JPS58134621A - Optical switch - Google Patents
Optical switchInfo
- Publication number
- JPS58134621A JPS58134621A JP1729282A JP1729282A JPS58134621A JP S58134621 A JPS58134621 A JP S58134621A JP 1729282 A JP1729282 A JP 1729282A JP 1729282 A JP1729282 A JP 1729282A JP S58134621 A JPS58134621 A JP S58134621A
- Authority
- JP
- Japan
- Prior art keywords
- hologram
- light
- polarizer
- analyser
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/055—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【発明の詳細な説明】
本発明ri2矢醒気光学効果を示す強誘電体とそれをは
さんで配置さi/”した偏光素子からなる光スィッチに
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical switch comprising a ferroelectric material exhibiting an optical effect and an i/'' polarizing element placed between the ferroelectric materials.
従来、光スイツチング素子は、第1図に示すように、2
次電気元学効果、いわゆるkerr 効果を示す強誘
電体としてPLZT板を用い、PLZT基板3′D元ス
イッチ部に電界を印加する篭甑4.5を杉成し、この基
板3が直交する2枚の偏光板1.2の間に配置される0
これら偏光板1,2の満i面はPLZT基板の電界印7
111方向と45をなしている。Conventionally, an optical switching element has two parts as shown in FIG.
A PLZT board is used as a ferroelectric material that exhibits the so-called Kerr effect, and a cage 4.5 is installed to apply an electric field to the PLZT board 3'D source switch section. 0 placed between the polarizing plates 1.2
The full i-plane of these polarizing plates 1 and 2 is the electric field mark 7 of the PLZT substrate.
111 direction and 45.
光源からの光は偏光板II/Cよって直線偏光となりP
LZT基板3に入射する。wl極4.5に電界が印加さ
れていない場合、PLZT板を透過した光は偏光板2に
よって遮断される。一方、電険4.5に適当な嵯圧が印
加された場合はPL Z T板を透過した光は、電気光
学効果によって偏を面が901d輌し、偏光板2を透過
する。The light from the light source becomes linearly polarized by polarizing plate II/C.
The light is incident on the LZT substrate 3. When no electric field is applied to the wl pole 4.5, the light transmitted through the PLZT plate is blocked by the polarizing plate 2. On the other hand, when an appropriate surface pressure is applied to the electrical resistance 4.5, the light transmitted through the PL Z T plate is polarized by 901d due to the electro-optic effect and is transmitted through the polarizing plate 2.
このような光スイツチング素子の偏光板と(2て、通常
、高分子フィルムに多色性色素を吸庸さぜた国光フィル
ムが用いられるが、偏光フィルムは、透過光の蘭元面と
同じ偏光面を持つ直線偏光を入射さぜた場合でも、そり
)透過率は約75チに過ぎず、元絃損失が大きい。The polarizing plate of such a light switching element (2) is usually a Kokuko film, which is a polymer film with a pleochroic dye absorbed; Even when linearly polarized light with a surface is incident, the warpage transmittance is only about 75 degrees, and the main string loss is large.
本発明は、検光子として拗らく1祠光子2ハ代りに体積
型位相ホログラム管用いることによね、検光子の透過率
ruo俤を得ようとするものである。The present invention attempts to obtain the transmittance of an analyzer by using a volume type phase hologram tube instead of one photon and two photons as an analyzer.
第2図は等間隔直線格子り)ホ1.1グラムを硬式的に
表わしたものである。このホログラムは、ホログラム媒
質の屈折率が正弦波状に変化し7ている位相ホログラム
であり、ホログラム媒質6中り縞7け屈折率最大り)と
ころf模式的に示している。第2図<a) ?rホij
グラム媒質6の千面内の縞の分布を、同図集)はそり)
断面内の分布を示している。Fig. 2 is a rigid representation of the 1.1 gram on an equally spaced linear grid. This hologram is a phase hologram in which the refractive index of the hologram medium changes in a sinusoidal manner, and the refractive index of the hologram medium 6 is the maximum (f). Figure 2<a)? rhoij
The distribution of fringes within 1,000 planes of Gram medium 6 is shown in the same figure collection).
