JPS58135940A - Hydrocarbon gas concentration measuring apparatus - Google Patents

Hydrocarbon gas concentration measuring apparatus

Info

Publication number
JPS58135940A
JPS58135940A JP57019292A JP1929282A JPS58135940A JP S58135940 A JPS58135940 A JP S58135940A JP 57019292 A JP57019292 A JP 57019292A JP 1929282 A JP1929282 A JP 1929282A JP S58135940 A JPS58135940 A JP S58135940A
Authority
JP
Japan
Prior art keywords
gas
temperature
hydrocarbon gas
absorption coefficient
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57019292A
Other languages
Japanese (ja)
Inventor
Osamu Kaide
治 飼手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57019292A priority Critical patent/JPS58135940A/en
Publication of JPS58135940A publication Critical patent/JPS58135940A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To elevate the measuring accuracy by correcting the absorption coefficient based on the temperature during the measurement with a temperature detection element placed in the atmosphere of a gas to be measured. CONSTITUTION:A He-Ne gas laser light source 1 emits an infrared laser light with a wave length of 3.39mum. Then, in the addmission of the laser light, a non- laser light-absorptive gas is injected into a reference cell 2 while gas belonging to hydrocarbon gas is injected into a sample cell 3. The laser lights outputted from the cells 2 and 3 are received with a light detector 5, which outputs a signal according to the intensity thereof. The absorption coefficient of various gases belonging to the hydrocarbon gas is corrected for each temperature and memorized into a read-only-memory 15 and the gas to be measured is specified with a select switch 13. On the other hand, the absorption coefficient thus corrected for each temperature with a temperature detection element 9 is memorized into a memory to specify a corresponding absorption coefficient depending on a detected temperature with the temperature detection element thereby eliminating errors of measured values due to temperature.

Description

【発明の詳細な説明】 本発明は、炭化水素ガスil[fjll定鋏置に装する
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fixed scissor for hydrocarbon gas.

赤外レーザ例えばHe −Weガスレーザ6.5.39
μ波長光を出力する。この波長は、炭化水素ガス例えば
メタンガス、プロパンガス等の吸収スペクトルに一致す
るためこれら炭化水素ガスによる3、59μ党の吸収は
大きく、この吸収割合を検出すればこれらのガスの濃度
を測定することができる。いま赤外レーザ光を炭化水素
ガスに照射してこれによ抄吸収を受けて透過したレーザ
光の強度を工、ガスによる吸収を受けないレーザ光の強
ft工。、レーず光の光路長をl、ガスの吸収係数を−
とすα ると、ガス濃度Pは次式で与えられる。
Infrared laser e.g. He-We gas laser 6.5.39
Outputs μ wavelength light. This wavelength matches the absorption spectrum of hydrocarbon gases such as methane gas and propane gas, so the absorption of 3,59 μ by these hydrocarbon gases is large, and by detecting this absorption ratio, it is possible to measure the concentration of these gases. Can be done. Now, by irradiating an infrared laser beam onto a hydrocarbon gas, we can measure the intensity of the laser beam that is absorbed and transmitted by this, and we can measure the intensity of the laser beam that is not absorbed by the gas. , the optical path length of the laser beam is l, and the absorption coefficient of the gas is -
Then, the gas concentration P is given by the following equation.

P =」−h(”−a αl  工 吸収係数−は、ガスのS類、測定ガス雰囲気の温tKよ
って決まる示教である0通常この吸収係数の温度による
変化は、1℃に対し0.2ないし0.4−11fである
が、赤外レーザ光を用いたこの種ガス濃度測定装置の誤
差が測定濃fK対し1%程度と高精度であることを考え
れば、上紀温匿変化による吸収係数の誤差は無視できな
い#1ど大きく、測定精度を低下させる原因になってい
る0第1図は、炭化水素ガスに属するブタン”4(A)
%プロパyc、111jB)及びイソブタy 1so−
04H,o(CIの吸収係数に)−温t*性曲線を示し
、特にイソブタン(c)は、温fKよりその変動幅が異
なるためその補正が―しい。
P = "-h("-a αl - is the principle determined by the S class gas and the temperature tK of the gas atmosphere to be measured. Normally, the change in absorption coefficient due to temperature is 0. 2 to 0.4-11f, but considering that the error of this type of gas concentration measurement device using infrared laser light is about 1% of the measured concentration fK, which is highly accurate, it is assumed that this is due to the Upper Age thermal changes. The error in the absorption coefficient is large, such as #1, which cannot be ignored, and causes a decrease in measurement accuracy.Figure 1 shows butane "4 (A), which belongs to a hydrocarbon gas.
% propyc, 111jB) and isobutyy 1so-
04H,o (absorption coefficient of CI) - temperature t* characteristic curve is shown, and isobutane (c) in particular has a different range of fluctuation than temperature fK, so its correction is difficult.

