JPS5813530B2 - Alpha − Ketosanno Seizouhou - Google Patents

Alpha − Ketosanno Seizouhou

Info

Publication number
JPS5813530B2
JPS5813530B2 JP753382A JP338275A JPS5813530B2 JP S5813530 B2 JPS5813530 B2 JP S5813530B2 JP 753382 A JP753382 A JP 753382A JP 338275 A JP338275 A JP 338275A JP S5813530 B2 JPS5813530 B2 JP S5813530B2
Authority
JP
Japan
Prior art keywords
acid
phenylhydrazone
pyruvic acid
iron
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP753382A
Other languages
Japanese (ja)
Other versions
JPS5176221A (en
Inventor
中島俊雄
田伏岩夫
藪下安紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Unitika Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Unitika Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP753382A priority Critical patent/JPS5813530B2/en
Publication of JPS5176221A publication Critical patent/JPS5176221A/en
Publication of JPS5813530B2 publication Critical patent/JPS5813530B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はα−ケト酸の製造法に関するものであり、さら
に詳しくは脂肪族カルボン酸、フエニル酢酸、p−ヒド
ロキシフエニル酢酸またはインドール酢酸あるいはそれ
らの誘導体あるいはそれらの混合物を、還元状態にある
鉄−イオウ錯体の存在下で炭酸ガスと反応させ炭酸固定
を行なわしめることを特徴とするα−ケト酸の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing α-keto acids, and more particularly to aliphatic carboxylic acids, phenylacetic acid, p-hydroxyphenylacetic acid, or indoleacetic acid, derivatives thereof, or mixtures thereof. The present invention relates to a method for producing an α-keto acid, which comprises reacting with carbon dioxide gas in the presence of an iron-sulfur complex in a reduced state to fix carbonic acid.

α−ケト酸の製造方法としては、これまでに(1)α−
オキシ酸を酸化する方法(2)酸塩化物をシアン化銅で
処理して得られるα−ケト酸ニトリルを加水分解する方
法(3)アセト酢酸エステルやマロン酸から得られるオ
キシムを加水分解する方法などが知られているが、いず
れの製造法も多工程に及び副生物も多く、効果的な合成
法とはいいがたい。
Up to now, methods for producing α-keto acids include (1) α-
Method for oxidizing oxyacids (2) Method for hydrolyzing α-keto acid nitrile obtained by treating acid chloride with copper cyanide (3) Method for hydrolyzing oxime obtained from acetoacetate or malonic acid However, all of these production methods require multiple steps and produce many by-products, so it is difficult to say that they are effective synthetic methods.

これに対し本発明の目的は一般によく知られた、入手容
易なカルボン酸等を原料とし、これに化学原料としては
利用価置の乏しい炭酸ガスを作用させて、ケトカルボン
酸を一工程で合成することにある。
In contrast, the purpose of the present invention is to synthesize ketocarboxylic acids in one step by using generally well-known and easily available carboxylic acids as raw materials and reacting them with carbon dioxide, which has little utility as a chemical raw material. There is a particular thing.

また本発明の方法により得られるケトカルボン酸は多種
類にわたる。
Furthermore, there are many types of ketocarboxylic acids that can be obtained by the method of the present invention.

このことは前述の公知のケトカルボン酸の合成法に比べ
本発明の大きな利点といえる。
This can be said to be a major advantage of the present invention compared to the above-mentioned known method for synthesizing ketocarboxylic acids.

本発明において用いられるカルボン酸は、ギ酸、酢酸、
ラク酸、イソラク酸、イソ吉草酸、メチル酪酸、アミノ
吉草酸、グリコール酸、コハク酸等の脂肪族カルボン酸
、フエニル酢酸、p−ヒドロキシフエニル酢酸、インド
ール酢酸であり、誘導体としてはたとえばそれらの酸無
水物、酸エステル、チオールエステルがあげられる。
The carboxylic acids used in the present invention include formic acid, acetic acid,
These include aliphatic carboxylic acids such as lactic acid, isolactic acid, isovaleric acid, methylbutyric acid, aminovaleric acid, glycolic acid, and succinic acid, phenylacetic acid, p-hydroxyphenylacetic acid, and indoleacetic acid. Examples include acid anhydrides, acid esters, and thiol esters.