It shows the distribution within the cross section.
第2 図jb)に訃いて、縞の間隔全D%縞々ホログラ
ム衣+fll′Iとり〕なす肉分φ、ホログラムの1!
7さをdとすれば、体積型位相ホロゲラムク)回折効率
Vlけ次り〕ように表わされる。Fig. 2 jb), stripe spacing total D% striped hologram cloth + fll'I] eggplant meat φ, 1 of the hologram!
7. If d is the volume type phase hologram, the diffraction efficiency is expressed as follows.
偏光ベクトルicで味わされる直線偏光が、入射絢uc
で上記のホログラムに入射する場合には、ただし、入射
絢θCはBragg の条件cos (φ−0C)=λ
/2nD
を洒し、λは入射光波長、nはホログラム媒質り)乎均
屈折率、n、は屈折率に勅の岐大血と峡小111の串、
11け1回折元の偏光ベクトル、(fc−111はベク
トルの内積、またC3
US=coa ←/c(costメe −−COB
φ )・・・ (2)nl)
を表わす。The linearly polarized light experienced by the polarization vector ic is the incident light uc
When incident on the above hologram with
/2nD, where λ is the wavelength of the incident light, n is the hologram medium), and n is the uniform refractive index, and n is the refractive index.
The polarization vector of the 11-digit diffraction source, (fc-111 is the inner product of the vectors, and C3 US=coa ←/c(cost me --COB
φ )... (2) nl) is represented.
なお、体積型位相ホログラムでは0次透過光と1次回折
光りへか存在し7、従って上記のYtは1次1回折光り
)回折効率を示す。In addition, in a volume type phase hologram, both the 0th-order transmitted light and the 1st-order diffracted light exist7, so the above Yt indicates the diffraction efficiency of the 1st-order 1st-order diffracted light.
い1、ホログラムと入射光との関係においてπrr 1
/λG−“4 ・・・(3)が成りVて
ば、(1)式から回折効率は?=Sin2〔÷(ic−
ill 〕・’、4)となり、直線偏光ベクトルグ)偏
光方向の与に依存することとなる。1. In the relationship between the hologram and the incident light, πrr 1
/λG−“4...If (3) holds true, what is the diffraction efficiency from equation (1)?=Sin2[÷(ic−
ill ]・', 4), and it depends on the polarization direction (linear polarization vector).
以)ベクトルicは第2図+1)のx、y% 2座標に
対する成分は(aC%l)c、c、暑であり、ベクトル
1工の戎分け(aJ%bt、cl)であると表わすこと
とす、Q。 ・
1
1次1f、!1折九:り〕回折的01は次式で表わされ
Φ。Hereinafter, the vector ic is expressed as the x, y% 2 coordinates of Figure 2 + 1). Kototoshi, Q.・ 1 1st 1f,! 1 fold 9:ri] Diffractive 01 is expressed by the following formula, Φ.
す・□・:、、、48、。。Su・□・:,,,48,. .
す1 = s in−’ (s +nejc−一)
−・・j5)いま、ホログラムに入射する光の
直線偏光ベクトルi(・ が(()、l、0)で衣わ
される格子縞7に平行な直線偏光であれば、tEliJ
折方向の如何にかかわらず、回折光の直線偏光ベクトル
i1も(、Ll 、 1. 、 t、+ )となるので
、(jc・11.+=1となり、f、4)式から17=
lで[ol回折効率 11J u %−となる。s1 = s in-' (s + nejc-1)
-...j5) Now, if the linearly polarized light vector i(.
Regardless of the direction of folding, the linearly polarized light vector i1 of the diffracted light is also (, Ll, 1., t, +), so (jc・11.+=1, and from equation f, 4), 17=
[ol diffraction efficiency becomes 11 J u %-.
