JPS58135317A - Combustion chamber of auxiliary combustion chamber type engine - Google Patents

Combustion chamber of auxiliary combustion chamber type engine

Info

Publication number
JPS58135317A
JPS58135317A JP57016988A JP1698882A JPS58135317A JP S58135317 A JPS58135317 A JP S58135317A JP 57016988 A JP57016988 A JP 57016988A JP 1698882 A JP1698882 A JP 1698882A JP S58135317 A JPS58135317 A JP S58135317A
Authority
JP
Japan
Prior art keywords
combustion chamber
piston
nozzle
chamber
auxiliary combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57016988A
Other languages
Japanese (ja)
Other versions
JPS6342090B2 (en
Inventor
Koji Imoto
井元 浩二
Mataji Tateishi
立石 又二
Takeo Takaishi
高石 武夫
Koichi Nakanishi
功一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Motors Corp
Priority to JP57016988A priority Critical patent/JPS58135317A/en
Publication of JPS58135317A publication Critical patent/JPS58135317A/en
Publication of JPS6342090B2 publication Critical patent/JPS6342090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/14Engines characterised by precombustion chambers with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To reduce the loss due to restriction of area in the nozzle for an auxiliary combustion chamber of an engine and reduce fuel consumption by an arrangement wherein the piston crown surface opposite to the open end face of the auxiliary combustion chamber nozzle facing a main combustion chamber is formed in parallel with the open end face and the angle defined between a plane including the piston crown and the center line of the piston is 90 deg. or less. CONSTITUTION:This engine has an auxiliary combustion chamber 4 formed in a cylinder head 5 and whose upper part is, for example, semi-spherical and whose lower part is, for example, of truncated cone shape. The auxiliary combustion chamber 4 communicates through an auxiliary combustion chamber nozzle 1 with a main combustion chamber defined by the crown of piston 2, a cylinder 8 and the lower surface of the cylinder head 5. The crown surface 2a of the piston 2 opposite to the open end of the auxiliary combustion chamber 1 on the side of the main combustion chamber 3 is formed in parallel with the open end face 1a of the auxiliary combustion chamber nozzle 1 and at a minimum angle theta between the piston crown surface 2a and the center-line A-A of the piston which is less than 90 deg.. This enables the nozzle 1 when the piston 2 is located near its top dead center to be restricted more than that in case of the prior art arrangement and the area of the auxiliary combustion chamber nozzle 1 to be increased with downward movement of the piston 2.

Description

【発明の詳細な説明】 本発明は副室式機関の燃焼室の改善に関する。[Detailed description of the invention] The present invention relates to improvements in the combustion chamber of pre-chamber engines.

従来の副室式機関の燃焼室を第1図に示す。図において
、副燃焼室4はシリンダヘッド5内に凹設されている。
Figure 1 shows the combustion chamber of a conventional pre-chamber engine. In the figure, the sub-combustion chamber 4 is recessed within the cylinder head 5.

副燃焼室4の構造は上部が半球型。The structure of the sub-combustion chamber 4 has a hemispherical upper part.

下部は円錐台のものあるいは円柱型のもの等があるが1
第1図には下部が円錐台のものを示す。副燃焼室4に燃
料噴射弁6及び機関の始動時に副燃焼室4内を予熱する
グロープラグ7を必要に応じて設置する。副燃焼室4は
副室噴口1を介してピストン2頂面、シリンダ8.シリ
ンダへラド5の下面から構成される主燃焼室と連通して
いる。副室噴口1の主燃焼室3側開目端におけるピスト
ン2頂面が副室噴口1の上記開口端面に平行で、ピスト
ン中心線A−Aとのなす角が90’である。
The lower part can be truncated conical or cylindrical, but 1
Fig. 1 shows the lower part having a truncated cone. A fuel injection valve 6 and a glow plug 7 for preheating the inside of the auxiliary combustion chamber 4 at the time of starting the engine are installed in the auxiliary combustion chamber 4 as necessary. The auxiliary combustion chamber 4 is connected to the top surface of the piston 2, the cylinder 8. The cylinder communicates with the main combustion chamber formed from the lower surface of the rad 5. The top surface of the piston 2 at the open end of the sub-chamber nozzle 1 on the main combustion chamber 3 side is parallel to the opening end surface of the sub-chamber nozzle 1, and forms an angle of 90' with the piston center line A-A.

