JPS58135118A - Absorption and separation of carbon monoxide - Google Patents

Absorption and separation of carbon monoxide

Info

Publication number
JPS58135118A
JPS58135118A JP57014588A JP1458882A JPS58135118A JP S58135118 A JPS58135118 A JP S58135118A JP 57014588 A JP57014588 A JP 57014588A JP 1458882 A JP1458882 A JP 1458882A JP S58135118 A JPS58135118 A JP S58135118A
Authority
JP
Japan
Prior art keywords
absorption liquid
carbon monoxide
absorption
mixed gas
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57014588A
Other languages
Japanese (ja)
Other versions
JPS6043167B2 (en
Inventor
Hidefumi Hirai
平井 英史
Makoto Komiyama
真 小宮山
Susumu Hara
進 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57014588A priority Critical patent/JPS6043167B2/en
Priority to AU82874/82A priority patent/AU530246B2/en
Priority to CA000401772A priority patent/CA1194277A/en
Priority to US06/373,241 priority patent/US4460384A/en
Priority to DE3216024A priority patent/DE3216024C2/en
Publication of JPS58135118A publication Critical patent/JPS58135118A/en
Publication of JPS6043167B2 publication Critical patent/JPS6043167B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To separate CO from a water-containing mixed gas, economically, in an industrial scale, by usung a CO-absorption liquid composed of 2-20-mer of styrene or its derivative, a Cu(I) halide and an Al(1A73) halide. CONSTITUTION:The objective CO-absorption liquid can be prepared by mixing a 2-20-mer of styrene or its derivative with Cu(I) halide and AlIII halide, and stirring the mixture at about 20-90 deg.C for several hours. When the absorption liquid is brought into contact with a CO-containing mixed gas, CO is rapidly absorbed and separated from the mixture. The absorbed CO can be released rapidly by heating the liquid at about 110-150 deg.C. Since the absorption liquid is stable against water, it can be used in the separation of CO from a mixed gas containing >=1ppm of water.

Description

【発明の詳細な説明】 本発明は、窒素、酸素、メタン、二酸化炭素および水素
などとともに一酸化炭素を含有する混合ガスから、−酸
化炭素を分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating -carbon oxide from a mixed gas containing carbon monoxide along with nitrogen, oxygen, methane, carbon dioxide, hydrogen, and the like.

−酸化炭素は合成化学の基礎原料であり、コークスおよ
び石炭より発生炉、水性ガス炉、ウィンクラ−炉、ルル
ギ炉およびコツパース炉などを用いて製造される。また
、天然ガスおよび石油炭化水素から水蒸気改質法および
部分酸化法により製造される。これらの方法では、生成
物は、−酸化炭素、水素、二酸化炭素、メタンおよび窒
素などの混合ガスとして得られる。また、この混合ガス
には少量の水が含まれる。たとえば、水性ガスの場合、
−酸化炭素35〜40%、水素45〜51チ。
- Carbon oxide is a basic raw material in synthetic chemistry, and is produced from coke and coal using generator furnaces, water gas furnaces, Winkler furnaces, Lurgi furnaces, Kotspers furnaces, etc. It is also produced from natural gas and petroleum hydrocarbons by steam reforming and partial oxidation methods. In these methods, the product is obtained as a mixture of gases such as carbon oxide, hydrogen, carbon dioxide, methane and nitrogen. This mixed gas also contains a small amount of water. For example, for water gas,
- Carbon oxide 35-40%, hydrogen 45-51%.

二酸化炭素4〜5チ、メタン0.5〜1.0%、窒素4
〜9チの組成をもち、1000〜20000ppm の
水を含んでいる。製鉄所や製油所あるいは石油化学工場
で副生ずる一酸化炭素も、同様に、混合ガスとして得ら
れる。
4-5% carbon dioxide, 0.5-1.0% methane, 4% nitrogen
It has a composition of 1000 to 20000 ppm of water. Carbon monoxide, a by-product of steel mills, oil refineries, and petrochemical plants, is similarly obtained as a mixed gas.

これらの−酸化炭素を合成化学原料に用いるためには、
混合ガスより一酸化炭素を分離することが必要である。
In order to use these -carbon oxides as raw materials for synthetic chemicals,
It is necessary to separate carbon monoxide from the mixed gas.