零発W174Fi被測定ガス雰囲気中に温度検出素子を
置き、測定時の1itt検出してこれに基いて吸収係数
を補正せんとするものである。以下第2図に基いて実m
fPlt−説明する。(1)は、He−Ne カスL’
 −ザ党源で、3.39μの波長をもつ赤外レーザ光を
出射する。+21 +31は、それぞれレーザ光が入射
される参照セル及び試料セルで、参照セル+21 K 
II! 、レーザ光t−吸収しないガスが、また試料セ
ル(3)Kは、炭化水素ガスに属するガスが注入されて
いる。(4)(5)は、各セル(21+31がら出力さ
れたレーザ光を受光しその強度に応じた信号を出方する
光検出器で、セレン化鉛Pb5e 、フォトダイオード
等よりなる。
A temperature detection element is placed in the zero-emission W174Fi gas atmosphere to be measured, and 1it is detected during measurement, and the absorption coefficient is corrected based on this. Based on Figure 2 below, the actual m
fPlt-Explain. (1) is He-Ne waste L'
- The laser source emits infrared laser light with a wavelength of 3.39μ. +21 +31 are a reference cell and a sample cell into which laser light is incident, respectively, and the reference cell +21 K
II! , a gas that does not absorb laser light t- is injected into the sample cell (3) K, and a gas belonging to a hydrocarbon gas is injected into the sample cell (3) K. (4) and (5) are photodetectors that receive the laser light output from each cell (21+31) and output a signal according to its intensity, and are made of lead selenide Pb5e, a photodiode, etc.

(6)は、光検出器(4)がら出力された参照光信号工
。と光検出器(5)から出力された信号光信号工を入力
し、両信号の比を算出しかつこれを対数変換する対数比
較増幅器、(7)はADi換器、(8)は乗算回路であ
る。(9)は被測定ガス雰囲気の温Ifを検出するmf
検出素子で熱電対、半導体温度センサ等が使用できる。
(6) is a reference optical signal output from the photodetector (4). A logarithmic comparison amplifier inputs the optical signal output from the photodetector (5), calculates the ratio of both signals, and converts it logarithmically, (7) is an ADi converter, and (8) is a multiplication circuit. It is. (9) is mf that detects the temperature If of the gas atmosphere to be measured.
Thermocouples, semiconductor temperature sensors, etc. can be used as detection elements.

レーザ光源(1)、セル+21 +31光検出器+41
 +51及び温度検出素子(9)にて検出部αeが構成
され、通常この検出部QGti恒温檜とされる。レーザ
光を用い几ガス濃度測定装置を標準器として、市販のガ
スセンサの品質検査を行なう場合、このガスセンサを恒
温槽内に置き、プロパンガス都市ガス等を所定量注入し
てその作動開始濃f?:検出するとともに、槽内温度を
、約−10℃から50℃程度まで変化させ工温度変化に
対する信頼性が検査される。a5は増幅器、112はA
D変換器、Q3はガスの種駒を選択する選択スイッチで
、被測定ガスの種駒に応じて手動でセットされる。側は
AD変換器■及び選択スイッチ酩からの2種の信号を入
力するアドレスデコーダ、1151は炭化水素ガスに属
する各種ガスの吸収係数が温度ごとに補正されて記憶さ
れている続出し専用メモリであり、選択スイッチ側にて
被測定ガスの指定が行なわれ、一方温駅検出案子(9)
にて温度の指定が行なわれてアドレスデコーダaΦを介
して所望の吸収係数情輸が次段の乗算回路(8)へ入力
される。この乗算回路(8)は、前述した対数比較信号
/ n b 5吸収係数情報信号ことを乗算するもので
、その演算結果は、被測定ガスの濃度として表示装置(
至)に表示される。
Laser light source (1), cell +21 +31 photodetector +41
+51 and the temperature detection element (9) constitute a detection section αe, and this detection section QGti is normally made of a constant temperature cypress. When inspecting the quality of a commercially available gas sensor using a laser light-based gas concentration measuring device as a standard, place the gas sensor in a thermostatic chamber, inject a predetermined amount of propane, city gas, etc., and start its operation. : At the same time as detection, the temperature inside the tank is varied from about -10°C to about 50°C to test reliability against temperature changes. a5 is an amplifier, 112 is A
The D converter Q3 is a selection switch for selecting a gas seed, and is manually set according to the gas seed to be measured. On the side is an address decoder that inputs two types of signals from the AD converter and the selection switch, and 1151 is a continuous read-only memory in which the absorption coefficients of various gases belonging to hydrocarbon gas are corrected and stored for each temperature. Yes, the gas to be measured is specified on the selection switch side, while the temperature station detection screen (9)
The temperature is designated at , and desired absorption coefficient information is input to the next stage multiplication circuit (8) via the address decoder aΦ. This multiplication circuit (8) multiplies the aforementioned logarithmic comparison signal/nb5 absorption coefficient information signal, and the calculation result is displayed as the concentration of the gas to be measured on the display device (
(to).