また本発明に使用する酸エステル、チオールエステルを
生成するアルコールおよびチオアルコール成分としては
たとえば、炭素数1〜20までの脂肪族または芳香族ア
ルコールあるいはチオアルコールあるいはそれらの混合
物があげられる。
Examples of the alcohol and thioalcohol components that produce acid esters and thiol esters used in the present invention include aliphatic or aromatic alcohols having 1 to 20 carbon atoms, thioalcohols, and mixtures thereof.

とりわけ本発明においてはチオールエステルを用いるの
が好ましい。
Particularly preferred in the present invention is the use of thiol esters.

本発明の特徴の一つはカルボン酸と炭酸ガスを反応させ
てα−ケト酸を合成するに際し、還元状態にある鉄−イ
オウ錯体を触媒として使用するところにある。
One of the features of the present invention is that an iron-sulfur complex in a reduced state is used as a catalyst when synthesizing an α-keto acid by reacting a carboxylic acid with carbon dioxide gas.

本発明で用いうる鉄−イオウ錯体としてはたとえば下記
の構造式をもつ化合物があげられる。
Examples of iron-sulfur complexes that can be used in the present invention include compounds having the following structural formula.

(ただしRはメチル基、エチル基、ブチル基、フエニル
基のいずれかをphはフエニル基を表わす。
(R represents a methyl group, an ethyl group, a butyl group, or a phenyl group, and ph represents a phenyl group.

)とりわけ の構造式をもつ化合物が好適である。) among others Compounds having the structural formula are preferred.

また本発明は触媒として使用する鉄−イオウ錯体を無機
および有機の還元剤で還元し還元状態で使用することを
特徴とする。
Further, the present invention is characterized in that the iron-sulfur complex used as a catalyst is reduced with an inorganic or organic reducing agent and used in a reduced state.

この合成鉄−イオウ錯体の還元に使用する還元剤として
は無機および有機のすべての還元剤が有効であり、特に
制限はない。
All inorganic and organic reducing agents are effective as the reducing agent used for reducing the synthetic iron-sulfur complex, and there are no particular limitations.

本発明に使用する鉄−イオウ錯体は水、アルコール、エ
ーテル、ベンゼン等常用の溶媒に不溶であるが還元状態
になると上記溶媒に可溶となる。
The iron-sulfur complex used in the present invention is insoluble in commonly used solvents such as water, alcohol, ether, and benzene, but becomes soluble in the above-mentioned solvents when reduced.

反応には上記単一溶媒、混合溶媒が反応溶媒として使用
できるが、とりわけメタノール、テトラヒドロフラン・
メタノール・水の溶媒が好適である。
In the reaction, the above single solvent or mixed solvent can be used as a reaction solvent, but methanol, tetrahydrofuran, etc.
A methanol/water solvent is preferred.

本発明の方法によるα−ケト酸の合成は、鉄−イオウ錯
体を還元剤によって還元状態にして、カルボン酸または
その誘導体と炭酸ガスとを反応させることにより行なう
The synthesis of α-keto acids according to the method of the present invention is carried out by reducing the iron-sulfur complex with a reducing agent and reacting the carboxylic acid or its derivative with carbon dioxide gas.

このα−ケト酸合成反応は室温・常圧で行なえるのが特
徴であるが、加圧下でも同様に可能である。
This α-keto acid synthesis reaction is characterized in that it can be carried out at room temperature and normal pressure, but it can also be carried out under pressure.

本発明の方法は安価で供給容易な炭酸ガスを原料に使用
すること、また触媒である鉄−イオウ錯体が再利用でき
ることなど、製品コストを軽減すると共に資源の循環利
用という意味からも工業的価値がきわめて大きいといえ
る。
The method of the present invention uses carbon dioxide gas, which is cheap and easy to supply, as a raw material, and the iron-sulfur complex that is the catalyst can be reused, which reduces product costs and has industrial value in terms of recycling resources. can be said to be extremely large.

本発明を更に明瞭に説明するために以下本発明の実施例
をあげる。
Examples of the present invention will be given below to explain the present invention more clearly.

しかしこれは単に例として説明するものであり、本発明
はこれに限定されるものではない。
However, this is merely an example, and the invention is not limited thereto.