水素は化学工業における重要な原料であり、前述の各種
混合ガスあるいは2.石油化学工場の廃ガス、たとえば
、炭化水素の脱水素工程よりの廃ガスより分離されるが
、少量の一酸化炭素を含有することが多い。この−酸化
炭素は、水素を用いる反応の触媒に対して触媒毒となる
ので2分離除去する必要がある。また、これらの廃ガス
中には。
Hydrogen is an important raw material in the chemical industry, and can be used as the various mixed gases mentioned above or in 2. It is separated from the waste gas of petrochemical plants, for example from the hydrocarbon dehydrogenation process, and often contains small amounts of carbon monoxide. Since this carbon oxide becomes a catalyst poison for the catalyst of a reaction using hydrogen, it is necessary to separate and remove it. Also, in these waste gases.

少量の水を含むのが常である。It usually contains a small amount of water.

英国特許第1,318,790号明細書によれば、銅ア
ルミニウム四塩化物(Cu (AI C14) )のト
ルエン溶液は25℃で一酸化炭素30mo1%をふくむ
混合ガスと接触させると、−酸化炭素を吸収し、これを
80℃に温めると、95チの一酸化炭素が回収されるこ
とが記載されている。この吸収液は、混合ガス中に含ま
れる水素、二酸化炭素、メタン、窒素および酸素の影響
を受けず、吸収圧力が低いなどの長所を有する。しかし
ながら、この吸収液を用いる分離法は、1)銅アルミニ
ウム四塩化物は。
According to British Patent No. 1,318,790, when a toluene solution of copper aluminum tetrachloride (Cu (AI C14)) is brought into contact with a mixed gas containing 30 mo1% of carbon monoxide at 25°C, -oxidation occurs. It is stated that by absorbing carbon and heating it to 80°C, 95 Ti of carbon monoxide can be recovered. This absorption liquid has advantages such as being unaffected by hydrogen, carbon dioxide, methane, nitrogen, and oxygen contained in the mixed gas and having a low absorption pressure. However, the separation method using this absorption liquid is: 1) Copper aluminum tetrachloride.

混合ガス中の水と不可逆的に反応して不活性化するので
、工業的に実施するためには+  D、J、 Haas
eおよびり、 G、 WalkerらがChemica
l EngineeringProgress誌、第7
0巻、第5号、1974年5月発行、第76頁に記載し
ているように、混合ガス中の水は1 ppm以下に厳重
に抑制しなければならないこと、2)−酸化炭素吸収が
一10℃から40℃以下2通常、25℃で行なわれるた
めに、普通。
Since it irreversibly reacts with water in the mixed gas to inactivate it, + D, J, Haas is required for industrial implementation.
Chemica
l Engineering Progress Magazine, No. 7
As stated in Volume 0, No. 5, May 1974, page 76, water in the mixed gas must be strictly controlled to 1 ppm or less; 2) - Carbon oxide absorption is - 10℃ to 40℃ or lower 2 Usually carried out at 25℃, so it is common.

60℃以上で得られる混合ガスを25℃まで冷却する必
要があること、および、3)回収工程で80℃に温めて
放出された一酸化炭素は、溶媒であるトルエンの蒸気で
飽和されているので、トルエンを分離する工程が必要で
あること、などの欠点を有する。
It is necessary to cool the mixed gas obtained at 60°C or higher to 25°C, and 3) the carbon monoxide released by heating to 80°C in the recovery process is saturated with the vapor of toluene, which is a solvent. Therefore, it has drawbacks such as the need for a step to separate toluene.

その他2種々の方法が提案されているが、混合ガス上り
一酸化炭素を分離する方法には、まだ完全に満足すべき
ものは々い。
Two other methods have been proposed, but these methods for separating carbon monoxide from mixed gases are still far from completely satisfactory.

本発明者らは、かかる問題点を解決すべく鋭意研究した
結果、混合ガス中の水に対して安定で。
The inventors of the present invention have conducted extensive research to solve these problems, and have found that they are stable against water in the mixed gas.