機関運転時の圧縮行程で、ピストン2により主燃焼室3
内の空気が圧縮され副室噴口1を経て副燃焼室4内に流
入する。副燃焼室4内に流入した空気と燃料噴射弁6か
ら噴射される燃料が混合し。
During the compression stroke during engine operation, the main combustion chamber 3 is
The air inside is compressed and flows into the sub-combustion chamber 4 through the sub-chamber nozzle 1. The air flowing into the sub-combustion chamber 4 and the fuel injected from the fuel injection valve 6 mix.

着火、燃焼する。副燃焼室4内の既燃、未燃ガスは、副
室噴口1を通って主燃焼室3内に噴出し。
Ignite and burn. Burnt and unburned gas in the sub-combustion chamber 4 is ejected into the main combustion chamber 3 through the sub-chamber nozzle 1.

ピストンに仕事をすると同時に、主燃焼室3内の空気と
混合し燃焼する。
While doing work to the piston, it mixes with the air in the main combustion chamber 3 and burns.

しかし上記のものには次の欠点がある。However, the above method has the following drawbacks.

圧縮比を維持する都合上、特に小形機関ではピストン2
の頂面とシリンダヘッド5の下面との間隙が小さくなる
ため、副燃焼室4から主燃焼室:うへのガス噴出がピス
トン2の上死点近くで行われる時、小間隙を噴流が高速
で流れる。このため。
In order to maintain the compression ratio, especially in small engines, piston 2
Since the gap between the top surface of the cylinder head 5 and the bottom surface of the cylinder head 5 becomes small, when gas is ejected from the auxiliary combustion chamber 4 to the main combustion chamber near the top dead center of the piston 2, the jet flow passes through the small gap at high speed. It flows. For this reason.

流動抵抗増大による噴流のペネトレーション悪化(主燃
焼室3内混合気形成不良)、主燃焼室3壁による火炎冷
却によシ燃焼が悪化し、熱損失も増大する。
Penetration of the jet deteriorates due to increased flow resistance (poor mixture formation in the main combustion chamber 3), combustion deteriorates due to flame cooling by the wall of the main combustion chamber 3, and heat loss also increases.

この対策として、」−記間隙の小さい上死点近傍では、
副燃焼室4から主燃焼室3へのガス噴出を抑制するだめ
に、副室噴口1を絞り間隙の大きくなる時期で拡大する
ことが好捷しい。第2図に副室噴口1の最小噴口面積f
mInのクランク角度変化を示すが、上死点近傍では副
室噴ロ]d:主燃焼室3側開目端とピストン20頂面で
形成される周縁面積fcで最小となり、その後主室間隙
が増大すると副室噴口1は通路面積そのものとなる。
As a countermeasure for this, near the top dead center where the gap is small,
In order to suppress gas ejection from the sub-combustion chamber 4 to the main combustion chamber 3, it is preferable to enlarge the sub-chamber nozzle 1 at a time when the throttle gap becomes large. Fig. 2 shows the minimum nozzle area f of the subchamber nozzle 1.
It shows the crank angle change mIn, but near the top dead center, the pre-chamber injection d: The peripheral area fc formed by the open end on the main combustion chamber 3 side and the top surface of the piston 20 becomes the minimum, and after that the main chamber gap becomes When increased, the subchamber nozzle 1 becomes the passage area itself.

副室噴口1の通路面積をflからf2へ小さくすると、
」−死点近傍での周縁面積fc+即ち最小噴口面積fr
mnも小さくなり、副燃焼室4から主燃焼室3へのガス
噴出を抑制できるが(第2図(b)の破線f2で示す)
、主室間隙が大きくなシ、最小噴ロ面積が副室噴口1の
通路面積になる時、この通路面積が小さいため、副室噴
口1の絞り損失が大きくなり、燃費が悪化する。
When the passage area of the subchamber nozzle 1 is reduced from fl to f2,
” - peripheral area near the dead center fc + i.e. minimum nozzle area fr
mn also becomes smaller, and gas ejection from the sub-combustion chamber 4 to the main combustion chamber 3 can be suppressed (as shown by the broken line f2 in FIG. 2(b)).
When the main chamber gap is large and the minimum injection area is the passage area of the sub-chamber nozzle 1, this passage area is small, so the throttling loss of the sub-chamber nozzle 1 increases and fuel efficiency deteriorates.