実施例 1 効率のよい冷却管のついた反応器に鉄−イオウ錯体 110mg、ハイドロサルファイトナトリウム2,5g
、炭酸水素ナトリウム0.5g、n−オクチルチオール
アセテート1.09およびフエニルヒドラジン120m
gを入れ、溶媒としてテトラヒドロフラン20ml、メ
タノール5ml、水5mlを用いて効率よく攪拌しなが
ら炭酸ガスを室温で8時間吹き込み反応を行った。
Example 1 110 mg of iron-sulfur complex and 2.5 g of sodium hydrosulfite were placed in a reactor equipped with an efficient cooling tube.
, 0.5 g of sodium bicarbonate, 1.09 m of n-octylthiol acetate and 120 m of phenylhydrazine.
The reaction was carried out by blowing carbon dioxide gas at room temperature for 8 hours with efficient stirring using 20 ml of tetrahydrofuran, 5 ml of methanol, and 5 ml of water as solvents.

反応終了後、反応混合液をろ過し、ろ液をアルカリ条件
(約pH10)で未反応エステルなどをエーテル抽出に
より除去後、水層中のピルビン酸のフエニルヒドラゾン
を約pH4でエーテル層に移行させエーテル抽出しエー
テルを除去しビルビン酸のフエニルヒドラゾンを得た。
After the reaction is completed, the reaction mixture is filtered, and the filtrate is removed by ether extraction under alkaline conditions (about pH 10) to remove unreacted esters, etc., and the phenylhydrazone of pyruvic acid in the aqueous layer is transferred to the ether layer at about pH 4. The mixture was extracted with ether and the ether was removed to obtain phenylhydrazone of pyruvic acid.

上記の方法で得られたピルビン酸のフエニルヒドラゾン
の同定は薄層クロマトグラフイーにより試料のRf値と
標準品のRf値とを比較することにより行った。
The phenylhydrazone of pyruvic acid obtained by the above method was identified by comparing the Rf value of the sample and the Rf value of the standard product using thin layer chromatography.

すなわち、市販品のピルビン酸とフエニルヒドラジンと
を反応させて得られたピルビン酸のフエニルヒドラゾン
を標準品とし、シリカゲルを固定相としn−ブタノール
ーアセトンー水(10:10:5)を展開溶媒とし薄層
クロマトグラフイーで分析したところ実施例1で得られ
たピルビン酸のフエニルヒドラゾンのRf値は0.2で
あり標準品のRf値と全く同じ値を示した。
That is, phenylhydrazone of pyruvic acid obtained by reacting commercially available pyruvic acid and phenylhydrazine was used as a standard product, silica gel was used as a stationary phase, and n-butanol-acetone-water (10:10:5) was used. When analyzed by thin layer chromatography using phenylhydrazone of pyruvic acid obtained in Example 1 as a developing solvent, the Rf value of the phenylhydrazone of pyruvic acid obtained in Example 1 was 0.2, which was exactly the same as the Rf value of the standard product.

また、上記標準品をさらにジアゾメタンで処理して得た
ビルビン酸メチルエステルのフエニルヒドラゾンを標準
品とし、シリカゲルを固定相とし、クロロホルム−メタ
ノール−酢酸−水(30:15:4:1)を展開溶媒と
し薄層クロマトグラフイーで分析したところ実施例1で
得られたピルビン酸のフエルヒドラゾンをジアゾメタン
で処理したエステル体のRf値は0.7であり標準品の
Rf値と全く同じ値を示した。
In addition, phenylhydrazone of biruvic acid methyl ester obtained by further treating the above standard product with diazomethane was used as a standard product, silica gel was used as a stationary phase, and chloroform-methanol-acetic acid-water (30:15:4:1) was added. When analyzed by thin layer chromatography using a developing solvent, the Rf value of the ester form of the ferhydrazone of pyruvic acid obtained in Example 1 treated with diazomethane was 0.7, which was exactly the same as the Rf value of the standard product. Indicated.