50〜100℃、あるいはそれ以上の温度で一酸化炭素
の吸収が可能で、しかも溶媒の蒸気を回収する工程を必
要としない一酸化炭素吸収液を見出し。
Discovered a carbon monoxide absorbing liquid that can absorb carbon monoxide at temperatures of 50 to 100°C or higher, and does not require a process to recover solvent vapor.

本発明を完成した。The invention has been completed.

本発明の目的は;水を含有する混合ガスより一酸化炭素
を工業的有利に分離精製あるいは分離除去することにア
シ、この目的はスチレンあるいはその誘導体の2ないし
は20量体、ハロゲン化銅(I)、およびハロゲン化ア
ルミニウム(厘)より構成される液体を一酸化炭素吸収
液として用いることにより達成される。
The purpose of the present invention is to industrially advantageously separate and purify or separate and remove carbon monoxide from a mixed gas containing water. ) and aluminum halide as a carbon monoxide absorbing liquid.

本発明を更に詳細に説明すると、この方法において用い
られる一酸化炭素吸収液は、スチ、レンあるいはその誘
導体の2ないしは20量体を、ハロゲン化銅(1)およ
びハロゲン化アルミニウム(厘)とともに20〜90℃
に数時間保温、かくはんすることにより調製することが
できる。
To explain the present invention in more detail, the carbon monoxide absorption liquid used in this method contains 20 or 20 mer of styrene, rene or their derivatives together with copper (1) halide and aluminum halide (20). ~90℃
It can be prepared by keeping it warm for several hours and stirring it.

明細書に記述する。スチレンの誘導体とは、た、!:t
ば、  α−メチルスチレン、1,1−ジフェニルエチ
レン、2,3または4位に1ないしは2個のメチル基、
エチル基、あるいはハロゲンを有する芳香族置換スチレ
ンなどである。これらのn41体中に、非芳香族性の炭
素−炭素二重結合が存在する場合には、−酸化炭素吸収
液の調製あるいは一酸化炭素の分離の際に副反応を起こ
す可能性があるので、あらかじめ水素化などにより不飽
和としておくことが望ましい。
Describe it in the specification. What are styrene derivatives? :t
For example, α-methylstyrene, 1,1-diphenylethylene, 1 or 2 methyl groups at the 2, 3 or 4 position,
These include aromatic substituted styrene having an ethyl group or a halogen. If non-aromatic carbon-carbon double bonds are present in these n41 bodies, side reactions may occur during the preparation of the carbon oxide absorption liquid or the separation of carbon monoxide. , it is desirable to make it unsaturated by hydrogenation etc. in advance.

本発明に用いられるハロゲン化銅は、たとえば。Examples of the copper halide used in the present invention include:

塩化鋼(り、フッ化銅(1)および臭化銅(1)などで
ある。本発明に使用されるハロゲン化アルミニウム(1
)は、たとえば、塩化アルミニウム(厘)。
Chlorinated steel (1), copper fluoride (1), copper bromide (1), etc. Aluminum halide (1) used in the present invention
) is, for example, aluminum chloride (rin).

フッ化アルミニウム(厘)および臭化アルミニウム(1
)などである。
Aluminum fluoride (厘) and aluminum bromide (1
) etc.

本発明で用いられる吸収液の組成について述べると、ス
チレンあるいはその誘導体の2ないし20量体の単量体
残基とハロゲン化銅(1)とのモル比は0.02〜10
.好ましくは0.5〜3であり、ハロゲン化銅(I)と
ハロゲン化アルミニウム(厘)とのモル比は0.01〜
10.好ましくは0.5〜1.5である。
Regarding the composition of the absorption liquid used in the present invention, the molar ratio of 2- to 20-mer monomer residues of styrene or its derivatives and copper (1) halide is 0.02 to 10.
.. Preferably it is 0.5 to 3, and the molar ratio of copper(I) halide to aluminum halide is 0.01 to 3.
10. Preferably it is 0.5 to 1.5.

