2次空気供給用の
空気供給管15が開口1ている。
An air supply pipe 15 for supplying secondary air has an opening 1 in the exhaust pipe 13 upstream of the three-way catalyst 14 .

16はこの供給管15に設けられた電磁弁で、発信器1
1の信号によって供給管15を開M(ON−OFF)す
る。
16 is a solenoid valve provided in this supply pipe 15, and the transmitter 1
The supply pipe 15 is opened M (ON-OFF) by the signal No. 1.

2次空気の供給源としては周知のエアポンプ20を使用
し、このポンプ20からの空気を空気圧調整器21及び
開度調整器22を介して電磁弁16に導いた。
A well-known air pump 20 was used as a source of secondary air, and air from this pump 20 was guided to the solenoid valve 16 via an air pressure regulator 21 and an opening regulator 22.

3元触媒14の上流及び下流にそれぞれ公知の空燃比検
出器18及び19を配設し,電磁オシロスコープ30に
て該検出器の出力を測定した。
Known air-fuel ratio detectors 18 and 19 were disposed upstream and downstream of the three-way catalyst 14, respectively, and the outputs of the detectors were measured with an electromagnetic oscilloscope 30.

また,ここで使用した燃料は理論空燃比として14.5
の値を有するガソリンである。
Also, the fuel used here has a stoichiometric air-fuel ratio of 14.5.
gasoline with a value of

エンジン11の運転条件は、回転数が160Orpm,
吹気負圧が−375mmHgである。
The operating conditions of the engine 11 are that the rotation speed is 160 Orpm,
The blowing air negative pressure is -375 mmHg.

実験 1 前述第4図の装置を使用し、気化器12で生成する混合
気の空燃比を13に固定し、電磁弁16をON(開放)
の状態で2次空気を徐々に排気管13に供給した。
Experiment 1 Using the device shown in Figure 4 above, fix the air-fuel ratio of the mixture generated in the carburetor 12 to 13, and turn on the solenoid valve 16 (open).
Secondary air was gradually supplied to the exhaust pipe 13 under these conditions.

この時の排気ガスの各成分の浄化率を第5図中破線で示
した。
The purification rate of each component of the exhaust gas at this time is shown by the broken line in FIG.

また、今度は電磁弁16をOFF(閉成)状態とし、気
化器12での混合気の空燃比を13をや16に徐々に変
化させた時の排気ガスの各成分の浄化率を第5図中実線
で示した。
Next, the solenoid valve 16 is turned OFF (closed) and the air-fuel ratio of the air-fuel mixture in the carburetor 12 is gradually changed from 13 to 16. Indicated by a solid line in the figure.

なお、この実線で示した浄化曲線は、第1図の浄化曲線
とほぼニ致するものである。
Note that the purification curve shown by this solid line almost matches the purification curve in FIG. 1.

この第5図における実線と破線とを比較すれば、吸気系
の空燃比を固定して排気系に2次空気を供給した方がA
/Fウインドウ幅が広くなっていることが分る。
Comparing the solid line and the broken line in Fig. 5, it is clear that it is better to fix the air-fuel ratio of the intake system and supply secondary air to the exhaust system.
/F It can be seen that the window width has become wider.

この場合の排気ガス組成は、吸気系の固定空燃比によっ
て異なるが、この場合(吸気系空燃比=13)第6図に
示したようになる。
The exhaust gas composition in this case differs depending on the fixed air-fuel ratio of the intake system, but in this case (intake system air-fuel ratio=13) it is as shown in FIG. 6.

この第6図と第2図とを比較すれば明らかなように、両
者の排気ガス組成が大幅に異なっていることが分る。
As is clear from a comparison between FIG. 6 and FIG. 2, the exhaust gas compositions of the two are significantly different.

上記組成図の最も顕著な差は、吸気側の仝燃比を可変と
した場合(第2図)は、前述した様に理論空燃比を境に
C0,02,H2が大幅に変化し更にNO,HCについ
ても変化は比較的大きいのに対し,排気側に2次空気を
供給した場合(第q図)?吸気側により決められた成分
組成が2次空気で希釈されるだけのため、CO,H2,
NO,HCは極めて滑らかにしか変動しな<,0のみが
空燃比変動に対して大きくほぼリニアに変化する点であ
る。
The most notable difference in the above composition diagram is that when the intake side fuel-fuel ratio is made variable (Fig. 2), as mentioned above, C0, 02, and H2 change significantly after the stoichiometric air-fuel ratio, and NO, The change in HC is also relatively large, but what happens when secondary air is supplied to the exhaust side (Figure q)? Since the component composition determined by the intake side is only diluted with secondary air, CO, H2,
NO and HC vary only extremely smoothly, and only <, 0 is a point that changes largely and almost linearly with respect to air-fuel ratio fluctuations.

この両者の空燃比変化方法による3元触媒の浄化性能は
第5図に示す様に排気管に2次空気を供給した方が、3
元触媒の有効領域(CO,HC,NOの3成分が共に8
0%以上浄化される空燃比幅)が広くなり、その理由と
して排気ガス組成の差が考えられる。
The purification performance of the three-way catalyst using these two methods of changing the air-fuel ratio is as shown in Figure 5.
The effective area of the main catalyst (the three components of CO, HC, and NO are all 8
The range of air-fuel ratios purified by 0% or more) becomes wider, and the reason for this is thought to be the difference in exhaust gas composition.

第2図及び第6図の両組成図から前述した反応式(1)
〜(6)を基に代表的にCO,H2・HC/0,NO/
COの組成比を比較したのが第7図である。
The reaction formula (1) described above from both the composition diagrams in Figures 2 and 6
~ Based on (6), typically CO, H2・HC/0, NO/
FIG. 7 shows a comparison of the composition ratios of CO.

この第7図から第5図の浄化率の差?説明すると次の様
になる。
Is this the difference in purification rate from Figure 7 to Figure 5? The explanation is as follows.

NO/CO比:空燃比示リーン側に移行するに従い,吸
気側可変の場合は、NOの増加に反して,NOの還元剤
であるCOは逆に減少するため反応式(4)の還元反応
は進まず,NOの浄化率は低下する。
NO/CO ratio: As the air-fuel ratio shifts to the lean side, in the case of variable intake side, NO increases, but CO, which is a reducing agent for NO, decreases, so the reduction reaction of reaction equation (4) does not progress, and the NO purification rate decreases.

それに対し、排気側に2次空気を供給する場合は、NO
/CO比は殆んど変化せずに,NO/CO=1の当量比
に対し、十分条件を維持していることがらリーン側での
NO浄化にとって有効であることが判る。
On the other hand, when supplying secondary air to the exhaust side, NO
It can be seen that this is effective for NO purification on the lean side because the /CO ratio hardly changes and the sufficient condition is maintained for the equivalence ratio of NO/CO=1.