実施例 2 効率のよい冷却器のついた反応器に塩化第1鉄26mg
、硫化ナトリウム13mg、メルカプトエタノール3.
5gにより合成鉄−イオウ錯体をつくり脱気下でアミノ
エチルチオールフエニルアセテート120mg、炭酸水
素ナトリウム500mgおよびフエニルヒドラゾン12
0mgを入れ、溶媒としてテトラヒドロフラン20ml
、メタノール10ml、水5mlを用いて効率よく攪拌
しながら炭酸がスを室温で10時間吹き込み反応を行な
った。
Example 2 26 mg of ferrous chloride in a reactor equipped with an efficient condenser
, sodium sulfide 13 mg, mercaptoethanol 3.
A synthetic iron-sulfur complex was prepared using 5g of aminoethylthiol phenyl acetate, 500mg of sodium bicarbonate, and phenylhydrazone 12 under degassing.
0mg and 20ml of tetrahydrofuran as a solvent.
Using 10 ml of methanol and 5 ml of water, carbonic acid was blown into the mixture at room temperature for 10 hours while stirring efficiently to carry out the reaction.

反応終了後は実施例1と同様の方法で精製操作を行ない
、フエニルビルビン酸のフエニルヒドラゾンを得た。
After the reaction was completed, purification was performed in the same manner as in Example 1 to obtain phenylhydrazone of phenylpyruvic acid.

得られたフエニルピルビン酸のフエニルヒドラゾン及び
このものをさらにジアゾメタンで処理したエステル体に
ついて、標準品として市販品のフエニルピルビン酸とフ
エニルヒドラジンとを反応させて得られたフエニルピル
ビン酸のフエニルヒドラゾンあるいはこのものをジアゾ
メタンで処理して得たフエニルピルビン酸メチルエステ
ルのフエニルヒドラゾンを用いたほかは実施例1と同じ
方法で分析したところRf値はそれぞれ0.4及び0.
8であり、対応する標準品のRf値と全く同じ値を示し
た。
The phenylpyruvic acid obtained by reacting the phenylhydrazone of phenylpyruvic acid obtained and the ester form obtained by further treating this with diazomethane with commercially available phenylpyruvic acid and phenylhydrazine as a standard product. Analysis was performed in the same manner as in Example 1, except that the phenylhydrazone of phenylhydrazone or the phenylhydrazone of phenylpyruvate methyl ester obtained by treating this with diazomethane was used, and the Rf values were 0.4 and 0.0, respectively.
8, showing exactly the same Rf value as the corresponding standard product.

実施例 3 効率のよい冷却管のついた反応器に合成鉄−イオウ錯体 100mg、ハイドロサルファイトナトリウム5.0g
、炭酸水素ナトリウム500mg、n−オクチルチオー
ルアセテート500mgを入れ、溶媒としてテトラヒド
ロフラン20ml、メタノール10ml、水5mlを用
いて効率よく攪拌しながら炭酸ガスを室温で7時間吹き
込み反応を行なった。
Example 3 100 mg of synthetic iron-sulfur complex and 5.0 g of sodium hydrosulfite were placed in a reactor equipped with an efficient cooling tube.
, 500 mg of sodium hydrogen carbonate, and 500 mg of n-octylthiol acetate were added, and while stirring efficiently, using 20 ml of tetrahydrofuran, 10 ml of methanol, and 5 ml of water as solvents, a reaction was carried out by blowing carbon dioxide gas at room temperature for 7 hours.

反応終了後、反応混合液をろ過し、ろ液をアルカリ条件
(約pH10)で未反応エステルなどをエーテル抽出に
より除去後、水層中のピルビン酸を約ph4でエーテル
層に移行させエーテル抽出し、エーテルを減圧濃縮後、
カラムクロマトグラフイーを用いてほぼ純粋なピルビン
酸を得た。
After the reaction is completed, the reaction mixture is filtered, and the filtrate is extracted with ether under alkaline conditions (about pH 10) to remove unreacted esters, etc., and then the pyruvic acid in the aqueous layer is transferred to the ether layer at about pH 4 and extracted with ether. , after concentrating the ether under reduced pressure,
Almost pure pyruvic acid was obtained using column chromatography.

上記の方法で得たピルビン酸について、市販品のピルビ
ン酸を標準品とし、シリカゲルを固定相とし、ビリジン
ー石油エーテル(1:2)を展開溶媒とし薄層クロマト
グラフイーで分析したところRf値は0.4であり標準
品のRf値と全く同じ値を示した。
The pyruvic acid obtained by the above method was analyzed by thin layer chromatography using commercially available pyruvic acid as a standard, silica gel as a stationary phase, and pyridine-petroleum ether (1:2) as a developing solvent. The Rf value was 0.4, which was exactly the same as the Rf value of the standard product.