本発明の目的は上記の点に着目し、ピストン20頂面と
シリンダへラド5の下面との間隙が小さくならざるをえ
ない主燃焼室3内の燃焼を改善するために、上死点近傍
では副燃焼室4から主燃焼室3へのガス噴出を抑制する
だめ副室噴口1を絞り1間隙の大きくなった時期で拡大
する燃焼室構造を提供することであり、その特徴とする
ところは、副室噴口の主燃焼室側の開口端面に対向する
ピストン頂面が上記開口端面に平行でかつピストン中心
線とのなす最小角θがθ〈90°に形成されたことであ
る。
The purpose of the present invention is to focus on the above-mentioned points, and to improve combustion in the main combustion chamber 3 where the gap between the top surface of the piston 20 and the bottom surface of the cylinder radiator 5 must be small. In order to suppress gas ejection from the sub-combustion chamber 4 to the main combustion chamber 3, the present invention is to provide a combustion chamber structure in which the sub-chamber nozzle 1 is throttled and expands when the gap between the sub-combustion chambers 1 and 1 becomes large. The top surface of the piston, which faces the opening end surface of the auxiliary chamber nozzle on the main combustion chamber side, is parallel to the opening end surface, and the minimum angle θ formed with the piston center line is θ<90°.

この場合は、副室噴口1の断面積を従来のものと同一に
した!、tで、実質的に上死点近傍では絞りを効かした
状態とする。
In this case, the cross-sectional area of the subchamber nozzle 1 was made the same as the conventional one! , t, the diaphragm is substantially applied near the top dead center.

・ 以下図面を参照して本発明による実施例につき説明
する1、 第3図は本発明による]実施例の燃焼室を示す断面図で
ある。
- An embodiment according to the present invention will be described below with reference to the drawings. Fig. 3 is a sectional view showing a combustion chamber of an embodiment according to the present invention.

図において、副燃焼室4の上部構造が半球型。In the figure, the upper structure of the sub-combustion chamber 4 is hemispherical.

下部が円錐台で、副室噴口1の主燃焼室3側の開口端に
対向するピストン2の頂面2aが副室噴口1の上記開口
端面1aに平行で、かつピストン中心線A−Aとのなす
最小角θがθ〈90°で構成されている。
The lower part is a truncated cone, and the top surface 2a of the piston 2 facing the opening end of the sub-chamber nozzle 1 on the main combustion chamber 3 side is parallel to the opening end surface 1a of the sub-chamber nozzle 1, and is aligned with the piston center line A-A. The minimum angle θ formed by θ<90°.

なお、5はシリンダヘッド、6は燃ネ」噴射弁。Furthermore, 5 is the cylinder head and 6 is the fuel injection valve.

7はグローノラグ、8はシリンダである。7 is a Gronolag, and 8 is a cylinder.

上記構成の場合の作用、効果について述べる。The functions and effects of the above configuration will be described.

第4図、第5図に上記角度θ=90°及びθ(900の
場合のクランク角度に対する副室噴口1の主燃焼室側開
口端面からピストン頂面までの距離り。1(それぞれり
。1c)1(42)及び副室噴口最小面積fmmを示す
。なお、第4図において、矢印Cはピストンの運動方向
を、Sはピストン中心線A−A方向の副室噴口の主燃焼
室側開口端面とピストン頂面との距離を示す。
Figures 4 and 5 show the distance from the opening end surface of the sub-chamber nozzle 1 on the main combustion chamber side to the top surface of the piston with respect to the crank angle when the angle θ = 90° and θ (900°, respectively. ) 1 (42) and the minimum area fmm of the pre-chamber nozzle. In Fig. 4, arrow C indicates the movement direction of the piston, and S indicates the main combustion chamber side opening of the pre-chamber nozzle in the direction of the piston center line A-A. Indicates the distance between the end surface and the top surface of the piston.

本発明による副室噴口1とピストン2頂面の構成にする
と、即ちθ〈90°とすると、角度θ−90゜に比べ+
 hciは小さくなる(第5図(a)の実線)。
When the subchamber nozzle 1 and the top surface of the piston 2 are configured according to the present invention, that is, when θ is 90°, the angle is + compared to θ-90°.
hci becomes smaller (solid line in FIG. 5(a)).