但し下記するCO,H2,He/0の比率の関係も当然
影響してくるため、リーン側での限界値はある。
However, since the relationship between the ratios of CO, H2, and He/0 described below naturally affects this, there is a limit value on the lean side.

(CO,H2,HC等の還元剤が0と反応し消去されれ
ば、NO浄化は停止してしまうため) co,H2,HC/0比:反応式(3)のHCをC3H
8(プロパン)に換算し C3H8+503→3CO2+4H20……(7)とし
た場合の、反応式(1),(2)及び(3)における排
気中のCO,H2,HC量を完全に酸化するに必要な0
2量に対する排気中の02量の比をとったもので、比率
=1が当量に相当する。
(If reducing agents such as CO, H2, HC, etc. react with 0 and are eliminated, NO purification will stop.) co, H2, HC/0 ratio: HC in reaction formula (3) is converted to C3H
Required to completely oxidize the amounts of CO, H2, and HC in the exhaust gas in reaction formulas (1), (2), and (3) when converted to 8 (propane) and set as C3H8 + 503 → 3CO2 + 4H20 (7). na 0
It is the ratio of the amount of 02 in the exhaust gas to the amount of 02, and a ratio of 1 corresponds to the equivalent amount.

(但し、NOを還元するCO,H2,HCの値は無視し
ているため飽くまで参考値) そこでこの比率が1より大の時は被酸化物が多い不完全
酸化状態で、逆に1より小の時は02の多い完全酸化状
態と仮定すると,第7図からも明らかな様に空燃比を吸
気側で可変したものと、排気側の2次空気で可変したも
のとは、空燃比=14.5近傍で両者の曲線は比率=1
で交差し,その前后の空燃比に対しては両者は互いに分
かれてゆくことが判った。
(However, the values of CO, H2, and HC that reduce NO are ignored, so they are just reference values.) Therefore, when this ratio is greater than 1, it is in an incompletely oxidized state with many oxidized substances, and conversely, it is less than 1. Assuming a complete oxidation state with a lot of 02 when The ratio of both curves is 1 near .5
It was found that for air-fuel ratios before and after that, they intersect and diverge from each other.

このことは前記した両者の浄化率の差をよく説明してお
り、前者の場合(吸気系空燃比を変化させた場合)リッ
チ側でCO,HC酸化に必要な02の絶対的不足を示し
,リーン側では逆に02の絶対的過剰からCO,HCの
完全酸化が進みNOの還元反応が阻害され上記NO/C
oのグラフとも合わせて、リーン側でのNO浄化条件が
不適であることが判る。
This well explains the difference in purification rate between the two mentioned above, and in the former case (when changing the intake system air-fuel ratio) there is an absolute shortage of 02 necessary for CO and HC oxidation on the rich side. On the lean side, on the other hand, due to the absolute excess of 02, complete oxidation of CO and HC progresses, inhibiting the reduction reaction of NO, and reducing the NO/C
In conjunction with the graph of o, it can be seen that the NO purification conditions on the lean side are inappropriate.

それに対して後者の場合排気系に2次空気を供給する場
合は、曲線は極めて滑らかで、リッチ側では前者よりも
比率が低いことがらCo,HCの酸化に有利で、リーン
側に於いては前者よりも比率が高いことから、大過剰の
02がないことと、NO/CO比とを合わせてNO還元
に有利であることが判る。
On the other hand, in the latter case, when secondary air is supplied to the exhaust system, the curve is extremely smooth, and on the rich side the ratio is lower than the former, which is advantageous for the oxidation of Co and HC, and on the lean side it is advantageous for oxidation of Co and HC. Since the ratio is higher than the former, it can be seen that the absence of a large excess of 02 and the NO/CO ratio are advantageous for NO reduction.

上記の他に第5図の差の要因として発熱反応が考えられ
る。
In addition to the above, an exothermic reaction is considered to be the cause of the difference in FIG.

反応式(1)〜(3)の酸化反応は発熱反応であり、こ
の反応における被酸化物CO,HC,H2の濃度をみる
と、前者の場合は空燃比がりーンになるに従い急速に濃
度低下を示す(第2図参照)のに対し,後者の場合はあ
る程度の濃度を維持し(第6図参照)続けるために、触
媒表面上の反応熱は後者の方が高く、触媒上の反応を促
進させる効果もあると思われる。
The oxidation reactions in reaction formulas (1) to (3) are exothermic reactions, and looking at the concentrations of the oxidized substances CO, HC, and H2 in this reaction, in the former case, the concentrations rapidly increase as the air-fuel ratio increases. In contrast, in the latter case, the concentration is maintained to a certain extent (see Figure 6), so the reaction heat on the catalyst surface is higher in the latter case, and the reaction on the catalyst decreases. It also seems to have the effect of promoting

以上のように、本発明者らは、エンジン排気系に2次空
気を供給する方式の利点及びその原因を追求し、これを
基に更に次の実験を行なった。
As described above, the present inventors pursued the advantages and causes of the system of supplying secondary air to the engine exhaust system, and based on this, further conducted the following experiments.

実験 2 実験1と同一条件下に於いて電磁弁16をONの状態で
、排気側の空燃比が16.0になる様に2次空気量を固
定する。
Experiment 2 Under the same conditions as Experiment 1, with the solenoid valve 16 turned on, the amount of secondary air was fixed so that the air-fuel ratio on the exhaust side was 16.0.

この状態で電磁弁16をON−OFFさせた場合、排気
ガス空燃比は13.0(OFF)←16.0(ON)の
リツチ←リーンを繰り返すことになる.今発信器17の
発信周波数をIHzと固定し、ON−OFFの時間比を
ON/OFF=Osec/lsec−0.5seC/0
.5sec−1sec/Osecまで変化させて電磁弁
16を作動し、その時の3元触媒14人口の排気ガス(
平均)空燃比と3元触媒の浄化性能を測定した。
If the solenoid valve 16 is turned ON and OFF in this state, the exhaust gas air-fuel ratio will repeat the cycle of 13.0 (OFF) ← 16.0 (ON), rich ← lean. Now, fix the oscillation frequency of the oscillator 17 to IHz, and set the ON-OFF time ratio as ON/OFF=Osec/lsec-0.5secC/0
.. The solenoid valve 16 is operated by changing the speed from 5sec to 1sec/Osec, and the exhaust gas (
The average) air-fuel ratio and purification performance of the three-way catalyst were measured.

この結果を第8図中実線で示す。This result is shown by the solid line in FIG.