また、市販品のピルビン酸をジアゾメタンで処理して得
たピルビン酸メチルエステルを標準品としシリカゲルを
固定相とし、クロロホルムを展開溶媒とし薄層クロマト
グラフイーで分析したところ実施例3で得られたピルビ
ン酸をジアゾメタンで処理して得たエステル体のRf値
は0.7であり標準品のRf値と全く同じ値を示した。
In addition, analysis was conducted by thin layer chromatography using pyruvic acid methyl ester obtained by treating commercially available pyruvic acid with diazomethane as a standard product, silica gel as a stationary phase, and chloroform as a developing solvent. The Rf value of the ester obtained by treating pyruvic acid with diazomethane was 0.7, which was exactly the same as the Rf value of the standard product.

実施例 4 n−オクチルチオールアセテートにかえてn−オクチル
チオールp−ヒドロキシフエニルアセテートを用いたほ
かは実施例1と同様にしてp−ヒドロキシフエニルピル
ビン酸のフエニルヒドラゾンを得た。
Example 4 Phenylhydrazone of p-hydroxyphenylpyruvic acid was obtained in the same manner as in Example 1 except that n-octylthiol p-hydroxyphenyl acetate was used instead of n-octylthiol acetate.

得られたp−ヒドロキシフエニルピルビン酸のフエニル
ヒドラゾン及びこのものをさらにジアゾメタンで処理し
て得たエステル体について、標準品として市販品のp−
ヒドロキシフエニルピルビン酸とフエニルヒドラジンと
を反応させて得られたp−ヒドロキシフエニルピルビン
酸のフエニルヒドラゾンあるいはこのものをジアゾメタ
ンで処理して得たp−ヒドロキシフエニルピルビン酸メ
チルエステルのフエニルヒドラゾツを用いたほかは実施
例1と同じ方法で分析したところRf値はそれそれ0.
1及び0.6であり、対応する標準品のRf値と全く同
じ値を示した。
Regarding the obtained phenylhydrazone of p-hydroxyphenylpyruvic acid and the ester obtained by further treating this with diazomethane, commercially available p-
Phenylhydrazone of p-hydroxyphenylpyruvic acid obtained by reacting hydroxyphenylpyruvic acid with phenylhydrazine, or a phenylhydrazone of p-hydroxyphenylpyruvic acid methyl ester obtained by treating this with diazomethane. When analyzed in the same manner as in Example 1 except for using enylhydrazotz, the Rf values were 0.
1 and 0.6, showing exactly the same Rf value as the corresponding standard product.

実施例 5 n−オクチルチオールアセテートにかえてn−オクチル
チオールインドールアセテートを用いたほかは実施例1
と同様にしてβ−インドール−3−ピルビン酸のフエニ
ルヒドラヅンを得た。
Example 5 Example 1 except that n-octylthiol indole acetate was used instead of n-octylthiol acetate.
Phenylhydrazine of β-indole-3-pyruvic acid was obtained in the same manner as above.

得られたβ−インドール−3−ピルビン酸のフエニルヒ
ドラゾン及びこのものをジアゾメタンで処理して得たエ
ステル体について、標準品として市販品のβ−インドー
ル−3−ピルビン酸とフエニルヒドラジンとを反応させ
て得られたβ−インドール−3−ピルビン酸のフエニル
ヒドラゾンあるいはこのものをジアゾメタンで処理して
得たβ−インドール−3−ピルビン酸ノチルエステルの
フエニルヒドラゾンを用いたほかは実施例1と同じ方法
で分析したところRf値はそれぞれ0.2及び0.6で
あり、対応する標準品のRf値と全く同じ値を得た。
Regarding the obtained phenylhydrazone of β-indole-3-pyruvic acid and the ester obtained by treating this with diazomethane, commercially available β-indole-3-pyruvic acid and phenylhydrazine were used as standard products. Example 1 except that phenylhydrazone of β-indole-3-pyruvic acid obtained by the reaction or phenylhydrazone of β-indole-3-pyruvic acid notyl ester obtained by treating this with diazomethane was used. When analyzed using the same method as above, the Rf values were 0.2 and 0.6, respectively, which were exactly the same as the Rf values of the corresponding standard products.