従って、副室噴lTll0主燃焼室3側開目端とピスト
ン20頂面で形成される周縁面積fcが副室噴口最小面
積となる上死点近傍では、副室噴口が従来よりも絞られ
るため、副燃焼室4から主燃焼室3へのガス流出は抑制
されるので、主燃焼室3壁による火炎冷却及び熱損失が
低減すると共に、主燃焼室3内ガスの圧力上昇率も低減
する。その後。
Therefore, near top dead center, where the peripheral area fc formed by the main combustion chamber 3 side open end and the top surface of the piston 20 is the minimum area of the subchamber nozzle, the subchamber nozzle is narrowed more than before. Since gas outflow from the auxiliary combustion chamber 4 to the main combustion chamber 3 is suppressed, flame cooling and heat loss due to the walls of the main combustion chamber 3 are reduced, and the rate of pressure rise of the gas within the main combustion chamber 3 is also reduced. after that.

主燃焼室3間隙が増大し、副室噴口最小面積が副室頃日
通路面積になると、副室噴口面積が従来よりも遅れて拡
大されるため、流動抵抗減少による噴流の被ネトレーシ
ョン増大で、主燃焼室3内の混合気形成、燃焼が促進さ
れる。
When the main combustion chamber 3 gap increases and the minimum area of the pre-chamber nozzle becomes the pre-chamber daily passage area, the pre-chamber nozzle area expands later than before, resulting in increased jet netration due to decreased flow resistance. , mixture formation and combustion within the main combustion chamber 3 are promoted.

従って、上死点近傍では、副室頃日通路面積及びぎスト
ン頂面が形成する隙間距離り。iが従来と同じでも、副
室噴口が従来よシも絞られる形となり副室噴口最小面積
も従来のものよシも遅れて拡大され燃焼に都合よくなる
Therefore, near the top dead center, the area of the passageway around the subchamber and the gap distance formed by the top surface of the giston are the same. Even if i is the same as before, the pre-chamber nozzle is narrower than before, and the minimum area of the pre-chamber nozzle is enlarged later than in the conventional case, making it more convenient for combustion.

以上により機関の燃費、排煙、騒音、熱損失の低減が実
現できる。
As a result of the above, reductions in engine fuel consumption, smoke exhaust, noise, and heat loss can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の副室式機関の燃焼室を示す断面図、第2
図(a)は第1図の副室噴口の眉縁面積を示す説明図、
第2図(1))は第1図の副室噴口のクランク角度に対
する最小噴口面積の変化を示す線図。 第3図は本発明による1実施例の副室式機関の燃焼室を
示す断面図、第4図(a)は角度0=9(10の場合の
副室噴口の主燃焼室側開口端面からピストン頂面捷での
距離り。1を示す説明図、第4図(l〕)は同じく角度
θ〈90°の場合の上記距離り。2を示す説明図、第4
図(c)は第4図(b)のx部の拡大図、第5図(a)
は角度θ−900及びθ〈900場合のクランク角度に
対する副室噴口の主燃焼室側開口端面からピストン頂面
までの距離り。1及びり。2を示す線図。 第5図(b)は角度θ=90°及びθ〈90°の場合の
クランク角度に対する副室噴口最小面積fmjnを示す
線図である。 ■・・・副室噴口、1a・・・副室噴口の主燃焼室側聞
口端面、2・・・ピストン、2a・・・ピストンの頂面
。 3・・・主燃焼室、4・・・副燃焼室、5・・・シリン
ダヘッド、8・・・シリンダ。
Figure 1 is a sectional view showing the combustion chamber of a conventional pre-chamber engine;
Figure (a) is an explanatory diagram showing the eyebrow area of the subchamber orifice in Figure 1;
FIG. 2(1)) is a diagram showing the change in the minimum nozzle area of the pre-chamber nozzle shown in FIG. 1 with respect to the crank angle. FIG. 3 is a cross-sectional view showing the combustion chamber of a pre-chamber type engine according to one embodiment of the present invention, and FIG. Distance at piston top surface deflection. An explanatory diagram showing 1, Fig. 4 (l) shows the above distance when the angle θ is <90°. An explanatory diagram showing 2, Fig. 4
Figure (c) is an enlarged view of the x part of Figure 4 (b), Figure 5 (a)
is the distance from the opening end surface of the sub-chamber injection port on the main combustion chamber side to the top surface of the piston with respect to the crank angle when the angle is θ-900 and θ<900. 1 or so. 2. Diagram showing 2. FIG. 5(b) is a diagram showing the minimum area fmjn of the pre-chamber nozzle port with respect to the crank angle when the angle θ=90° and θ<90°. ■... Sub-chamber nozzle, 1a... Main combustion chamber side inlet end face of sub-chamber nozzle, 2... Piston, 2a... Top surface of the piston. 3...Main combustion chamber, 4...Sub-combustion chamber, 5...Cylinder head, 8...Cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1、 シリンダヘッドに副燃焼室と同副燃焼室とピスト
ン側の主燃焼室とを連通ずる副室噴口とを有する副室式
機関において、上記副室噴口の主燃焼室側の開口端面に
対向するピストン頂面が上記開口端面に平行でかつピス
トン中心線とのなす最小角θがθ〈90°に形成された
ことを特徴とする副室式機関の燃焼室。
1. In a sub-chamber engine having a sub-combustion chamber in the cylinder head and a sub-chamber nozzle that communicates the sub-combustion chamber with the main combustion chamber on the piston side, the sub-chamber nozzle faces the opening end surface of the sub-chamber nozzle on the main combustion chamber side. A combustion chamber for a subchamber type engine, characterized in that a top surface of the piston is parallel to the opening end surface, and a minimum angle θ with the piston center line is θ<90°.
JP57016988A 1982-02-06 1982-02-06 Combustion chamber of auxiliary combustion chamber type engine Granted JPS58135317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57016988A JPS58135317A (en) 1982-02-06 1982-02-06 Combustion chamber of auxiliary combustion chamber type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016988A JPS58135317A (en) 1982-02-06 1982-02-06 Combustion chamber of auxiliary combustion chamber type engine