本発明による一酸化炭素吸収液を、常圧下で20〜10
0℃、好ましくは60〜80℃において一酸化炭素を含
む混合ガスと接触せしめると、迅速に一酸化炭素を吸収
する。−酸化炭素は、吸収液を110〜150℃、好ま
しくは115〜140℃に昇温することによシ、迅速に
放出される。−酸化炭素の吸収は、混合ガスの圧力を1
気圧以上とすることにより、100℃以上でも実施可能
である。
The carbon monoxide absorbing liquid according to the present invention was added at 20 to 10
When brought into contact with a mixed gas containing carbon monoxide at 0°C, preferably 60-80°C, carbon monoxide is rapidly absorbed. - Carbon oxide is rapidly released by heating the absorption liquid to 110-150°C, preferably 115-140°C. -Absorption of carbon oxide reduces the pressure of the mixed gas to 1
By setting the temperature to be at least atmospheric pressure, it is possible to carry out the process even at 100° C. or higher.

本発明による一酸化炭素吸収液は、水に対して安定であ
る。たとえば、実施例に見られるように。
The carbon monoxide absorption liquid according to the present invention is stable to water. For example, as seen in the Examples.

まず、  8,700ppmの水を含有する窒素気流に
吸収液を70℃で10分間接触させた後、高純度の一酸
化炭素と接触させて一酸化炭素を吸収させても。
First, the absorption liquid was brought into contact with a nitrogen stream containing 8,700 ppm of water at 70°C for 10 minutes, and then brought into contact with high-purity carbon monoxide to absorb carbon monoxide.

−酸化炭素の吸収能力の低下はほとんど認められない。- Almost no decrease in carbon oxide absorption capacity is observed.

本発明においては、スチレンまたはその誘導体の2ない
しは20量体を回収する工程は、これらの化合物の蒸気
圧が低いので、多くの場合。
In the present invention, the step of recovering 2- or 20-mer of styrene or its derivatives is often carried out because the vapor pressure of these compounds is low.

必要としない。do not need.

つぎに本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

〔実施例1〕 塩化アルミニウム(1)は、キシダ化学工業株式会社製
の特級試薬を真空昇華法によシ脱水精製して使用した。
[Example 1] Aluminum chloride (1) was used by dehydrating and purifying a special grade reagent manufactured by Kishida Chemical Industry Co., Ltd. using a vacuum sublimation method.

ポリスチレンのオリゴマーは、東洋ソーダ株式会社製A
−300(重合度2.3.4.5.6゜7および8の重
合体のモル分率が、それぞれ。
The polystyrene oligomer is A made by Toyo Soda Co., Ltd.
-300 (degree of polymerization: 2.3, 4, 5.6, molar fractions of polymers 7 and 8, respectively.

24チ、32%、22%、13チ、6チ、2チおよび1
チである混合物)を使用した。塩化銅(1)は、小宗化
学薬品株式会社製の特級試薬を使用した。−酸化炭素ガ
スおよび窒素ガスは、それぞれ高千穂化学株式会社製(
純度99.95%)および株式会社鈴木商館製(純度9
9.999%)のポンベガスを、使用直前にモレキーラ
ーシープ3A(日化精工株式会社製)の充填塔を通過さ
せて乾燥精製した。
24chi, 32%, 22%, 13chi, 6chi, 2chi and 1
(mixture) was used. As copper chloride (1), a special grade reagent manufactured by Koso Chemical Co., Ltd. was used. - Carbon oxide gas and nitrogen gas were manufactured by Takachiho Chemical Co., Ltd. (
(purity 99.95%) and Suzuki Shokan Co., Ltd. (purity 9
Immediately before use, Pombe gas (9.999%) was dried and purified by passing it through a packed column of Molekiller Sheep 3A (manufactured by Nikka Seiko Co., Ltd.).

乾燥窒素下で、  2001111の二ロナスフラスコ
中ニ2.4.!i’ (18mmol )の塩化アルミ
ニウム(I)、 1.8g(18mmol)の塩化銅(
■)、および10.0g(106mmol残基当量)の
ポリスチレンオリゴマーを入れ、磁気かくはん機を用い
てかきまぜつつ。
Under dry nitrogen, 2.4. ! i' (18 mmol) of aluminum chloride (I), 1.8 g (18 mmol) of copper chloride (
(2) and 10.0 g (106 mmol residue equivalent) of polystyrene oligomer were added and stirred using a magnetic stirrer.