Claims (1)

【特許請求の範囲】[Claims] 1 脂肪族カルボン酸、フエニル酢酸、p−ヒドロキシ
フエニル酢酸またはインドール酢酸あるいはそれらの誘
導体あるいはそれらの混合物を、還元状態にある鉄−イ
オウ錯体の存在下で炭酸ガスと反応させ炭酸固定を行な
わしめることを特徴とするα−ケト酸の製造法。
1. Reacting an aliphatic carboxylic acid, phenylacetic acid, p-hydroxyphenylacetic acid, or indoleacetic acid, or a derivative thereof, or a mixture thereof with carbon dioxide gas in the presence of an iron-sulfur complex in a reduced state to fix carbonic acid. A method for producing an α-keto acid, characterized by:
JP753382A 1974-12-26 1974-12-26 Alpha − Ketosanno Seizouhou Expired JPS5813530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP753382A JPS5813530B2 (en) 1974-12-26 1974-12-26 Alpha − Ketosanno Seizouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP753382A JPS5813530B2 (en) 1974-12-26 1974-12-26 Alpha − Ketosanno Seizouhou

Publications (2)

Publication Number Publication Date
JPS5176221A JPS5176221A (en) 1976-07-01
JPS5813530B2 true JPS5813530B2 (en) 1983-03-14

Family

ID=11555792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP753382A Expired JPS5813530B2 (en) 1974-12-26 1974-12-26 Alpha − Ketosanno Seizouhou

Country Status (1)

Country Link
JP (1) JPS5813530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543118A (en) * 1991-08-14 1993-02-23 Fuji Xerox Co Ltd Paper sheet storage device for intermediate tray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543118A (en) * 1991-08-14 1993-02-23 Fuji Xerox Co Ltd Paper sheet storage device for intermediate tray

Also Published As

Publication number Publication date
JPS5176221A (en) 1976-07-01

Similar Documents

Publication Publication Date Title
Yang et al. Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes via cooperative photoredox catalysis and organocatalysis
Corey et al. Two effective procedures for the synthesis of trichloromethyl ketones, useful precursors of chiral α-amino and α-hydroxy acids
JPS5813530B2 (en) Alpha − Ketosanno Seizouhou
CN111056971A (en) Synthesis method of 2-hydroxy carboxylic ester
Pirrung et al. Photochemistry of substituted benzoylformate esters. A convenient method for the photochemical oxidation of alcohols
Struve et al. Synthesis and reactivity of C-6 substituted (Z)-alk-2-en-4-ynoic acids
Sato et al. Stereoselective preparation of α-hydroxycarboxamide by manganese complex catalyzed hydration of α, β-unsaturated carboxamide with molecular oxygen and phenylsilane
JPH0331245A (en) Production of hydroxy-n-acyl-alpha-amino acid derivative
CN112679527B (en) Method for synthesizing 3-decarbamoyl-acetyl-cefuroxime acid compound
CN109320418B (en) Synthesis method and application of 1,3, 5-trimethyl benzene tricarboxylate
CN115215742B (en) Method for efficiently synthesizing carboxylic anhydride by taking carboxylic acid as raw material under mild condition
JPS6122081A (en) Preparation of hydantoin compound
JPS625935A (en) Production of alpha-keto-acid
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
EP2076482A1 (en) Method for the production of alpha-keto acids and esters thereof
JPH02235850A (en) Production of hydroxy-n-acyl-alpha-amino acid derivative, oligomer and lactone thereof
SU1004372A1 (en) Process for producing 2-(2-pyridyl-carbonyl) benzoic acid
US6121487A (en) Method of producing amino acids and amino-acid derivatives
EP1017650A1 (en) Asymmetric hydrogenation
JPH02273640A (en) Production of benzyl pyruvic acids and esters thereof
JPS5915903B2 (en) Amino acid production method
JPS5915902B2 (en) Amino acid production method
JPS588382B2 (en) Amino Sanno Seizouhou
Edwards Jr et al. Furfuryl esters of some dicarboxylic acids
CN115304477A (en) Preparation method of aromatic carboxylic ester