図中3成分の最も浄化率の高い点であるN0とCOの浄
化曲線の交点に於けるON−OFFの時間比はON/O
FF=o.45s.ec/0,55secであった。
The ON-OFF time ratio at the intersection of the purification curves for N0 and CO, which is the point with the highest purification rate of the three components in the figure, is ON/O.
FF=o. 45s. It was ec/0.55 sec.

この実験2の結果と前記実験1の結果とを比較するため
に,第5図の破線をそのまま第8図中に破線で示した。
In order to compare the results of Experiment 2 with the results of Experiment 1, the broken lines in FIG. 5 are shown as broken lines in FIG. 8.

いうまでもなく第8図中の破線は、吸気系の空燃比を1
3に固定し排気系に2次空気を徐々に加えて排気ガス空
燃比を13から16に徐々に変化させた時の各成分の浄
化曲線である。
Needless to say, the broken line in Figure 8 indicates that the air-fuel ratio of the intake system is 1.
3 is fixed, and the exhaust gas air-fuel ratio is gradually changed from 13 to 16 by gradually adding secondary air to the exhaust system.

一方第8図の実線は吸気系の空燃比を13に固定し排気
系に2次空気を間欠的に供給し,それによって排気ガス
空燃比を13016に振動させながら排気ガスの平均空
燃比を13から16に変化させた時の各成分の浄化曲線
である。
On the other hand, the solid line in Fig. 8 shows that the air-fuel ratio of the intake system is fixed at 13, secondary air is intermittently supplied to the exhaust system, and the average air-fuel ratio of the exhaust gas is increased to 13 while oscillating the exhaust gas air-fuel ratio to 13016. It is a purification curve of each component when changing from to 16.

この両者を比較すれば明らかなように、同じく2次空気
を供給するにしても、その2次空気を徐徐に(連続的に
)供給するよりも間欠的に供給し?方がA/Fウインド
ー幅を拡大することができることを見い出した。
As is clear from comparing the two, even if secondary air is supplied, it is better to supply it intermittently rather than gradually (continuously). It has been found that the A/F window width can be expanded by using this method.

実験 3 実験2の3元触媒の代わりに,酸素吸蔵物質CeOを含
まないPi−Rh系触媒金属を1.5g/1担持したペ
レットタイプの3元触媒を2、5l用いて同様の実験を
咎った。
Experiment 3 A similar experiment was conducted using 2.5 liters of a pellet-type three-way catalyst carrying 1.5 g/l of a Pi-Rh catalyst metal that does not contain the oxygen storage substance CeO instead of the three-way catalyst in Experiment 2. Ta.

その結果を第9図中破−で示す。The results are shown in Figure 9 with a broken part.

この時のNoとCOの浄化曲線の交点に於けるON−O
FFの時間比はON/OFF=0.5sec/0.5s
ecではゾリツチ←リーンが同間隔になった点であった
ON-O at the intersection of the No and CO purification curves at this time
FF time ratio is ON/OFF=0.5sec/0.5s
In ec, it was the point where Zoritzchi and Lean were at the same distance.

なお実験2の結果と比較するために、第8図の実線をそ
のまま第9図において実線で示した。
For comparison with the results of Experiment 2, the solid line in FIG. 8 is shown as a solid line in FIG. 9.

この実験3の結果(第9図中破線)から明らかなように
,2次空気を間欠的に供給する方式においても、3元触
媒に酸素吸蔵物質を添加しない場合は、排気ガス中の有
害3成分(CO,HC,No)を伺時に80%以上の浄
化率で排気ガスを浄化できる空燃比は存在しない。
As is clear from the results of Experiment 3 (dashed line in Figure 9), even in the method of intermittently supplying secondary air, if no oxygen storage material is added to the three-way catalyst, harmful There is no air-fuel ratio that can purify exhaust gas with a purification rate of 80% or more when considering the components (CO, HC, No.).

また、第9図において、実線と破線とを比較すれば酸素
吸蔵物質を添加した3元触媒は,酸素吸蔵物質を添加し
ない3元触媒に比してはるかに浄化性能が高いことが明
らかである。
Furthermore, if we compare the solid line and the broken line in Figure 9, it is clear that the three-way catalyst to which an oxygen storage substance is added has much higher purification performance than the three-way catalyst to which no oxygen storage substance is added. .

前述実験2(第8図中実線)において、
排気ガス中の有害3成分を最も高効率で浄化できる2次
空気の供給割合、即ち第8図において浄化曲線(実線)
の交点における電磁弁のON−OFFの時間比がON−
OFF比=0.45/0.55であったが,この原因を
追求するために次の実験を行なった。
In the aforementioned Experiment 2 (solid line in Figure 8),
The supply ratio of secondary air that can purify the three harmful components in exhaust gas with the highest efficiency, that is, the purification curve (solid line) in Figure 8
The ON-OFF time ratio of the solenoid valve at the intersection of is ON-
Although the OFF ratio was 0.45/0.55, the following experiment was conducted to investigate the cause of this.

実験 4 前記実験2及び実験3と同じ条件で電磁弁16?ON−
OFFさせ、この電磁弁のON/OFF比=0.570
.5とON/OFF比=0.45/0.55との場合の
3元触媒14の上流及び下流における空燃比を検出器1
8及び19で検出した。
Experiment 4 Solenoid valve 16 under the same conditions as Experiments 2 and 3 above. ON-
OFF, the ON/OFF ratio of this solenoid valve = 0.570
.. The detector 1 detects the air-fuel ratio upstream and downstream of the three-way catalyst 14 when the ON/OFF ratio is 0.45/0.55 and the ON/OFF ratio is 0.45/0.55.
8 and 19.

その時の検出器18及び19の出力波形番それぞれ第1
0A図及び第10B図に示す。
The output waveform numbers of the detectors 18 and 19 at that time are the first
This is shown in Figures 0A and 10B.

図において、横軸は時間を、縦軸は検出器の出力(電圧
)を示しており、実線aは3元触媒め入口(上流)にお
ける検出器18の出力波形であり,破線bは酸素吸蔵物
質を含まない3元触媒の出口(下流)における検出器1
9の出力波形であり、そして一点鎖線Cは酸素吸蔵物質
CeOを含む3元触媒の出口における検出器19の出力
波形である。
In the figure, the horizontal axis shows time, the vertical axis shows the output (voltage) of the detector, the solid line a is the output waveform of the detector 18 at the inlet (upstream) of the three-way catalyst, and the broken line b is the oxygen storage Detector 1 at the outlet (downstream) of the three-way catalyst free of substances
The dashed line C is the output waveform of the detector 19 at the outlet of the three-way catalyst containing the oxygen storage substance CeO.