一方、格子縞7に垂直な偏光であれば、1c = (C
O8Flc111、)目1θC)となり、(ロ)指光の
偏光ベクトルは
□べ
il = + co Sζill 、 II
% 5ins1 1となる。On the other hand, if the light is polarized perpendicular to the lattice fringes 7, then 1c = (C
O8Flc111,) eyes 1θC), and (b) the polarization vector of the finger light is □beil = + co Sζill, II
% 5ins1 1.
従って回折効率rlは町4)式から
’l= 5in2(−’−(co 時(、acos−ノ
ー+5ineツc*5inejll ):l:81n
2(−’−C(1(tyc−Bl) ) 、、、
+、6)となる。ここでOc”l=π/2 であれは
l1=t+となり回折効率けOで0次透過光の与となる
。Therefore, the diffraction efficiency rl is obtained from the formula 4) as 'l=5in2(-'-(co time(, acos-no+5inetc*5inejll):l:81n
2(-'-C(1(tyc-Bl)) ,,,
+, 6). Here, if Oc"l=π/2, then l1=t+, and the diffraction efficiency is O, giving zero-order transmitted light.
この Oc−θl=π/2を(5)式に代入すれば81
nedc+c O5dc=λSinφ/1)、。−1
〕=λ sinφ/(sin(ンc+c o a&(1
) −(7)町2)、(3J
式から
ホログラム材料によってn、nl、dが決マリ、人射藺
偽、光の波長λは既知であるから(7)、1)l)式か
ら)2’=l)となるためのホログラムの縞間隔りおよ
び縞とホログラム繰向とのなす絢φが決定出来る。Substituting this Oc-θl=π/2 into equation (5), we get 81
nedc+c O5dc=λSinφ/1). -1
]=λ sinφ/(sin(nc+c o a&(1
) - (7) Town 2), (3J
From the formula, n, nl, and d are determined depending on the hologram material, and since the wavelength λ of light is known, (7), 1) l) From the formula) 2' = l) The spacing between the stripes and the depth φ formed by the stripes and the hologram redirection can be determined.
このようにして決定されたり、φを持つホログラムを検
光子として用いれば、PLZT板へ’7) *界のオン
書オフにより、ホ「1グラムから0次光、−次回指光を
切り換えて得ることが出来る。If determined in this way or using a hologram with φ as an analyzer, it will be possible to obtain the PLZT board by switching from 1 gram to the 0th order light and -next order light. I can do it.
上記の原理に基づく光スィッチによって構成した元スイ
ッチングアレイのl!!施列を第3図に示す。PLZT
基板13は共通電極14に対向する多数のイg@電甑1
5を有し、従来公知のものと同様、偏光板llはその偏
光面が電極14.15によって印加される電界と45“
1の角度をなす工すに配置される。演光子の代りに、ホ
ログラムI2が覧かれるが、このホログラムは体積型位
相ホログラムであり、例えばカフス基板り上に車りロム
酸ゼラナンが塗布され、こり)菫クロム酸ゼラチン内で
正弦波状に一定周期で屈折率が変化しているものである
。図には、第2図々同様、屈折率極大の縞f我示しであ
るが、そり〕方向は偏光板llの偏光面に平行である。l of the original switching array constructed from optical switches based on the above principle! ! The arrangement is shown in Figure 3. PLZT
The substrate 13 has a large number of electrodes 1 facing the common electrode 14.
5, and similar to those conventionally known, the polarizing plate ll has a plane of polarization 45" with respect to the electric field applied by the electrodes 14.
It is placed in a structure that forms an angle of 1. Hologram I2 can be seen instead of the optical element, but this hologram is a volume-type phase hologram, for example, a chromic acid gelatin coated on a cuff substrate, and a constant sinusoidal waveform formed in the chromic acid gelatin. The refractive index changes periodically. The figure shows the maximum refractive index fringes f as in Figure 2, but the warp direction is parallel to the plane of polarization of the polarizing plate 11.