以上のように木発明装Wは、炭化水素ガスの吸収係数が
温度によって変動し、かつその変動幅も温fによって異
なる場合があることを考慮し、温する吸収係数を特定す
るものであるから、測定値に対する温度による誤差を解
消することができ、この種測定装置の高い測定槽fを維
持することができる。
As mentioned above, Mokuinso W specifies the absorption coefficient for heating, taking into account that the absorption coefficient of hydrocarbon gas varies depending on the temperature, and that the range of variation may also vary depending on the temperature f. , it is possible to eliminate errors in measured values due to temperature, and it is possible to maintain a high measurement tank f of this type of measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、炭化水素ガスの吸収係数一温度特性曲線図、
第2図は、本発明実總例ブロック図である0 (1)・・・レーザ光源、(2)・・・参照セル、(3
)・・・試料セル、(41+51・・・光検出器、(6
)・・・対数比較増幅器、(71(12・・・AD変換
器、(8)・・・乗算回路、(9)・・・温度検出素子
、αG・・・検出部、aト・・増幅器、aト・選択スイ
ッチ、a(・・・アドレスデコーダ、aト・メモリ、α
ト・表示装置。
Figure 1 is an absorption coefficient-temperature characteristic curve diagram of hydrocarbon gas,
FIG. 2 is a block diagram of an actual example of the present invention. (1) Laser light source, (2) Reference cell, (3
)...Sample cell, (41+51...Photodetector, (6
)...logarithmic comparison amplifier, (71(12...AD converter, (8)...multiplier circuit, (9)...temperature detection element, αG...detection section, a...amplifier , a to selection switch, a (...address decoder, a to memory, α
display device.

Claims (1)

【特許請求の範囲】[Claims] 1、炭化水素ガスに赤外***射しその透過光強ttS
足して炭化水素ガスの濃りt測定する炭化水素ガス濃度
測定装置において、1紀被測定ガス雰囲気の温1t−検
出する■駅検出素子、炭化水素ガスに属するガスの種@
を選択する選択スイッチ、上記炭化水素ガスに属するガ
スの異なる温度に対応した吸収係数情報が配憶されtメ
モリ、上記選択スイッチからのガス選択信号及び温度検
出信号からの温度検出信号に基いて上記メモリの対応領
域を指定するアドレスデコーダ、該アドレスデコーダに
て指定された上記メモリの対応領域から読み出された吸
収係数情報をガス製置測定信号に乗する乗算回路、誼乗
算−路の出力を表示する表示装置とを備えてなる炭化水
素ガス濃度測定装置0
1. Infrared *** is irradiated onto hydrocarbon gas, and its transmitted light intensity ttS
In a hydrocarbon gas concentration measuring device that measures the concentration of hydrocarbon gas by adding the temperature 1 t of the primary gas atmosphere to be measured, the station detection element detects the species of gas belonging to hydrocarbon gas @
A selection switch for selecting the above-mentioned gases, which stores absorption coefficient information corresponding to different temperatures of the gases belonging to the hydrocarbon gas, and a memory for selecting the above-mentioned gases based on the gas selection signal from the selection switch and the temperature detection signal from the temperature detection signal. an address decoder that specifies a corresponding area of the memory; a multiplication circuit that multiplies the absorption coefficient information read from the corresponding area of the memory specified by the address decoder to the gas measurement signal; and an output of the multiplication circuit. Hydrocarbon gas concentration measuring device 0 comprising a display device for displaying
JP57019292A 1982-02-08 1982-02-08 Hydrocarbon gas concentration measuring apparatus Pending JPS58135940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019292A JPS58135940A (en) 1982-02-08 1982-02-08 Hydrocarbon gas concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019292A JPS58135940A (en) 1982-02-08 1982-02-08 Hydrocarbon gas concentration measuring apparatus