この第10A図及び第10B図から明らかなように,3
元触媒の入口における空燃比は2次空気の乃N−OFF
(供給一遮断)に伴なって変化し,ON/OFF比=0
.570.5の場合は空燃比のリッチ側への変化量(第
1OA図中斜線部Aで示す面積)がリーン側への変化量
(同じく第1OA阻中斜線部Bで示す面積)と等しくな
ることが痺解できる。
As is clear from FIGS. 10A and 10B, 3
The air-fuel ratio at the inlet of the main catalyst is the secondary air's NO-N-OFF.
(supply cut off), ON/OFF ratio = 0
.. In the case of 570.5, the amount of change in the air-fuel ratio toward the rich side (the area shown by the shaded area A in the first OA diagram) is equal to the amount of change toward the lean side (the area shown by the shaded area B in the first OA diagram). I can feel numb.

また、酸素吸蔵物質を含まない3元触媒の出口における
空燃比の変化(図中破線bヤ示される)は,一定の時間
遅れをもってほぼ入口における空燃比変化(実線a)に
追従している。
Furthermore, the change in the air-fuel ratio at the outlet of the three-way catalyst that does not contain an oxygen storage substance (indicated by the broken line b in the figure) approximately follows the change in the air-fuel ratio at the inlet (solid line a) with a certain time delay.

次に酸素吸蔵物質を添加した3元触媒の出口における空
燃比変化は,図中1点鎖線Cで示される通りであり,入
口における空燃比変化(実線a)とはかなり異なった変
化を示している。
Next, the change in the air-fuel ratio at the outlet of the three-way catalyst to which an oxygen storage substance has been added is as shown by the dashed line C in the figure, which is quite different from the change in the air-fuel ratio at the inlet (solid line a). There is.

この変化はまさしく酸素吸蔵物質の酸素の吸蔵及び放出
作動によってもたらされるものであることが容易にこの
空燃比変化(1点鎖線C)を更に詳しく検討してみると
、第10A図において、3元触媒入口での空燃比がリッ
チ側からリーン側に切替る時(検出器の出力が0.5V
を境に大から小に切替る時)から出口での空燃比がリッ
チ側からリーン側に切替るまでの時間(以後リツチ→リ
ーンへの切替り速さと呼ぶ)は,3元触媒の入口での空
燃比がリーン側からリッチ側に切替る時から出口での空
燃比がリーン側からリッチ側に切替るまでの時間(以後
リーン→リッチへの切替り速さと呼ぶ)より短かい。
It is easy to see that this change is brought about by the oxygen storage and release operations of the oxygen storage material.If we examine this air-fuel ratio change (dotted chain line C) in more detail, we can see that in Figure 10A, the three-dimensional When the air-fuel ratio at the catalyst inlet switches from the rich side to the lean side (detector output is 0.5V)
The time from when the air-fuel ratio at the outlet switches from rich to lean (hereinafter referred to as the switching speed from rich to lean) is the time from when the air-fuel ratio switches from rich to lean at the entrance of the three-way catalyst. It is shorter than the time from when the air-fuel ratio at the outlet switches from the lean side to the rich side to when the air-fuel ratio at the outlet switches from the lean side to the rich side (hereinafter referred to as the switching speed from lean to rich).

即ち,リッチ→リーンへの切替り速のことは,酸素吸蔵
物質Ce02の酸素を吸蔵する速さと、酸素を放出する
速さとが異なっているということを意味するものである
That is, the switching speed from rich to lean means that the speed at which the oxygen storage substance Ce02 stores oxygen and the speed at which it releases oxygen are different.

このように、酸素吸蔵物質の吸蔵速さと放出速さが異な
っている(吸蔵速さが放出速さより大である)ために,
電磁弁のON/OFF比= 0.57o.5とした場合
に、、空燃比がリッチ側になって酸素吸蔵物質が放出す
る酸素量は、空燃比がリーン側になって酸素吸草物質が
吸蔵する酸素量よりも少なく、そのために3元触媒付近
の排気ガスの雰囲気がリーン側に響整されているであろ
うことが想像される。
In this way, since the storage rate and release rate of oxygen storage substances are different (the storage rate is greater than the release rate),
ON/OFF ratio of solenoid valve = 0.57o. 5, the amount of oxygen released by the oxygen storage material when the air-fuel ratio becomes rich is smaller than the amount of oxygen stored by the oxygen storage material when the air-fuel ratio becomes lean, and therefore the ternary It can be imagined that the atmosphere of the exhaust gas near the catalyst is adjusted to be leaner.

そして、第10A図において、酸素吸蔵物質を添加した
3元触媒の出口における空燃比の変化からも分るように
,出口における空燃比のリッチ側への変化量(1点鎖線
Cによるリッチ側の面積)がリーン側への変化量(1点
鎖線Cによるリーン側の面積)よりも小さくなっている
ことからも、3元触媒に供給する排気ガスの平均空燃比
が理論空燃比に調整されていても、触媒付近の雰囲気は
酸素吸蔵物質の作用によりリーン側に調整されているこ
とが理榊できる。
In Fig. 10A, as can be seen from the change in the air-fuel ratio at the outlet of the three-way catalyst to which the oxygen storage material has been added, the amount of change in the air-fuel ratio at the outlet toward the rich side (the change on the rich side indicated by the dashed line C) The fact that the area) is smaller than the amount of change toward the lean side (area on the lean side according to the dashed line C) indicates that the average air-fuel ratio of the exhaust gas supplied to the three-way catalyst is adjusted to the stoichiometric air-fuel ratio. However, it can be concluded that the atmosphere near the catalyst is adjusted to be leaner by the action of the oxygen storage substance.

そこで3元触媒付近の雰囲気を理論空燃比になるよう調
整するため、電磁弁16のON/OFF比=0.45/
0.55とすることによって第10B図に示す結果を得
ることができた。
Therefore, in order to adjust the atmosphere near the three-way catalyst to the stoichiometric air-fuel ratio, the ON/OFF ratio of the solenoid valve 16 = 0.45/
By setting the value to 0.55, the results shown in FIG. 10B could be obtained.

第10B図中斜線部C及びDで示すように、3元触媒の
出口での空燃比のリッチ側への変化量(面積C)とりー
ン側への変化量(面積D)とを等しくすることができた
As shown by hatched areas C and D in Figure 10B, the amount of change in the air-fuel ratio toward the rich side (area C) at the outlet of the three-way catalyst is made equal to the amount of change toward the lean side (area D). I was able to do that.

このように,電磁弁のON/OFF比=o.1s/o.
s5とすることによって、酸素の吸蔵量と放出量とをほ
ぼ等しくすることが可能となり、それ故触媒付近の雰囲
気を理論空燃比に調整することが可能となる。
In this way, the ON/OFF ratio of the solenoid valve = o. 1s/o.
By setting s5, it becomes possible to make the amount of oxygen stored and the amount of oxygen released almost equal, and therefore it becomes possible to adjust the atmosphere near the catalyst to the stoichiometric air-fuel ratio.