光源lOからの光は、偏光板11vcよりPLz′r板
に対し、そつ印加電界に対して45傾いた直線1梠光と
して入射し、電圧の印加されていない信号電極部分に入
射した偏光は、そ2)ままPLZT板會透過し、ちょう
ど格子縞に平行な1浦光而を侍ってホログラム12に入
射する。こり〕とき、上述9)ようVC1圓折効率がI
LIU%となり、ホログラムへの入射光は総て回折角O
cで回す「される。The light from the light source IO enters the PLz'r plate from the polarizing plate 11vc as a straight line light inclined by 45 with respect to the applied electric field, and the polarized light that enters the signal electrode part to which no voltage is applied is as follows. 2) The light passes through the PLZT board and enters the hologram 12, following the 1-ura light that is exactly parallel to the lattice stripes. When the VC1 refraction efficiency is I as described in 9) above,
LIU%, and all incident light to the hologram has a diffraction angle of O
Turn with c.
jふ)。jfu).
一方、PLZT板り)電圧のi 、、加されている1呂
号邂啄部に入射しまた光11%偏光而が面0回転してボ
ログラムに入射するので、ホログラムの格子縞に垂直な
偏光面を持ち、回折効率ViOで入射光の全てが回折せ
ずにそのままホログラムを透過する。この透過光あるい
け回折光を用いて光スイツチングアレイとしての作用を
得ることが出来ろ○
この光スイッチング禦子に用いるホログラノ・シ:を以
下刃ようにして製作すること/IE出来る。On the other hand, the 11% polarized light enters the bologram with voltage i applied to the PLZT board, and the polarization plane is perpendicular to the lattice fringes of the hologram. With a diffraction efficiency of ViO, all of the incident light passes through the hologram without being diffracted. Using this transmitted light or diffracted light, it is possible to obtain the effect of an optical switching array.The hologram used for this optical switching element can be manufactured as shown below.
ホログラムヘゲ〕入躬角Uc斧はぼ0、光源としてグリ
ーン螢光灯f tc用(7中心波長λ=055nrn、
ホログラム媒質は塩クロム酸ゼラチンで、@tllr*
n = 1.55、啄大、匝小ハ屈折率り、11.=
0、01 、FJさd = 20 μmとすれば、(7
)、(8)式%式%)
が得られる。すなわち、格子間隔0444μm、埠与内
で格子縞とホログラム表面とのなす絢が、5386°で
あるよ侯1・な体積型り)位相ホログラムを作製すれば
よい。Hologram Hege] The entrance angle Uc ax is 0, the light source is for green fluorescent lamp f tc (7 center wavelength λ = 055nrn,
The hologram medium is salt chromate gelatin, @tllr*
n = 1.55, large and small refractive index, 11. =
0,01, FJ length d = 20 μm, (7
), (8) formula % formula %) are obtained. That is, a volume-type phase hologram with a grating interval of 0444 μm and a depth of 5386° between the grating stripes and the hologram surface within the periphery may be fabricated.
こ力ようなホログラムソ〕記録光学系′DI例を第4図
に示す。1も子1…隔りをボロダラム六面での格子間隔
lJoに換算すると、Do−〇、劉nφ なり)でり。An example of such a hologram recording optical system DI is shown in FIG. 1 is also child 1... When the distance is converted to the lattice spacing lJo on the six sides of Borodalam, it becomes Do-〇, Liu nφ).
−055μmとなる。-055 μm.
回折格子を記録するホログラム媒質491−t、第3図
に示すホログラム12グ)ように、X軸に対【5.て4
5煩いた格子を得るため、第5図に示すようにX軸に対
17て45傾けて配置される。A hologram medium 491-t for recording a diffraction grating is arranged along the X axis [5. Te4
In order to obtain a 5-square grid, it is arranged at an angle of 17 x 45 with respect to the X axis, as shown in FIG.