Publications (2)

Publication Number Publication Date
JPS58135317A true JPS58135317A (en) 1983-08-11
JPS6342090B2 JPS6342090B2 (en) 1988-08-22

Family

ID=11931409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016988A Granted JPS58135317A (en) 1982-02-06 1982-02-06 Combustion chamber of auxiliary combustion chamber type engine

Country Status (1)

Country Link
JP (1) JPS58135317A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132358A (en) * 1987-11-19 1989-05-24 Kibun Kk Base plate for 'kamaboko'

Also Published As

Publication number Publication date
JPS6342090B2 (en) 1988-08-22

Similar Documents

Publication Publication Date Title
US4291655A (en) Combustion chamber of an internal combustion engine
US4128092A (en) Internal combustion engine with an auxiliary combustion chamber
US4098246A (en) Internal combustion engine with an auxiliary combustion chamber
US4005684A (en) Internal combustion engine
US4178903A (en) Internal combustion engine with an auxiliary combustion chamber
US4041923A (en) Internal combustion engine of lean air-fuel mixture combustion type
JPS59201922A (en) Construction of auxiliary combustion chamber of diesel engine
US6701883B2 (en) Cylinder head for use on a spark-ignition internal combustion engine and such spark-ignition internal combustion engine
JPS6236131B2 (en)
JPS5917248B2 (en) Internal combustion engine with auxiliary combustion chamber
US4058090A (en) Internal combuston engine with auxiliary combustion chamber
JPS58135317A (en) Combustion chamber of auxiliary combustion chamber type engine
US4116234A (en) Internal combustion engine with an auxiliary combustion chamber
JPS6236130B2 (en)
JP3116612B2 (en) In-cylinder direct injection diesel engine
JPH1077844A (en) Combustion chamber for auxiliary chamber type internal combustion engine
JP3212457B2 (en) Combustion chamber of subchamber internal combustion engine
JPS62332B2 (en)
JPH074242A (en) Auxiliary chamber type engine
JPS5968518A (en) Combustion chamber for engine with pre-chamber
JPH06173687A (en) Combustion chamber having subchamber of internal combustion engine
JPS6118182Y2 (en)
JPH0618035Y2 (en) Combustion chamber of a sub-chamber internal combustion engine
JPH0134657Y2 (en)
JPS62291426A (en) Sub-chamber nozzle hole structure of sub-chamber type internal combustion engine