実験 5 上記実験4で得た電磁弁のON/OFF比=0.457
0.55を利用し,電磁弁のON/OFFの周波数変化
に対する各成分の浄化率を測定した。
Experiment 5 ON/OFF ratio of the solenoid valve obtained in Experiment 4 above = 0.457
Using 0.55, the purification rate of each component was measured with respect to the ON/OFF frequency change of the solenoid valve.

即ち,実験2の条件において、電磁弁16のON/OF
F比=0.4570.55に固定し、その代り電磁弁1
6のON−OFFの周波数を0.5〜10Hzまで変化
させて、各成分の浄化率を測定した。
That is, under the conditions of Experiment 2, the ON/Off state of the solenoid valve 16
Fixed F ratio = 0.4570.55, and instead of solenoid valve 1
The purification rate of each component was measured by changing the ON-OFF frequency of No. 6 from 0.5 to 10 Hz.

その結果を第11図に示す。この第11図から分るよう
に、周波数が5Hzを?ぎるとCO及びHC,%にCO
の浄化率が低下して行く。
The results are shown in FIG. As you can see from this Figure 11, the frequency is 5Hz? Too much CO and HC,% CO
The purification rate continues to decline.

そして,各成分(NO,CO,HC)の浄化率を80%
以上に維持するためには、周波数を0.5〜5Hzの間
で設定しなくてはならない。
The purification rate of each component (NO, CO, HC) was increased to 80%.
In order to maintain this level, the frequency must be set between 0.5 and 5 Hz.

もちろん,これは酸素吸蔵物質の添加量によっても左右
されるものであることは次の実験6からも理解されると
ころであり,この場合(酸素吸蔵物質としてCeOを2
09/l使用した場合)に0.5〜5Hzが適当である
という結論を得た。
Of course, it is understood from the next experiment 6 that this also depends on the amount of oxygen storage material added, and in this case (CeO is used as the oxygen storage material)
It was concluded that 0.5 to 5 Hz is appropriate for 0.09/l).

実験 6 実験5における酸素吸蔵物質CeO2の添加量は20g
/lであったが、当然添加量の大小により、酸素の吸蔵
量が異なることは自明の理であり,そのため吸蔵時間と
放出時間との和も異なってぐる。
Experiment 6 The amount of oxygen storage material CeO2 added in Experiment 5 was 20g.
However, it is obvious that the amount of oxygen stored differs depending on the amount added, and therefore the sum of the storage time and the release time also differs.

そこで、ここでは,酸素吸蔵物質CeO2の添加量を5
97l〜30g/1まで変化させ、その他の条件を全く
上記実験5と同じくして実験を行なった。
Therefore, here, the amount of oxygen storage material CeO2 added is 5
An experiment was conducted under the same conditions as in Experiment 5, except that the amount was varied from 97 liters to 30 g/1.

そして,この実験結果を実験5の場合のように第11図
の如くプロントし,各々のグラフより排気ガスの各成分
を80%以上浄化できる周波数範囲を第12図に示す。
The experimental results are plotted as shown in FIG. 11 as in Experiment 5, and the frequency ranges in which each component of the exhaust gas can be purified by 80% or more are shown in FIG. 12 from each graph.

上記実験5及び6から、定性的ではあるが酸素吸蔵物質
の添加量が増加するに伴なって、排気ガスの各成分を高
浄化率(80%以上)で浄化できる電磁弁のON−OF
Fの周波数領域が低周波数の方向に移行するということ
が理解できる。
From the above experiments 5 and 6, it was found that as the amount of oxygen storage substance added increases, although qualitatively, the ON-OF of the solenoid valve that can purify each component of exhaust gas at a high purification rate (over 80%)
It can be seen that the frequency range of F shifts towards lower frequencies.

次に、周波数と触媒担体との関係を調べるために次の実
験を行なった。
Next, the following experiment was conducted to investigate the relationship between frequency and catalyst carrier.

実験 7 材質がコージライトからなる円形モノリス担体に公知の
方法でγ−Al203をコートした担体に、Pi−Rh
を1ヶ当り0.75g担持し,更にCe02を5g担持
させたモノリス担体を2ヶ直列に配列した3元触媒(P
t−Rh=i.5g/l,CeO2=10g/l)を用
いて、ON/OFF比=0.45/0.55とし、発振
周波数を15Hzで固定して3成分の浄化率を測定した
Experiment 7 Pi-Rh
A three-way catalyst (P
t-Rh=i. 5 g/l, CeO2 = 10 g/l), the ON/OFF ratio was set to 0.45/0.55, the oscillation frequency was fixed at 15 Hz, and the purification rate of the three components was measured.

同時に上記実験6でのCeO2=10g/lを添加した
3元触媒についても同様に実験を行い浄化率を測定した
At the same time, a similar experiment was conducted for the three-way catalyst to which CeO2 = 10 g/l was added in Experiment 6, and the purification rate was measured.

これらの実験の結果下記の値を得た。As a result of these experiments, the following values were obtained.

この結果から分るように,高周波領域(例えば10Hz
以上)で使用する場合、ペレットタイプの触媒ではCO
,HCの浄化率が悪化し、触媒上の雰囲気がリッチ側に
片寄る。
As can be seen from this result, in the high frequency region (e.g. 10Hz
above), pellet type catalysts are used with CO
, the purification rate of HC deteriorates, and the atmosphere above the catalyst shifts toward the rich side.

従って高周波領域ではペレットタイプよりモノリスタイ
プの触媒担体の方が好ましいといえる。
Therefore, in the high frequency range, a monolith type catalyst carrier is more preferable than a pellet type.

実験 8 上記実験1と同一条件下において,電磁弁16をONの
状態で排気側空燃比が15になるよう2次空気量を固定
する。
Experiment 8 Under the same conditions as in Experiment 1 above, the secondary air amount was fixed so that the exhaust side air-fuel ratio was 15 with the solenoid valve 16 turned on.

この2次空気量の固定状態で,電磁弁16をIHzの周
波数でON−OFFし、その時のON/OFF比=0.
45/0.55として,2次空気を間欠的に供給する。
With this secondary air amount fixed, the solenoid valve 16 is turned on and off at a frequency of IHz, and the ON/OFF ratio at that time is 0.
45/0.55, and secondary air is intermittently supplied.

従って排気ガス空燃比を13と15との間で変動させ、
その時の排気ガス成分の浄化率を測定した。
Therefore, the exhaust gas air-fuel ratio is varied between 13 and 15,
The purification rate of exhaust gas components at that time was measured.