等間隔格子は2つの乎百波の干渉によって作られる。第
4図では、レーザ41の出射光は対物レンズ45、ビン
ボール46、コリメータレンズ47により近似的なガク
ス分布をもつ平行光とされ、分布補正フィルタ48によ
って光束の強寂分布が一様な千九りとなる。こり〕光末
はビームスプリッタ42で2光果に分割し、1方の光束
はミラー43で反射され、ホログラム記録媒質49Vr
−角度d1〆入射する。もう1方の光束はミラー44で
反射され、ホログラム記録媒質にθ。で入射し、他方ソ
〕光宋と干渉する。A uniformly spaced grid is created by the interference of two waves. In FIG. 4, the emitted light from the laser 41 is converted into parallel light with an approximate Gacus distribution by an objective lens 45, a bottle ball 46, and a collimator lens 47, and the intensity distribution of the light beam is made uniform by a distribution correction filter 48. It becomes The beam splitter 42 splits the light beam into two beams, and one beam is reflected by a mirror 43 and transferred to a hologram recording medium 49Vr.
-Inject at angle d1. The other beam is reflected by the mirror 44 and strikes the hologram recording medium at θ. , and interfered with the other Soviet Union's Light and Song.
これら2光宋の主光@ri第4図り) X −Z d内
にあり、レーザ41の発振波長をλ。とすれば、必要な
ホログラム表向でり)格子間隔り。は、ホロ9)
グラム媒質へのこれらの入射光束D+光−のなす陶θR
1θ。を用いて次乃ように衣わさねる6、1〕。=λ6
(Si n t−*、、、−s in Ho)
、、、 19)捷だ俗子縞り)ホログラム媒質内
でブ)顛きφ軟t、となる。従って、前述のようにD
= 0.55μn1φ= 53.86 また、レーザ
光源41としてArレーザ全用いればλ。=0488μ
mとなり、19)(lO)代から
怖=804゜
θo=8.1
會侵るり〕で、ミラー43.44をこの人射陶を得るよ
うにセットすればよい。こり)ようにして干渉縞全記録
[7たホログラム記&]1媒實を現1永処理すれば所望
のホログラムが製作できる。。These two lights of the Song Dynasty's principal light @ri (4th diagram) are within X - Z d, and the oscillation wavelength of the laser 41 is λ. Then, the required hologram surface spacing). is Holo9) The sum θR formed by these incident light beams D + light - on the gram medium
1θ. 6, 1]. =λ6
(Sin t-*,,,-s in Ho)
,,, 19) In the hologram medium, the curvature becomes φsoft t. Therefore, as mentioned above, D
= 0.55μn1φ = 53.86 If all Ar lasers are used as the laser light source 41, λ. =0488μ
m, and 19) (lO) = 804° θo = 8.1 Ruri], and mirrors 43 and 44 can be set to obtain this shot. A desired hologram can be produced by permanently processing the entire recording of interference fringes [7 hologram records &] 1 medium. .
なお・、ホログラム記録媒質け、電りロム酸ゼラ1ンだ
けでなく、′#4白fII塩乾板等、体積増位(t4ホ
ログラムを作製しつる媒質であればflllでもよい。Note that the hologram recording medium is not limited to galvanized romic acid gelatin, but may also be any volume-enhancing medium, such as #4 white fII salt dry plate, as long as it is a medium for producing a T4 hologram.
また、透過型ホロクラムだけでなく、反射型ホロクラム
でも同様り)効果が得られ、6oさくl u)
らに、体積型位相ホログラムに限らず、表面レリーフ型
フ〕ホログラムでも、回折効率の高いものが得られれば
同様に利用出来る。In addition, not only transmission type holograms but also reflection type holograms can produce the same effect, and not only volume type phase holograms but also surface relief type holograms can be used to achieve high diffraction efficiency. If you can obtain it, you can use it in the same way.
第1図は公知の光スイツチング素子2)#1成の説明図
、第2図は体積型位相ホログラムの説明図、第3図は本
発明り光スイツチングアレイの構成説明図、第41別、
第5・図は本発明の光スイツチング素子に用いるホログ
ラムの作成光学系り)構成図である。
l、11:制光板 2:制光板 3.13:PI、ZT
板 4.5.14.15:[l& 6゜49:ホログ
ラム媒* 7:格子縞 lo:光源 12:ホログラ
ム 41:レーザ 46:ビンホール 48:分布補正
フィルタ
・、:パ―
特許出願人 法式会社 リコー
(11)
豫 1 図
第 2]71
(a) (bl算5図FIG. 1 is an explanatory diagram of a known optical switching element 2) #1 configuration, FIG. 2 is an explanatory diagram of a volume type phase hologram, and FIG. 3 is an explanatory diagram of the configuration of an optical switching array according to the present invention.