70℃で4時間加熱保温して吸収液を調製した。An absorption liquid was prepared by heating and keeping at 70°C for 4 hours.

200 mA!の二ロナスフラスコ中で、70℃で、吸
収液を磁気かくはん機を用いてかきまぜつつ、1stm
の一酸化炭素と窒素の混合ガス(−酸化炭素分圧0.9
atm、窒素分圧0.1atm)Ilを入れた容器と結
合し、−酸化炭素をe、l’(せしめた。吸収の初期の
10分間は2株式会社イワキ製BA−106T型エアー
ポンプを用いて、混合ガスを循環して吸収液の上を通過
させた。−酸化炭素吸収ガスはガスビー−レット法によ
り20℃で測定した。−酸化炭素の吸収は迅速で、3分
後には4.6mmolの一酸化炭素を吸収し、20分後
の一酸化炭素吸収量は6.3 mmolとなシ、はt!
平衡吸収量に達した。
200mA! The absorption liquid was stirred using a magnetic stirrer at 70°C in a 1st m
Mixed gas of carbon monoxide and nitrogen (-carbon oxide partial pressure 0.9
Atm, nitrogen partial pressure 0.1 atm) Il was combined with a container containing -carbon oxide e, l' (2).For the initial 10 minutes of absorption, a BA-106T air pump manufactured by Iwaki Co., Ltd. was used. Then, the mixed gas was circulated and passed over the absorption liquid. - The carbon oxide absorption gas was measured at 20°C by the gas bead method. - The absorption of carbon oxide was rapid, and after 3 minutes, 4.6 mmol was absorbed. The amount of carbon monoxide absorbed after 20 minutes is 6.3 mmol.
Equilibrium absorption was reached.

吸収液を1 atmで125℃に加熱し、ガスの放出量
をガスビューレット法により測定した。−酸化炭素は迅
速に放出され、放出量は5分後に6.3mmolに達し
た。
The absorption liquid was heated to 125° C. at 1 atm, and the amount of gas released was measured by the gas buret method. - Carbon oxide was rapidly released, the amount released reached 6.3 mmol after 5 minutes.

次に、別に、  32mp (1,8mmol )の水
を含有する1 atmの窒素ガス(水の濃度8,700
 ppm ) 5 lを調製した。この窒素ガスを入れ
た容器を2001111の二ロナスフラスコに結合し2
株式会社イワキ製BA−106Tエアーポンプを用いて
循環させて、磁気かくはん機でかきまぜた吸収液の上を
、70℃で10分間通過せしめた。
Next, separately, 1 atm of nitrogen gas containing 32 mp (1,8 mmol) of water (water concentration 8,700
ppm) 5 l was prepared. Connect this container containing nitrogen gas to the Nironas flask of 2001111.
It was circulated using a BA-106T air pump manufactured by Iwaki Co., Ltd., and passed over the absorption liquid stirred by a magnetic stirrer at 70° C. for 10 minutes.

その後、この吸収液を70℃で磁気かくはん機を用いて
かきまぜながら、latmの一酸化炭素と窒素の混合ガ
ス(−酸化炭素分圧0.9atm、 窒素分圧0.1 
atm ) 11を入れた容器と結合し、エアーポンプ
を用いて吸収液の上を循環させて、−酸化炭素を吸収さ
せた。−酸化炭素の吸収は迅速で。
Thereafter, while stirring this absorption liquid at 70°C using a magnetic stirrer, a mixed gas of carbon monoxide and nitrogen at latm (- carbon oxide partial pressure 0.9 atm, nitrogen partial pressure 0.1
Atm) 11 was connected to a container, and an air pump was used to circulate the absorption liquid over the absorption liquid to absorb carbon oxide. - Carbon oxide absorption is rapid.

20分後の吸収量は6.3 mmolで、はぼ平衡吸収
量に達した。すなわち、−酸化炭素の吸収速度および吸
収量は、吸収液を8,700 ppmの水を含むガスと
接触させる前の値と、はとんど変化が認められなかった
。この吸収液を1 atmで125℃に加熱すると、−
酸化炭素が迅速に放出され、放出量は5分後に6.3m
molに達した。
The absorption amount after 20 minutes was 6.3 mmol, which almost reached the equilibrium absorption amount. That is, the absorption rate and amount of -carbon oxide hardly changed from the values before contacting the absorption liquid with a gas containing 8,700 ppm of water. When this absorption liquid is heated to 125°C at 1 atm, -
Carbon oxide is released quickly, and the amount released is 6.3 m after 5 minutes.
reached mol.