同じように,排気側空燃比が、それぞれ15。Similarly, the exhaust side air-fuel ratio is 15.

5,16.0,16.5…18.0となるように2次空
気量を変化させ,それぞれについて,排気ガス空燃比を
変動させて,排気ガス成分の浄化率を測定した。
The secondary air amount was varied to 5, 16.0, 16.5...18.0, and the exhaust gas air-fuel ratio was varied for each, and the purification rate of the exhaust gas components was measured.

その結果を第13図に示す。The results are shown in FIG.

この図において、排気ガスの各成分の浄化率が、No=
80%以上、CO,HC=90%以上の排気側空燃比の
領域を有効作動空燃比領域として示してある。
In this figure, the purification rate of each component of exhaust gas is No=
The region of the exhaust side air-fuel ratio of 80% or more and CO, HC = 90% or more is shown as the effective operating air-fuel ratio region.

そして,この場合の領域はほぼ16から16.5までの
範囲であった。
The area in this case was approximately in the range from 16 to 16.5.

実験 9 上記実験8は、吸気側空燃比が13の時の有効作動空燃
比領域の測定であった。
Experiment 9 In Experiment 8, the effective operating air-fuel ratio region was measured when the intake side air-fuel ratio was 13.

ここでは、吸気側空燃比を13.0から14,0まで順
次固定して、実験8と同様な方法でそれぞれの吸気側空
燃比に対する有効作動空燃比領域を測定した。
Here, the intake air-fuel ratio was fixed sequentially from 13.0 to 14.0, and the effective operating air-fuel ratio range for each intake air-fuel ratio was measured in the same manner as in Experiment 8.

この実験結果を第14図中斜線部aで示した。The results of this experiment are shown in the shaded area a in FIG.

実験 10 上記実験9は、酸素吸蔵物質を添加した3元触媒につい
ての有効作動空燃比領域め測定であったが、この実験で
は酸素吸蔵物質を添加しない3元触媒について上記実験
8の電磁弁のON/OFF比=0.5/0、5として同
様の実験を行ない,その測定結果を第14図中斜線部b
で示した。
Experiment 10 Experiment 9 above was a measurement of the effective operating air-fuel ratio range for a three-way catalyst to which an oxygen storage material was added, but in this experiment, the solenoid valve of Experiment 8 was measured for a three-way catalyst to which no oxygen storage material was added. A similar experiment was conducted with the ON/OFF ratio = 0.5/0, 5, and the measurement results are shown in the shaded area b in Figure 14.
It was shown in

実験 11 上記実験9及び10は、電磁弁16のON−OFFの周
波数がIHzの場合についての結果であったが、ここで
ほこの周波数を2Hzとして実験9及び10と同じ方法
で有効作動空燃比領域を測定した。
Experiment 11 The above experiments 9 and 10 were the results when the ON-OFF frequency of the solenoid valve 16 was IHz, but here, the effective operating air-fuel ratio was set to 2 Hz and the effective operating air-fuel ratio was changed in the same manner as experiments 9 and 10. The area was measured.

その結果と第15図に示す。図中斜線部aは酸素吸蔵物
質を添加した3元触媒の有効作動空燃比領域であり、斜
線部bは酸素吸蔵物質を添加しない3元触媒の有効作動
空燃比領域である。
The results are shown in FIG. In the figure, the shaded area a is the effective operating air-fuel ratio area of the three-way catalyst to which an oxygen storage substance is added, and the shaded area b is the effective operating air-fuel ratio area of the three-way catalyst to which no oxygen storage substance is added.

上記第13図乃至第15図から明らかなように、酸素吸
蔵物質を添加しない3元触媒では有効作動空燃比領域が
ほとんど存在しない。
As is clear from the above-mentioned FIGS. 13 to 15, there is almost no effective operating air-fuel ratio region in the three-way catalyst to which no oxygen storage material is added.

また、酸素吸蔵物質を添加した3元触媒においては、吸
気側空燃比が13.0から14.0の間で充分な有効作
動空燃比領域が存在するため,実際の車両塔載エンジン
において吸気側空燃比が変動しても、本発明の3元触媒
の駆動方法によれば充分3元触媒を高浄化率で作動させ
ることができる。
In addition, in a three-way catalyst containing an oxygen storage substance, there is a sufficient effective operating air-fuel ratio range between 13.0 and 14.0, so in actual vehicle engines, the intake side Even if the air-fuel ratio fluctuates, the three-way catalyst driving method of the present invention can sufficiently operate the three-way catalyst at a high purification rate.

以上のように本発明の各種実験から、酸素吸蔵物質を添
加した3元触媒を有効に作動させる方法として、理論空
燃比より小さな空燃比を有する混合気を内燃機関に供給
し,3元触媒の上流に、該上流の排気ガス空燃比を前記
理論空燃比を境としてリッチ側及びリーン側に交互に変
動させるとともに該排気ガス空燃比の変動値を前記理論
空燃比を境に等しくなるように2次空気を間欠的に供給
し、かつリーン側への変動サイクルをリッチ側への変動
サイクルより短かくするように2次空気の間欠的供給時
間を設定する方法を見い出した。
As described above, various experiments of the present invention have shown that a method for effectively operating a three-way catalyst containing an oxygen storage material is to supply an air-fuel mixture having an air-fuel ratio smaller than the stoichiometric air-fuel ratio to the internal combustion engine, and to operate the three-way catalyst effectively. Upstream, the upstream exhaust gas air-fuel ratio is alternately varied to the rich side and the lean side with the stoichiometric air-fuel ratio as the boundary, and the fluctuating value of the exhaust gas air-fuel ratio is made equal to the stoichiometric air-fuel ratio by 2. We have found a method of intermittently supplying secondary air and setting the intermittent supply time of the secondary air so that the cycle of variation to the lean side is shorter than the cycle of variation to the rich side.

この本発明方法によれば,酸素吸蔵物質を添加した3元
触媒と,2次空気の間欠的供給により排気ガス空燃比を
理論空燃比を境にリッチ側→りーン側に交巨に変動させ
るとともに、その変動値を理論空燃比を境に等しくなる
ようにする作動法との組合せ構成によって、排気ガス中
に含まれるCo,He,NOxを同時に高浄化率で除去
できる3元触媒の有効作動空燃比領域(A/Fウインド
ー幅)を拡大することができる。
According to the method of the present invention, the exhaust gas air-fuel ratio is drastically changed from the rich side to the lean side from the stoichiometric air-fuel ratio by using a three-way catalyst added with an oxygen storage substance and an intermittent supply of secondary air. In addition, the effective operation of the three-way catalyst can simultaneously remove Co, He, and NOx contained in exhaust gas at a high purification rate by combining this with an operating method that makes the fluctuation value equal to the stoichiometric air-fuel ratio. The air-fuel ratio range (A/F window width) can be expanded.