Figure 5 is a block diagram of the optical system for producing a hologram used in the optical switching element of the present invention. l, 11: Light control plate 2: Light control plate 3.13: PI, ZT
Plate 4.5.14.15: [l & 6° 49: Hologram medium * 7: Lattice stripe lo: Light source 12: Hologram 41: Laser 46: Bin hole 48: Distribution correction filter...: Par Patent applicant Ricoh Co., Ltd. 11) Yu 1 Figure 2] 71 (a) (BL Calculation Figure 5
Claims (1)
@きれた偏光子、検光子からなる光スィッチにおいて、
上記検光子としてホログラムを用いたことを特徴とする
光スィッチIn an optical switch consisting of a ferroelectric material exhibiting a two-dimensional electrical effect, and a polarizer and an analyzer placed across it,
An optical switch characterized in that a hologram is used as the analyzer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1729282A JPS58134621A (en) | 1982-02-05 | 1982-02-05 | Optical switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1729282A JPS58134621A (en) | 1982-02-05 | 1982-02-05 | Optical switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58134621A true JPS58134621A (en) | 1983-08-10 |
Family
ID=11939912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1729282A Pending JPS58134621A (en) | 1982-02-05 | 1982-02-05 | Optical switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58134621A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999049339A1 (en) * | 1998-03-24 | 1999-09-30 | Sharp Kabushiki Kaisha | Hologram polarized light separator |
-
1982
- 1982-02-05 JP JP1729282A patent/JPS58134621A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999049339A1 (en) * | 1998-03-24 | 1999-09-30 | Sharp Kabushiki Kaisha | Hologram polarized light separator |
AU739327B2 (en) * | 1998-03-24 | 2001-10-11 | Sharp Kabushiki Kaisha | Hologram-type polarized-light splitting element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100391006B1 (en) | Display panel with compensation by holographic birefringent films | |
CN110389401B (en) | 3D alignment method of anisotropic molecules, patterned anisotropic film, and optical element | |
CN110068945B (en) | Reflective composite liquid crystal polarization grating and preparation method thereof | |
CN110646992B (en) | Double-period composite liquid crystal polarization grating | |
CN109375426B (en) | Single-side orientation active liquid crystal polarization grating structure and preparation method thereof | |
WO2018097007A1 (en) | Optical element and method for manufacturing optical element | |
US5812233A (en) | Polarization sensitive devices and methods of manufacture thereof | |
Roberts et al. | Polarization-independent diffractive waveplate optics | |
CN110850685B (en) | Exposure method and device for liquid crystal computer generated hologram | |
JP4106981B2 (en) | Optical attenuator | |
Kazak et al. | Operation with laser radiation by using of liquid crystal elements | |
JPS58134621A (en) | Optical switch | |
US3432223A (en) | Modulator for a light beam | |
US5194984A (en) | Stilbazolium salt and optically non-linear devices incorporating same | |
Tsukamoto et al. | Light deflection induced by ferroelastic layered domains | |
US20220187631A1 (en) | Segmented polarization selective device | |
JPS6186724A (en) | Grating type optical controlling element | |
GB1243253A (en) | Improvements in or relating to light beam deflectors | |
CN214311184U (en) | Light-operated photoswitch based on liquid crystal display principle | |
CN114460774B (en) | Reflective geometric phase liquid crystal spatial light modulation method, system and storage medium | |
JP3431253B2 (en) | Hologram recording method | |
WO2024131060A1 (en) | Holographic metamaterial film and system and method for manufacturing holographic metamaterial optical device | |
Fu et al. | Generation of Vortex Beams | |
Emoto et al. | Spatial frequency selective reconstruction using Fourier transform holograms generated in functionalized mesogenic composites | |
CN112835263B (en) | Single-step exposure method and device for liquid crystal calculation hologram |