Publications (1)

Publication Number Publication Date
JPS58135940A true JPS58135940A (en) 1983-08-12

Family

ID=11995353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019292A Pending JPS58135940A (en) 1982-02-08 1982-02-08 Hydrocarbon gas concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58135940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687785A1 (en) * 1992-01-30 1993-08-27 Vaisala Oy CALIBRATION PROCESS FOR GAS CONCENTRATION MEASUREMENTS.
US5672874A (en) * 1994-03-30 1997-09-30 Horiba, Ltd. Infrared oil-concentration meter
EP0921390A1 (en) * 1997-12-05 1999-06-09 Oldham France S.A. Method for determining the concentration of a gas in a gas mixture and analysis apparatus for implementing such method
US7325971B2 (en) * 2005-05-25 2008-02-05 Fons Lloyd C Method and apparatus for locating hydrocarbon deposits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188289A (en) * 1974-12-19 1976-08-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188289A (en) * 1974-12-19 1976-08-02

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687785A1 (en) * 1992-01-30 1993-08-27 Vaisala Oy CALIBRATION PROCESS FOR GAS CONCENTRATION MEASUREMENTS.
US5672874A (en) * 1994-03-30 1997-09-30 Horiba, Ltd. Infrared oil-concentration meter
EP0921390A1 (en) * 1997-12-05 1999-06-09 Oldham France S.A. Method for determining the concentration of a gas in a gas mixture and analysis apparatus for implementing such method
FR2772127A1 (en) * 1997-12-05 1999-06-11 Oldham France Sa METHOD FOR DETERMINING THE CONCENTRATION OF A GAS IN A GASEOUS MIXTURE AND ANALYSIS DEVICE FOR IMPLEMENTING SUCH A METHOD
US6218666B1 (en) 1997-12-05 2001-04-17 Oldham France S.A. Method of determining the concentration of a gas in a gas mixture and analyzer for implementing such a method
US7325971B2 (en) * 2005-05-25 2008-02-05 Fons Lloyd C Method and apparatus for locating hydrocarbon deposits

Similar Documents

Publication Publication Date Title
US5464983A (en) Method and apparatus for determining the concentration of a gas
US5332901A (en) Gas analyzing apparatus and method for simultaneous measurement of carbon dioxide and water
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
US5099123A (en) Method for determining by absorption of radiations the concentration of substances in absorbing and turbid matrices
US20100091278A1 (en) Wavelength-modulation spectroscopy method and apparatus
JPH08304282A (en) Gas analyzer
US20130169306A1 (en) Light Source Evaluation Device and Solar Cell Evaluation Device
JPH061220B2 (en) A device that measures the temperature of an object in a contactless manner regardless of emissivity
JP3874345B2 (en) Method for determining the position of a shadow line in a photoelectric array and critical angle refractometer using the same method
CN105067564A (en) Optical fiber gas concentration detection method with temperature compensation capacity
US20140022542A1 (en) Gas Analyzer
US4818102A (en) Active optical pyrometer
JPS58135940A (en) Hydrocarbon gas concentration measuring apparatus
US6218666B1 (en) Method of determining the concentration of a gas in a gas mixture and analyzer for implementing such a method
US11796468B2 (en) Gas measurement device and gas measurement method
US2844033A (en) Radiant energy measurement methods and apparatus
US6218665B1 (en) Infrared detector and gas analyzer
JP5161012B2 (en) Concentration measuring device
CN114609083B (en) Gas concentration field reconstruction system and method under two-dimensional geometric path
US4627284A (en) Ultraviolet absorption hygrometer
US4185497A (en) Adiabatic laser calorimeter
US20080225285A1 (en) Device for and Method of Measurement of Chemical Agents Quantity in Gas Medium
US4362388A (en) Remote measurement of concentration of a gas specie by resonance absorption
Chiarugi et al. Diode laser-based gas analyser for the simultaneous measurement of CO 2 and HF in volcanic plumes
US3940624A (en) Apparatus and a method for testing the integrity of a weld