3元触媒上流側への2次空気の間欠的供給による排気ガ
ス空燃比のリーン側への変動サイクルをリッチ側への変
動サイクルより短かくするように前記2次空気の間欠的
供給時間を設定することによって、排気ガス空燃比がリ
ッチ側になった際の3元触媒における酵素吸蔵物質が放
出する酸素量と,排気ガス空燃比がリーン側になった際
の3元触媒における酸素吸蔵物質が吸蔵する酸素量とを
ほぼ等しくすることができ,この結果として3元触媒付
近の雰囲気の排気ガス空燃比を理論空燃比とすることが
できるため、3元触媒を更に効率よく作動させることが
できる。
The intermittent supply time of the secondary air is set so that the fluctuation cycle of the exhaust gas air-fuel ratio toward the lean side due to the intermittent supply of secondary air to the upstream side of the three-way catalyst is made shorter than the fluctuation cycle toward the rich side. By doing this, the amount of oxygen released by the enzyme storage material in the three-way catalyst when the exhaust gas air-fuel ratio becomes rich, and the amount of oxygen released by the enzyme storage material in the three-way catalyst when the exhaust gas air-fuel ratio becomes lean. The amount of stored oxygen can be made almost equal, and as a result, the air-fuel ratio of the exhaust gas in the atmosphere near the three-way catalyst can be set to the stoichiometric air-fuel ratio, so the three-way catalyst can operate more efficiently. .

内燃機関に供給する混合気の空燃比をリッチ側に設定し
た構成を採用したから、内燃機関の吸気側空燃比を変動
させる必要がなく、内燃機関を常に安定した状態で運転
できる。
Since a configuration is adopted in which the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is set on the rich side, there is no need to vary the air-fuel ratio on the intake side of the internal combustion engine, and the internal combustion engine can always be operated in a stable state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な3元触媒の空燃比に対する浄化率を各
成分毎に示したグラフ,第2図はエンジンに供給する混
合気の空燃比を13から16まで変化させた時の排気ガ
ス組成の変化を示すグラフ、第3A図乃至第3D図は、
酸素吸蔵物質を添加した3元触媒の酸素の吸蔵及び放出
作動を示す模式図,第4図は本発明における実験に使用
した装置を示す模式図,第5図は、3元触媒の上流に2
次空気を徐々に加えて、排気ガス空燃比を13から16
まで変化させた時の各排気ガス成分の浄化率を示すグラ
フ、第6図は、エンジンに供給する混合気の空燃比を1
3に固定し、排気系に2次空気を徐々に供給して、排気
ガス空燃比を13から16まで変化させた時の排気ガス
組成の変化を示すグラフ、第7図は,上記第2図及び第
6図における排気ガス組成の変化に基づく、空燃比変化
に対する各排気ガス成分の成分比を示すグラフ、第8図
は,エンジンに供給する混合気の空燃比を13に固定し
,排気系に2次空気を間欠的に供給し、平均排気ガス空
燃比を13から16まで変化させた時の酸素吸蔵物質を
添加した3元触媒による各排気ガス成分の浄化率を示す
グラフ、第9図は、第8図の場合と同様に2次空気を間
欠的に供給した時の酸素吸蔵物質を添加しない3元触媒
による各排気ガス成分の浄化率を示すグラフ,第10A
図及び第10B図は、3元触媒の入口及び出口における
空燃比検出器の出力を示す波形図、第11図は、2次空
気の間欠供給の周波数変化に対する各排気ガス成分の浄
化率を示すグラフ、第12図は酸素吸蔵物質の添加量を
変化させた時の各排気ガス成分の浄化率が80%以上と
なる周波数変化を示すグラフ、第13図は排気側空燃比
の変化に対する各排気ガス成分の浄化率を示すグラフ、
第14図及び第15図は、吸気側空燃比に対する排気側
空燃比の有効作動空燃比領域を示すグラフである。
Figure 1 is a graph showing the purification rate for each component of a typical three-way catalyst with respect to the air-fuel ratio. Figure 2 is the exhaust gas when the air-fuel ratio of the mixture supplied to the engine is varied from 13 to 16. Graphs showing changes in composition, Figures 3A to 3D,
A schematic diagram showing the oxygen storage and release operations of a three-way catalyst to which an oxygen storage substance has been added. Figure 4 is a schematic diagram showing the apparatus used in the experiment of the present invention.
Next, gradually add air to increase the exhaust gas air-fuel ratio from 13 to 16.
Figure 6 is a graph showing the purification rate of each exhaust gas component when the air-fuel ratio of the mixture supplied to the engine is changed to 1.
Figure 7 is a graph showing the change in exhaust gas composition when the exhaust gas air-fuel ratio is changed from 13 to 16 by gradually supplying secondary air to the exhaust system with the air-fuel ratio fixed at 3. and a graph showing the component ratio of each exhaust gas component with respect to air-fuel ratio changes based on changes in exhaust gas composition in Fig. 6, and Fig. 8 shows a graph showing the composition ratio of each exhaust gas component with respect to air-fuel ratio changes based on changes in exhaust gas composition. Figure 9 is a graph showing the purification rate of each exhaust gas component by the three-way catalyst with oxygen storage material added when secondary air is intermittently supplied to the air and the average exhaust gas air-fuel ratio is varied from 13 to 16. 10A is a graph showing the purification rate of each exhaust gas component by a three-way catalyst without adding an oxygen storage substance when secondary air is intermittently supplied as in the case of Fig. 8.
10B and 10B are waveform diagrams showing the output of the air-fuel ratio detector at the inlet and outlet of the three-way catalyst, and FIG. 11 shows the purification rate of each exhaust gas component with respect to frequency changes of intermittent supply of secondary air. The graph, Figure 12 is a graph showing the frequency change at which the purification rate of each exhaust gas component is 80% or more when the amount of oxygen storage material added is changed, and Figure 13 is the graph showing the frequency change at which the purification rate of each exhaust gas component is 80% or more. A graph showing the purification rate of gas components,
FIGS. 14 and 15 are graphs showing the effective operating air-fuel ratio range of the exhaust-side air-fuel ratio with respect to the intake-side air-fuel ratio.