特許出願人  平井英史Patent applicant Hidefumi Hirai

Claims (1)

【特許請求の範囲】 ハロゲン化銅(1) 、ノ・ロゲン化アルミニウム偵)
。 およびスチレンあるいはその誘導体のn量体よ多構成さ
れる吸収液を用いることを特徴とする。lppm以上の
水を含有する混合ガスから一酸化炭素を分離する方法。 ここにnは2から20までの整数である。
[Claims] Copper halide (1), aluminum halide)
. It is characterized by using an absorption liquid composed of n-mers of styrene or its derivatives. A method for separating carbon monoxide from a mixed gas containing 1 ppm or more of water. Here, n is an integer from 2 to 20.
JP57014588A 1981-04-30 1982-02-01 Carbon monoxide absorption separation method Expired JPS6043167B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57014588A JPS6043167B2 (en) 1982-02-01 1982-02-01 Carbon monoxide absorption separation method
AU82874/82A AU530246B2 (en) 1981-04-30 1982-04-21 Process for separating carbon monoxide from a gas mixture
CA000401772A CA1194277A (en) 1981-04-30 1982-04-27 Process for separating carbon monoxide from a gas mixture
US06/373,241 US4460384A (en) 1981-04-30 1982-04-29 Process for separating carbon monoxide from a gas mixture
DE3216024A DE3216024C2 (en) 1981-04-30 1982-04-29 Process for the separation of carbon monoxide from a gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014588A JPS6043167B2 (en) 1982-02-01 1982-02-01 Carbon monoxide absorption separation method

Publications (2)

Publication Number Publication Date
JPS58135118A true JPS58135118A (en) 1983-08-11
JPS6043167B2 JPS6043167B2 (en) 1985-09-26

Family

ID=11865325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014588A Expired JPS6043167B2 (en) 1981-04-30 1982-02-01 Carbon monoxide absorption separation method

Country Status (1)

Country Link
JP (1) JPS6043167B2 (en)

Also Published As

Publication number Publication date
JPS6043167B2 (en) 1985-09-26

Similar Documents

Publication Publication Date Title
US4696682A (en) Solid adsorbent for carbon monoxide and process for separation from gas mixture
JPS621455A (en) Solid composition for oxidizing and converting organic compound and manufacture thereof
JPS62191021A (en) Drying method using chabazite type adsorbent
JPS6230550A (en) Adsorbent for selectively adsorbing and separating gas and its preparation
JPH0881210A (en) Carbon material having high specific surface area and its production
US2659453A (en) Separation of acetylene from gaseous mixtures by glycolonitrile
US3758673A (en) Process for the production of a carbon monoxide containing gas
JPS6041988B2 (en) Carbon monoxide adsorption separation method
JPS5849436A (en) Separation of carbon monoxide
JPS6049022B2 (en) How to separate carbon monoxide from mixed gas
JPS58135118A (en) Absorption and separation of carbon monoxide
EP0003436B1 (en) Improved process for producing vanadium chlorides
US2728638A (en) Process for the manufacture of carbonyl sulfide
EP0688300A1 (en) Hydrogen fluoride recovery process
US4460384A (en) Process for separating carbon monoxide from a gas mixture
JPS58104009A (en) Separation of carbon monoxide from mixed gas
IL45475A (en) Process for the separation of c4 acetylenic hydrocarbons from hydrocarbon pyrolysis gas streams
US1908312A (en) Separation of methane from hydrocarbon gas mixtures
JPS5824321A (en) Separation of carbon monoxide
JPS634845A (en) Adsorbent for carbon monoxide
US2540788A (en) Process for the production of benzonitrile
JPS6232732B2 (en)
JPS634844A (en) Adsorbent for carbon monoxide
JPS6135128B2 (en)
JPS5899110A (en) Separation of carbon monoxide from gaseous mixture