Claims (1)

【特許請求の範囲】 1 理論空燃比よりリッチ側の空燃比を有する空気一燃
料混合気を内燃機関に供給し、該内燃機関の排気系に設
置され,排気ガス空燃比が理論空燃比よりリーン側のと
き酸素を吸蔵し、リッチ側のときその吸蔵した酸素を放
出する能力を有する酸素吸蔵物質が添加された3元触媒
の上流に,該上流の排気ガス空燃比を前記理論空燃比を
境としてリッチ側及びリーン側に交互に変動させるとと
もに該排気ガス空燃比の変動値を前記理論空燃比を境に
等しくなるように2次空気を間欠的に供給し、かつリー
ン側への変動サイクルをリッチ側への変動サイクルより
短かくするように2次空気の間欠的供給時間を設定する
ことを特徴とする内燃機関用3元触媒の駆動方法。 2 前記酸素吸蔵物質として酸化セリウムCeO2を使
用し、その添加量を触媒担体に対して209/lとした
時に,前記2次空気を、0.5Hz〜5Hzの間のある
一定周波数で間欠的に供給することを特徴とする前記特
許請求の範囲第2項記載の内燃機関用3元触媒の駆動方
法。 3 前記酸素吸蔵物質として酸化セリウムCe02を使
用し、その添加量を触媒担体に対して10g/lとした
時に、前記2次空気を5Hz〜10Hzの間のある一定
周波数で間欠的に供給することを特徴とする前記特許請
求の範囲第2項記載の内燃機関用3元触媒の駆動方法。 4 前記2次空気を10Hz以上の高周波数で間欠的に
供給する時に、前記3元触媒の触媒担体としてモノリス
タイプの担体を使用することを特徴とする前記特許請求
の範囲第1項記載の内燃機関用3元触媒の駆動方法。
[Claims] 1. An air-fuel mixture having an air-fuel ratio richer than the stoichiometric air-fuel ratio is supplied to an internal combustion engine, and is installed in the exhaust system of the internal combustion engine so that the exhaust gas air-fuel ratio is leaner than the stoichiometric air-fuel ratio. Upstream of a three-way catalyst to which an oxygen storage substance is added which has the ability to store oxygen when the side is on the rich side and release the stored oxygen when the side is rich, secondary air is supplied intermittently so that the fluctuating value of the exhaust gas air-fuel ratio becomes equal to the stoichiometric air-fuel ratio, and the fluctuating cycle to the lean side is performed. A method for driving a three-way catalyst for an internal combustion engine, characterized in that the intermittent supply time of secondary air is set to be shorter than the variation cycle to the rich side. 2 When cerium oxide CeO2 is used as the oxygen storage material and the amount added is 209/l with respect to the catalyst carrier, the secondary air is intermittently supplied at a certain frequency between 0.5 Hz and 5 Hz. A method for driving a three-way catalyst for an internal combustion engine according to claim 2, characterized in that: supplying a three-way catalyst for an internal combustion engine. 3. When cerium oxide Ce02 is used as the oxygen storage material and the amount added is 10 g/l to the catalyst carrier, the secondary air is intermittently supplied at a certain frequency between 5 Hz and 10 Hz. A method for driving a three-way catalyst for an internal combustion engine according to claim 2, characterized in that: 4. The internal combustion engine according to claim 1, wherein a monolith type carrier is used as a catalyst carrier of the three-way catalyst when the secondary air is intermittently supplied at a high frequency of 10 Hz or more. How to drive a three-way catalyst for engines.
JP52122000A 1976-12-26 1977-10-12 Driving method of three-way catalyst for internal combustion engine Expired JPS5813733B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP52122000A JPS5813733B2 (en) 1977-10-12 1977-10-12 Driving method of three-way catalyst for internal combustion engine
US05/863,579 US4199938A (en) 1976-12-26 1977-12-22 Method of operating a three-way catalyst for internal combustion engines
DE2757782A DE2757782C2 (en) 1976-12-26 1977-12-23 Method for operating a catalytic converter arranged in the exhaust system of an internal combustion engine for exhaust gas purification
US05/894,432 US4240254A (en) 1976-12-26 1978-04-07 Exhaust gas purifying apparatus for multicylinder internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52122000A JPS5813733B2 (en) 1977-10-12 1977-10-12 Driving method of three-way catalyst for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5455225A JPS5455225A (en) 1979-05-02
JPS5813733B2 true JPS5813733B2 (en) 1983-03-15

Family

ID=14825071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52122000A Expired JPS5813733B2 (en) 1976-12-26 1977-10-12 Driving method of three-way catalyst for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5813733B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185038A (en) * 1975-01-22 1976-07-26 Nissan Motor NIJIKUKI SEIGYO SOCHI
JPS51127919A (en) * 1975-04-28 1976-11-08 Nissan Motor Co Ltd Internal combustion engine with exhaust control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185038A (en) * 1975-01-22 1976-07-26 Nissan Motor NIJIKUKI SEIGYO SOCHI
JPS51127919A (en) * 1975-04-28 1976-11-08 Nissan Motor Co Ltd Internal combustion engine with exhaust control device

Also Published As

Publication number Publication date
JPS5455225A (en) 1979-05-02

Similar Documents

Publication Publication Date Title
JP4618563B2 (en) System and method for improving emissions control of an internal combustion engine using a pulsed fuel flow
US6662552B1 (en) Exhaust-gas cleaning system and method with internal ammonia generation, for the reduction of nitrogen oxides
KR960002348B1 (en) Device for purifying exhaust of internal combustion engine
EP2233711B1 (en) Exhaust gas purification device for internal combustion engine
JP3702924B2 (en) Exhaust purification device
KR100495969B1 (en) Exhaust emission control device of internal combustion engine
US4024706A (en) Method of improving the operational capacity of three-way catalysts
US4199938A (en) Method of operating a three-way catalyst for internal combustion engines
JPH1047048A (en) Emission control device for internal combustion engine
GB2342056A (en) NOx trap with oxygen storage components for an i.c.e.
JP2004197695A (en) Exhaust emission control device for internal combustion engine
JP2009103020A (en) Exhaust emission control method and exhaust emission control device for internal combustion engine
EP1026374B1 (en) Exhaust gas purifying apparatus of engine
EP2233712A1 (en) Exhaust purification device for internal combustion engine
JPH11280452A (en) Exhaust emission control device for engine
JPH04250826A (en) Method for reducing methane exhaust gas emission from natural gas fueled engine
EP1336731A1 (en) Exhaust gas purifying catalyst
US10683785B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2002038942A (en) Exhaust emission control device for internal combustion engine
JPH094441A (en) Internal combustion engine
EP1536111B1 (en) Apparatus and method for removal of by-products from exhaust gases of a combustion engine
JPS5813733B2 (en) Driving method of three-way catalyst for internal combustion engine
US4240254A (en) Exhaust gas purifying apparatus for multicylinder internal combustion engines
JP6988648B2 (en) Exhaust purification device for internal combustion engine
JP2002097940A (en) Operating method of exhaust emission control device